Information on Organism Cupriavidus necator

TaxTree of Organism Cupriavidus necator
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
transferred to EC 1.3.8.7, medium-chain acyl-CoA dehydrogenase, EC 1.3.8.8, long-chain acyl-CoA dehydrogenase and EC 1.3.8.9, very-long-chain acyl-CoA dehydrogenase
transferred to EC 1.7.1.1, nitrate reductase (NADH), EC 1.7.1.2, nitrate reductase [NAD(P)H], EC 1.7.1.3, nitrate reductase (NADPH), EC 1.7.5.1, nitrate reductase (quinone), EC 1.7.7.2, nitrate reductase (ferredoxin) and EC 1.9.6.1, nitrate reductase (cytochrome)
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-propane-1,2-diol degradation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
acetaldehyde biosynthesis I
-
-
acetylene degradation (anaerobic)
-
-
alpha-Linolenic acid metabolism
-
-
Biosynthesis of secondary metabolites
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
chitin degradation to ethanol
-
-
Chloroalkane and chloroalkene degradation
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
Fatty acid degradation
-
-
Glycine, serine and threonine metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
heterolactic fermentation
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
methionine metabolism
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
Naphthalene degradation
-
-
noradrenaline and adrenaline degradation
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
phytol degradation
-
-
propanol degradation
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Retinol metabolism
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
valine metabolism
-
-
Caprolactam degradation
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
ethylene glycol biosynthesis (engineered)
-
-
Glycerolipid metabolism
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
lipid metabolism
-
-
Pentose and glucuronate interconversions
-
-
pyruvate fermentation to butanol I
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
(R,R)-butanediol biosynthesis
-
-
(R,R)-butanediol degradation
-
-
acetoin degradation
-
-
Butanoate metabolism
-
-
non-pathway related
-
-
degradation of sugar alcohols
-
-
xylitol degradation
-
-
D-glucuronate degradation I
-
-
L-arabinose degradation II
-
-
D-xylose degradation IV
-
-
glycolate and glyoxylate degradation
-
-
Glyoxylate and dicarboxylate metabolism
-
-
L-arabinose degradation IV
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
Bifidobacterium shunt
-
-
Cysteine and methionine metabolism
-
-
L-lactaldehyde degradation
-
-
lactate fermentation
-
-
Propanoate metabolism
-
-
pyruvate fermentation to (S)-lactate
-
-
Pyruvate metabolism
-
-
superpathway of glucose and xylose degradation
-
-
alanine metabolism
-
-
L-alanine degradation II (to D-lactate)
-
-
vancomycin resistance I
-
-
ketogenesis
-
-
ketolysis
-
-
Synthesis and degradation of ketone bodies
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
2-methylpropene degradation
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
adipate degradation
-
-
androstenedione degradation
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
Carbon fixation pathways in prokaryotes
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
CO2 fixation in Crenarchaeota
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
Geraniol degradation
-
-
glutaryl-CoA degradation
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
Lysine degradation
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl tert-butyl ether degradation
-
-
oleate beta-oxidation
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to hexanol (engineered)
-
-
Toluene degradation
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
4-oxopentanoate degradation
-
-
acetyl-CoA fermentation to butanoate II
-
-
butanoate fermentation
-
-
ethylmalonyl-CoA pathway
-
-
polyhydroxybutanoate biosynthesis
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Carbon fixation in photosynthetic organisms
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
formaldehyde assimilation I (serine pathway)
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glyoxylate cycle
-
-
incomplete reductive TCA cycle
-
-
malate/L-aspartate shuttle pathway
-
-
Methane metabolism
-
-
methylaspartate cycle
-
-
partial TCA cycle (obligate autotrophs)
-
-
pyruvate fermentation to propanoate I
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
-
-
L-glutamine biosynthesis III
-
-
ethylene biosynthesis V (engineered)
-
-
Glutathione metabolism
-
-
NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
glucose degradation (oxidative)
-
-
Pentose phosphate pathway
-
-
Entner-Doudoroff pathway I
-
-
formaldehyde oxidation I
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (oxidative branch) I
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
4-aminobutanoate degradation V
-
-
succinate fermentation to butanoate
-
-
C5-Branched dibasic acid metabolism
-
-
isoleucine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis III
-
-
L-valine biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
1,3-dimethylbenzene degradation to 3-methylbenzoate
-
-
1,4-dimethylbenzene degradation to 4-methylbenzoate
-
-
2,5-xylenol and 3,5-xylenol degradation
-
-
3-chlorotoluene degradation II
-
-
m-cresol degradation
-
-
Phenylalanine metabolism
-
-
salicin biosynthesis
-
-
salicortin biosynthesis
-
-
toluene degradation to benzoate
-
-
Xylene degradation
-
-
(5Z)-dodecenoate biosynthesis I
-
-
(5Z)-dodecenoate biosynthesis II
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
arachidonate biosynthesis
-
-
Biotin metabolism
-
-
cis-vaccenate biosynthesis
Fatty acid biosynthesis
-
-
fatty acid elongation -- saturated
-
-
gondoate biosynthesis (anaerobic)
-
-
mycolate biosynthesis
-
-
myristate biosynthesis (mitochondria)
-
-
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast)
-
-
oleate biosynthesis IV (anaerobic)
-
-
palmitate biosynthesis
-
-
palmitate biosynthesis II (bacteria and plant cytoplasm)
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
petroselinate biosynthesis
-
-
stearate biosynthesis II (bacteria and plants)
-
-
superpathway of mycolate biosynthesis
-
-
aminopropanol phosphate biosynthesis II
-
-
L-threonine degradation II
-
-
L-threonine degradation III (to methylglyoxal)
-
-
threonine metabolism
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
allopregnanolone biosynthesis
-
-
bile acid biosynthesis, neutral pathway
Folate biosynthesis
-
-
Steroid hormone biosynthesis
-
-
testosterone and androsterone degradation to androstendione
-
-
methanol oxidation to carbon dioxide
-
-
methanol oxidation to formaldehyde II
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
protein S-nitrosylation and denitrosylation
-
-
3-hydroxypropanoate cycle
-
-
glyoxylate assimilation
-
-
uracil degradation III
-
-
D-erythronate degradation II
-
-
L-threonate degradation
-
-
Galactose metabolism
-
-
methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
glycerol degradation I
-
-
glycerol-3-phosphate shuttle
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
glycerophosphodiester degradation
-
-
Glycerophospholipid metabolism
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
long chain fatty acid ester synthesis (engineered)
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
Purine metabolism
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
alkane oxidation
-
-
Arginine and proline metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
Ascorbate and aldarate metabolism
-
-
beta-Alanine metabolism
-
-
beta-methyl-branched fatty acid alpha-oxidation
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide degradation by alpha-oxidation
-
-
dimethylsulfoniopropanoate biosynthesis I (Wollastonia)
-
-
dimethylsulfoniopropanoate biosynthesis II (Spartina)
-
-
dopamine degradation
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
fatty acid alpha-oxidation I (plants)
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
hypotaurine degradation
-
-
Insect hormone biosynthesis
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
NAD/NADP-NADH/NADPH mitochondrial interconversion (yeast)
-
-
octane oxidation
putrescine degradation III
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
4-aminobutanoate degradation III
-
-
Alanine, aspartate and glutamate metabolism
-
-
glutamate and glutamine metabolism
-
-
Nicotinate and nicotinamide metabolism
-
-
2-amino-3-carboxymuconate semialdehyde degradation to 2-hydroxypentadienoate
-
-
2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA
-
-
2-aminophenol degradation
-
-
2-nitrobenzoate degradation I
-
-
4-chloronitrobenzene degradation
-
-
4-nitrotoluene degradation II
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
phenylethylamine degradation I
-
-
phenylethylamine degradation II
-
-
styrene degradation
-
-
Styrene degradation
-
-
acetate fermentation
-
-
acetyl-CoA biosynthesis II (NADP-dependent pyruvate dehydrogenase)
-
-
oxidative decarboxylation of pyruvate
-
-
photosynthesis
-
-
4-coumarate degradation (aerobic)
-
-
4-coumarate degradation (anaerobic)
-
-
Aminobenzoate degradation
-
-
pinoresinol degradation
-
-
trans-caffeate degradation (aerobic)
-
-
vanillin and vanillate degradation I
-
-
vanillin and vanillate degradation II
-
-
4-aminobutanoate degradation II
-
-
4-hydroxyphenylacetate degradation
-
-
nicotine degradation I (pyridine pathway)
-
-
nicotine degradation II (pyrrolidine pathway)
-
-
alkane biosynthesis I
-
-
heptadecane biosynthesis
-
-
sulfoacetate degradation
-
-
acetyl CoA biosynthesis
-
-
pyruvate decarboxylation to acetyl CoA
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
vitamin B1 metabolism
-
-
Drug metabolism - other enzymes
-
-
thymine degradation
-
-
uracil degradation I (reductive)
-
-
3-dimethylallyl-4-hydroxybenzoate biosynthesis
-
-
L-tyrosine biosynthesis I
-
-
Novobiocin biosynthesis
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
benzoate degradation I (aerobic)
-
-
Fluorobenzoate degradation
-
-
1,4-dichlorobenzene degradation
-
-
2,4,5-trichlorophenoxyacetate degradation
-
-
2,4,6-trichlorophenol degradation
-
-
3,4,6-trichlorocatechol degradation
-
-
3,5-dichlorocatechol degradation
-
-
3-chlorocatechol degradation
-
-
3-chlorocatechol degradation I (ortho)
-
-
3-chlorocatechol degradation II (ortho)
-
-
4,5-dichlorocatechol degradation
-
-
4-aminophenol degradation
-
-
4-chlorocatechol degradation
-
-
4-hydroxyacetophenone degradation
-
-
4-nitrophenol degradation I
-
-
4-nitrophenol degradation II
-
-
4-sulfocatechol degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorosalicylate degradation
-
-
gamma-hexachlorocyclohexane degradation
-
-
gamma-resorcylate degradation I
-
-
gamma-resorcylate degradation II
-
-
pentachlorophenol degradation
-
-
resorcinol degradation
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
ethylmalonyl-CoA pathway
-
-
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
6-gingerol analog biosynthesis (engineered)
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
Biosynthesis of unsaturated fatty acids
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
jasmonic acid biosynthesis
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
propanoyl-CoA degradation II
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
Oxidative phosphorylation
-
-
propionate fermentation
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
-
-
heme b biosynthesis II (oxygen-independent)
-
-
heme metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
Arginine biosynthesis
-
-
ethylene biosynthesis IV (engineered)
-
-
L-glutamate degradation I
-
-
Nitrogen metabolism
-
-
Taurine and hypotaurine metabolism
-
-
NAD metabolism
-
-
taurine degradation
-
-
taurine degradation II
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-ornithine degradation II (Stickland reaction)
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
L-proline biosynthesis II (from arginine)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
proline metabolism
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
One carbon pool by folate
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
tetrahydrofolate metabolism
-
-
flavin biosynthesis
-
-
Riboflavin metabolism
-
-
NAD/NADH phosphorylation and dephosphorylation
-
-
superpathway of photosynthetic hydrogen production
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
vitamin K-epoxide cycle
-
-
ascorbate recycling (cytosolic)
-
-
nitrate reduction II (assimilatory)
-
-
ammonia oxidation II (anaerobic)
-
-
denitrification
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitrate assimilation
-
-
nitrate reduction VI (assimilatory)
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
glycine cleavage
-
-
glycine metabolism
-
-
sulfide oxidation II (flavocytochrome c)
-
-
Sulfur metabolism
-
-
sulfide oxidation I (to sulfur globules)
-
-
sulfide oxidation III (to sulfite)
-
-
nitrate reduction IV (dissimilatory)
-
-
Isoquinoline alkaloid biosynthesis
-
-
o-diquinones biosynthesis
-
-
justicidin B biosynthesis
-
-
matairesinol biosynthesis
-
-
sesamin biosynthesis
-
-
photosynthesis light reactions
-
-
reactive oxygen species degradation
-
-
superoxide radicals degradation
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
betanidin degradation
-
-
luteolin triglucuronide degradation
-
-
Phenylpropanoid biosynthesis
-
-
hydrogen oxidation II (aerobic, NAD)
-
-
hydrogen production
-
-
hydrogen production II
-
-
hydrogen oxidation III (anaerobic, NADP)
-
-
hydrogen production IV
-
-
hydrogen production III
-
-
hydrogen production VI
-
-
hydrogen production VIII
-
-
L-glutamate degradation VII (to butanoate)
-
-
coenzyme B/coenzyme M regeneration I (methanophenazine-dependent)
-
-
coenzyme M biosynthesis
-
-
hydrogen oxidation I (aerobic)
-
-
Nitrotoluene degradation
-
-
catechol degradation to beta-ketoadipate
-
-
phenol degradation
-
-
2-nitrotoluene degradation
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
3,4-dichlorobenzoate degradation
-
-
3-chlorobenzoate degradation II (via protocatechuate)
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
protocatechuate degradation I (meta-cleavage pathway)
-
-
4-hydroxyphenylacetate degradation
-
-
3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-hydroxypentadienoate
-
-
3-phenylpropionate degradation
-
-
cinnamate and 3-hydroxycinnamate degradation to 2-hydroxypentadienoate
-
-
sulfate reduction
-
-
cysteine metabolism
-
-
L-cysteine degradation I
-
-
taurine biosynthesis I
-
-
2-hydroxybiphenyl degradation
-
-
biphenyl degradation
-
-
carbazole degradation
-
-
Dioxin degradation
-
-
diphenyl ethers degradation
-
-
Bisphenol degradation
-
-
taurine degradation IV
-
-
Ethylbenzene degradation
-
-
naphthalene degradation (aerobic)
-
-
2-chlorobenzoate degradation
-
-
4-chlorobenzoate degradation
-
-
4-hydroxymandelate degradation
4-methylphenol degradation to protocatechuate
-
-
bisphenol A degradation
-
-
polybrominated dihydroxylated diphenyl ethers biosynthesis
-
-
spongiadioxin C biosynthesis
-
-
chlorinated phenols degradation
-
-
phenol degradation I (aerobic)
-
-
nicotine degradation IV
-
-
2,4-dichlorophenoxyacetate degradation
-
-
4-chloro-2-methylphenoxyacetate degradation
-
-
nitric oxide biosynthesis II (mammals)
-
-
2,2'-dihydroxybiphenyl degradation
-
-
salicylate degradation II
-
-
salicylate glucosides biosynthesis II
-
-
bacterial bioluminescence
-
-
L-phenylalanine degradation I (aerobic)
-
-
L-phenylalanine degradation V
-
-
L-tyrosine biosynthesis IV
-
-
hydroxylated fatty acid biosynthesis (plants)
-
-
ricinoleate biosynthesis
-
-
ethylene biosynthesis III (microbes)
-
-
adenosine nucleotides degradation I
-
-
adenosine nucleotides degradation II
-
-
caffeine degradation III (bacteria, via demethylation)
-
-
guanosine nucleotides degradation I
-
-
guanosine nucleotides degradation II
-
-
guanosine nucleotides degradation III
-
-
inosine 5'-phosphate degradation
-
-
purine metabolism
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
theophylline degradation
-
-
formate oxidation to CO2
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
reductive acetyl coenzyme A pathway
-
-
Caffeine metabolism
-
-
Photosynthesis
-
-
oxidative phosphorylation
-
-
nitrogen fixation I (ferredoxin)
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaebacteria)
-
-
L-citrulline biosynthesis
-
-
L-citrulline degradation
-
-
urea cycle
Biosynthesis of ansamycins
-
-
Calvin-Benson-Bassham cycle
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
pentose phosphate pathway (non-oxidative branch)
-
-
pentose phosphate pathway (partial)
-
-
Rubisco shunt
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis IV
-
-
pyruvate fermentation to (R)-acetoin I
-
-
pyruvate fermentation to (R)-acetoin II
-
-
pyruvate fermentation to (S)-acetoin
-
-
3-dehydroquinate biosynthesis II (archaea)
-
-
chorismate metabolism
-
-
acetate and ATP formation from acetyl-CoA I
-
-
gallate degradation III (anaerobic)
-
-
L-lysine fermentation to acetate and butanoate
-
-
methanogenesis from acetate
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
sulfoacetaldehyde degradation I
-
-
sulfolactate degradation II
-
-
2-deoxy-D-ribose degradation II
-
-
acetoacetate degradation (to acetyl CoA)
-
-
isoprene biosynthesis II (engineered)
-
-
isopropanol biosynthesis (engineered)
-
-
mevalonate metabolism
-
-
mevalonate pathway I
-
-
mevalonate pathway II (archaea)
-
-
mevalonate pathway III (archaea)
-
-
pyruvate fermentation to acetone
-
-
Terpenoid backbone biosynthesis
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
4-ethylphenol degradation (anaerobic)
-
-
fermentation to 2-methylbutanoate
-
-
L-isoleucine degradation I
-
-
sitosterol degradation to androstenedione
-
-
reductive monocarboxylic acid cycle
-
-
fatty acid biosynthesis initiation (animals and fungi, cytoplasm)
-
-
palmitate biosynthesis (animals and fungi, cytoplasm)
-
-
fatty acid biosynthesis initiation (bacteria and plants)
-
-
phosalacine biosynthesis
-
-
phosphinothricin tripeptide biosynthesis
-
-
Phosphonate and phosphinate metabolism
-
-
acetoin degradation
-
-
2-methylcitrate cycle I
-
-
2-methylcitrate cycle II
-
-
ferrichrome A biosynthesis
-
-
L-leucine biosynthesis
-
-
coenzyme B biosynthesis
-
-
FeMo cofactor biosynthesis
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
Lysine biosynthesis
-
-
lysine metabolism
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen metabolism
-
-
Starch and sucrose metabolism
-
-
starch biosynthesis
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
ABH and Lewis epitopes biosynthesis from type 2 precursor disaccharide
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis III (mycobacteria)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan biosynthesis V (beta-lactam resistance)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
arsenate detoxification I (mammalian)
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
guanine and guanosine salvage
-
-
nucleoside and nucleotide degradation (archaea)
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
purine ribonucleosides degradation
-
-
salinosporamide A biosynthesis
-
-
xanthine and xanthosine salvage
-
-
NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde
-
-
NAD de novo biosynthesis I (from aspartate)
-
-
nicotine biosynthesis
-
-
superpathway of nicotine biosynthesis
-
-
4-hydroxy-2-nonenal detoxification
-
-
camalexin biosynthesis
-
-
gliotoxin biosynthesis
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
indole glucosinolate activation (intact plant cell)
-
-
Ether lipid metabolism
-
-
plasmalogen biosynthesis
-
-
3-dehydroquinate biosynthesis I
-
-
(R)-cysteate degradation
-
-
aspartate and asparagine metabolism
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
coenzyme M biosynthesis II
-
-
gluconeogenesis
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-glutamate degradation II
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine degradation VI (Stickland reaction)
-
-
sulfolactate degradation III
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
4-aminobutanoate degradation I
-
-
beta-alanine degradation I
-
-
GABA shunt
-
-
L-glutamate degradation IV
-
-
1,3-propanediol biosynthesis (engineered)
-
-
Amino sugar and nucleotide sugar metabolism
-
-
GDP-glucose biosynthesis
-
-
glucose and glucose-1-phosphate degradation
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycolysis III (from glucose)
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Streptomycin biosynthesis
-
-
sucrose biosynthesis II
-
-
sucrose degradation III (sucrose invertase)
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
Fructose and mannose metabolism
-
-
glycolysis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis IV (plant cytosol)
-
-
D-arabitol degradation
-
-
D-xylose degradation I
-
-
adenine and adenosine salvage VI
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
glycerol degradation to butanol
-
-
glycolysis V (Pyrococcus)
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
D-threonate degradation
-
-
glycine degradation (Stickland reaction)
-
-
L-threonine degradation I
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
Thiamine metabolism
-
-
ppGpp biosynthesis
-
-
ppGpp metabolism
-
-
acyl carrier protein activation
-
-
acyl carrier protein metabolism
-
-
enterobactin biosynthesis
-
-
petrobactin biosynthesis
-
-
molybdenum cofactor biosynthesis
protein SAMPylation and SAMP-mediated thiolation
-
-
1,2-propanediol biosynthesis from lactate (engineered)
-
-
pyruvate fermentation to propanoate II (acrylate pathway)
-
-
oxalate degradation II
-
-
retinol biosynthesis
-
-
triacylglycerol degradation
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
chlorogenic acid degradation
-
-
acyl-CoA hydrolysis
-
-
cutin biosynthesis
-
-
oleate biosynthesis II (animals and fungi)
-
-
sporopollenin precursors biosynthesis
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis III (fungi)
-
-
suberin monomers biosynthesis
-
-
acyl-[acyl-carrier protein] thioesterase pathway
-
-
mycobacterial sulfolipid biosynthesis
-
-
oleate biosynthesis I (plants)
-
-
palmitoleate biosynthesis II (plants and bacteria)
-
-
diethylphosphate degradation
-
-
sulfopterin metabolism
-
-
degradation of pentoses
-
-
photorespiration
-
-
fructose 2,6-bisphosphate biosynthesis
-
-
2-arachidonoylglycerol biosynthesis
-
-
Inositol phosphate metabolism
-
-
phospholipases
-
-
plasmalogen degradation
-
-
tRNA processing
-
-
starch degradation
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
starch degradation I
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
melibiose degradation
-
-
metabolism of disaccharids
-
-
Sphingolipid metabolism
-
-
stachyose degradation
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
lactose degradation II
-
-
Other glycan degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
degradation of sugar acids
-
-
Flavone and flavonol biosynthesis
-
-
amygdalin and prunasin degradation
-
-
Cyanoamino acid metabolism
-
-
cyanophycin metabolism
-
-
nocardicin A biosynthesis
-
-
L-asparagine degradation I
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
acrylonitrile degradation I
-
-
arginine metabolism
-
-
degradation of aromatic, nitrogen containing compounds
-
-
IAA biosynthesis
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
Atrazine degradation
-
-
urea degradation II
-
-
Penicillin and cephalosporin biosynthesis
-
-
cyanide detoxification II
-
-
L-histidine degradation I
-
-
(aminomethyl)phosphonate degradation
-
-
glyphosate degradation III
-
-
phosphonoacetate degradation
-
-
3,3'-disulfanediyldipropannoate degradation
-
-
3,3'-thiodipropanoate degradation
-
-
acetaldehyde biosynthesis II
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
glycolate and glyoxylate degradation I
-
-
2,3-dihydroxybenzoate degradation
-
-
3-chlorocatechol degradation III (meta pathway)
-
-
4-amino-3-hydroxybenzoate degradation
-
-
orthanilate degradation
-
-
protocatechuate degradation III (para-cleavage pathway)
-
-
D-erythronate degradation I
-
-
methylgallate degradation
-
-
syringate degradation
-
-
3,6-anhydro-alpha-L-galactopyranose degradation
-
-
4-deoxy-L-threo-hex-4-enopyranuronate degradation
-
-
D-fructuronate degradation
-
-
D-galacturonate degradation I
-
-
D-glucosaminate degradation
-
-
Entner-Doudoroff shunt
-
-
4-hydroxy-2(1H)-quinolone biosynthesis
-
-
acridone alkaloid biosynthesis
-
-
L-tryptophan biosynthesis
-
-
Phenazine biosynthesis
-
-
cuticular wax biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
cyanate degradation
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
L-valine degradation I
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
glycerol degradation III
-
-
L-phenylalanine biosynthesis III (cytosolic, plants)
-
-
(S)-reticuline biosynthesis I
-
-
aldoxime degradation
-
-
polyhydroxydecanoate biosynthesis
-
-
beta-caryophyllene biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
zerumbone biosynthesis
-
-
L-threonine degradation V
-
-
serine metabolism
-
-
(Z)-butanethial-S-oxide biosynthesis
-
-
(Z)-phenylmethanethial S-oxide biosynthesis
-
-
alliin metabolism
-
-
ethiin metabolism
-
-
methiin metabolism
-
-
propanethial S-oxide biosynthesis
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
Selenocompound metabolism
-
-
selenocysteine biosynthesis
-
-
ascorbate metabolism
-
-
extended VTC2 cycle
-
-
GDP-L-galactose biosynthesis
-
-
L-ascorbate biosynthesis I (L-galactose pathway)
-
-
VTC2 cycle
-
-
5-nitroanthranilate degradation
-
-
gentisate degradation I
-
-
d-xylose degradation
-
-
1,5-anhydrofructose degradation
-
-
chitin biosynthesis
-
-
D-sorbitol biosynthesis I
-
-
GDP-mannose biosynthesis
-
-
sucrose biosynthesis III
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
4-methylcatechol degradation (ortho cleavage)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
conversion of succinate to propanoate
-
-
propanoyl CoA degradation I
-
-
bacilysin biosynthesis
-
-
L-phenylalanine biosynthesis II
-
-
L-tyrosine biosynthesis II
-
-
L-tyrosine biosynthesis III
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
O-antigen building blocks biosynthesis (E. coli)
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
UDP-alpha-D-galactofuranose biosynthesis
-
-
2,4-dichlorotoluene degradation
-
-
2,5-dichlorotoluene degradation
-
-
3,4-dichlorotoluene degradation
-
-
5-chloro-3-methyl-catechol degradation
-
-
acetate conversion to acetyl-CoA
-
-
adlupulone and adhumulone biosynthesis
-
-
cis-genanyl-CoA degradation
-
-
colupulone and cohumulone biosynthesis
-
-
L-isoleucine biosynthesis V
-
-
lupulone and humulone biosynthesis
-
-
alkane biosynthesis II
-
-
ceramide biosynthesis
-
-
gamma-linolenate biosynthesis II (animals)
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
icosapentaenoate biosynthesis III (8-desaturase, mammals)
-
-
linoleate biosynthesis II (animals)
-
-
long-chain fatty acid activation
-
-
phosphatidylcholine acyl editing
-
-
wax esters biosynthesis II
-
-
beta-alanine biosynthesis II
-
-
pantothenate biosynthesis
-
-
phosphopantothenate biosynthesis I
-
-
L-asparagine biosynthesis I
-
-
anapleurotic synthesis of oxalacetate
-
-
Fe(II) oxidation
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
arsenite oxidation I (respiratory)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
inducible activity. Extracts of acetate-, taurine-, or isethionate-grown cells show no activity, extracts of sulfoacetate-grown cells catalyze the reaction
Manually annotated by BRENDA team
-
unusually high specific activity of enzyme
Manually annotated by BRENDA team
-
study of the effect of various carbon sources on pH of the broth and L-asparaginase production
Manually annotated by BRENDA team
-
study of the effect of various carbon sources on pH of the broth and L-asparaginase production
Manually annotated by BRENDA team
-
study of the effect of various carbon sources on pH of the broth and L-asparaginase production
Manually annotated by BRENDA team
oxalate enrichment culture; oxalate enrichment culture; oxalate enrichment culture
Manually annotated by BRENDA team
soil samples are collected below the Ca-oxalate producing trees Milicia excelsa and Afzelia africana and in a similar soil distant from trees; soil samples are collected below the Ca-oxalate producing trees Milicia excelsa and Afzelia africana and in a similar soil distant from trees; soil samples are collected below the Ca-oxalate producing trees Milicia excelsa and Afzelia africana and in a similar soil distant from trees
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
additional information
LINKS TO OTHER DATABASES (specific for Cupriavidus necator)