Information on Organism Cupriavidus necator

TaxTree of Organism Cupriavidus necator
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC NUMBER
COMMENTARY hide
preliminary BRENDA-supplied EC number
preliminary BRENDA-supplied EC number
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(5Z)-dodecenoate biosynthesis I
-
-
(5Z)-dodecenoate biosynthesis II
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(aminomethyl)phosphonate degradation
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
(R)-cysteate degradation
-
-
(R,R)-butanediol biosynthesis
-
-
(R,R)-butanediol degradation
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
(Z)-butanethial-S-oxide biosynthesis
-
-
(Z)-phenylmethanethial S-oxide biosynthesis
-
-
1,2-propanediol biosynthesis from lactate (engineered)
-
-
1,3-dimethylbenzene degradation to 3-methylbenzoate
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,4-dichlorobenzene degradation
-
-
1,4-dimethylbenzene degradation to 4-methylbenzoate
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
2,2'-dihydroxybiphenyl degradation
-
-
2,3-dihydroxybenzoate degradation
-
-
2,4,5-trichlorophenoxyacetate degradation
-
-
2,4,6-trichlorophenol degradation
-
-
2,4-dichlorophenoxyacetate degradation
-
-
2,4-dichlorotoluene degradation
-
-
2,5-dichlorotoluene degradation
-
-
2,5-xylenol and 3,5-xylenol degradation
-
-
2-amino-3-carboxymuconate semialdehyde degradation to 2-hydroxypentadienoate
-
-
2-amino-3-carboxymuconate semialdehyde degradation to glutaryl-CoA
-
-
2-aminophenol degradation
-
-
2-arachidonoylglycerol biosynthesis
-
-
2-chlorobenzoate degradation
-
-
2-deoxy-D-ribose degradation II
-
-
2-hydroxybiphenyl degradation
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
2-methylcitrate cycle I
-
-
2-methylcitrate cycle II
-
-
2-methylpropene degradation
-
-
2-nitrobenzoate degradation I
-
-
2-nitrotoluene degradation
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
3,3'-disulfanediyldipropannoate degradation
-
-
3,3'-thiodipropanoate degradation
-
-
3,4,6-trichlorocatechol degradation
-
-
3,4-dichlorobenzoate degradation
-
-
3,4-dichlorotoluene degradation
-
-
3,5-dichlorocatechol degradation
-
-
3,6-anhydro-alpha-L-galactopyranose degradation
-
-
3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-chlorobenzoate degradation II (via protocatechuate)
-
-
3-chlorocatechol degradation
-
-
3-chlorocatechol degradation I (ortho)
-
-
3-chlorocatechol degradation II (ortho)
-
-
3-chlorocatechol degradation III (meta pathway)
-
-
3-chlorotoluene degradation II
-
-
3-dehydroquinate biosynthesis I
-
-
3-dehydroquinate biosynthesis II (archaea)
-
-
3-dimethylallyl-4-hydroxybenzoate biosynthesis
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-methyl-branched fatty acid alpha-oxidation
-
-
3-methylbutanol biosynthesis (engineered)
-
-
3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-hydroxypentadienoate
-
-
3-phenylpropionate degradation
-
-
4,5-dichlorocatechol degradation
-
-
4-amino-3-hydroxybenzoate degradation
-
-
4-aminobutanoate degradation I
-
-
4-aminobutanoate degradation II
-
-
4-aminobutanoate degradation III
-
-
4-aminobutanoate degradation V
-
-
4-aminophenol degradation
-
-
4-chloro-2-methylphenoxyacetate degradation
-
-
4-chlorobenzoate degradation
-
-
4-chlorocatechol degradation
-
-
4-chloronitrobenzene degradation
-
-
4-coumarate degradation (aerobic)
-
-
4-coumarate degradation (anaerobic)
-
-
4-deoxy-L-threo-hex-4-enopyranuronate degradation
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-hydroxy-2(1H)-quinolone biosynthesis
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxyacetophenone degradation
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
4-hydroxymandelate degradation
4-hydroxyphenylacetate degradation
4-methylcatechol degradation (ortho cleavage)
-
-
4-methylphenol degradation to protocatechuate
-
-
4-nitrophenol degradation I
-
-
4-nitrophenol degradation II
-
-
4-nitrotoluene degradation II
-
-
4-oxopentanoate degradation
-
-
4-sulfocatechol degradation
-
-
5-chloro-3-methyl-catechol degradation
-
-
5-nitroanthranilate degradation
-
-
6-gingerol analog biosynthesis (engineered)
-
-
8-amino-7-oxononanoate biosynthesis I
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
ABH and Lewis epitopes biosynthesis from type 1 precursor disaccharide
-
-
ABH and Lewis epitopes biosynthesis from type 2 precursor disaccharide
-
-
acetaldehyde biosynthesis I
-
-
acetaldehyde biosynthesis II
-
-
acetate and ATP formation from acetyl-CoA I
-
-
acetate conversion to acetyl-CoA
-
-
acetate fermentation
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetoin degradation
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetyl CoA biosynthesis
-
-
acetyl-CoA fermentation to butanoate II
-
-
acetylene degradation (anaerobic)
-
-
acridone alkaloid biosynthesis
-
-
acrylate degradation II
-
-
acrylonitrile degradation I
-
-
acrylonitrile degradation II
-
-
acyl carrier protein activation
-
-
acyl carrier protein metabolism
-
-
acyl-CoA hydrolysis
-
-
acyl-[acyl-carrier protein] thioesterase pathway
-
-
adenine and adenosine salvage I
-
-
adenine and adenosine salvage III
-
-
adenine and adenosine salvage V
-
-
adenine and adenosine salvage VI
-
-
adenosine deoxyribonucleotides de novo biosynthesis II
-
-
adenosine nucleotides degradation II
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
adipate degradation
-
-
adlupulone and adhumulone biosynthesis
-
-
aerobic respiration (NDH-1 to cytochrome c oxidase via plastocyanin)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
aldoxime degradation
-
-
alkane biosynthesis I
-
-
alkane biosynthesis II
-
-
alkane oxidation
-
-
alliin metabolism
-
-
allopregnanolone biosynthesis
-
-
alpha-Linolenic acid metabolism
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
aminopropanol phosphate biosynthesis II
-
-
ammonia oxidation II (anaerobic)
-
-
amygdalin and prunasin degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
anapleurotic synthesis of oxalacetate
-
-
androsrtendione degradation II (anaerobic)
-
-
androstenedione degradation I (aerobic)
-
-
anteiso-branched-chain fatty acid biosynthesis
-
-
arachidonate biosynthesis
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine metabolism
-
-
aromatic biogenic amine degradation (bacteria)
-
-
arsenate detoxification I (mammalian)
-
-
arsenite oxidation I (respiratory)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
aspartate and asparagine metabolism
-
-
Atrazine degradation
-
-
atromentin biosynthesis
-
-
bacilysin biosynthesis
-
-
bacterial bioluminescence
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
Benzoate degradation
-
-
benzoate degradation I (aerobic)
-
-
benzoyl-CoA degradation I (aerobic)
-
-
beta-alanine biosynthesis II
-
-
beta-alanine degradation III
-
-
beta-Alanine metabolism
-
-
beta-caryophyllene biosynthesis
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
betanidin degradation
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
Biosynthesis of ansamycins
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of unsaturated fatty acids
-
-
Biotin metabolism
-
-
biphenyl degradation
-
-
bisphenol A degradation
-
-
Bisphenol degradation
-
-
bryostatin biosynthesis
-
-
butanoate fermentation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
C5-Branched dibasic acid metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
Caprolactam degradation
-
-
capsaicin biosynthesis
-
-
carbazole degradation
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
catechol degradation to beta-ketoadipate
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
ceramide and sphingolipid recycling and degradation (yeast)
-
-
ceramide biosynthesis
-
-
ceramide degradation by alpha-oxidation
-
-
chitin biosynthesis
-
-
chitin deacetylation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
chlorinated phenols degradation
-
-
Chloroalkane and chloroalkene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorogenic acid degradation
-
-
chlorosalicylate degradation
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
chorismate metabolism
-
-
cinnamate and 3-hydroxycinnamate degradation to 2-hydroxypentadienoate
-
-
cis-geranyl-CoA degradation
-
-
cis-vaccenate biosynthesis
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation in Crenarchaeota
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
coenzyme B biosynthesis
-
-
coenzyme B/coenzyme M regeneration I (methanophenazine-dependent)
-
-
coenzyme M biosynthesis
-
-
coenzyme M biosynthesis II
-
-
colupulone and cohumulone biosynthesis
-
-
conversion of succinate to propanoate
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
cuticular wax biosynthesis
-
-
cutin biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
cyanate degradation
cyanide detoxification II
-
-
Cyanoamino acid metabolism
-
-
cyanophycin metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
cytosolic NADPH production (yeast)
-
-
D-apionate degradation I (xylose isomerase family decarboxylase)
-
-
D-apionate degradation II (RLP decarboxylase)
-
-
D-apionate degradation III (RLP transcarboxylase/hydrolase)
-
-
D-arabitol degradation
-
-
D-erythronate degradation I
-
-
D-erythronate degradation II
-
-
D-fructuronate degradation
-
-
D-galacturonate degradation I
-
-
D-glucosaminate degradation
-
-
D-glucuronate degradation I
-
-
D-sorbitol biosynthesis I
-
-
D-threonate degradation
-
-
d-xylose degradation
-
-
D-xylose degradation I
-
-
D-xylose degradation IV
-
-
D-xylose degradation to ethylene glycol (engineered)
-
-
degradation of aromatic, nitrogen containing compounds
-
-
degradation of pentoses
-
-
degradation of sugar acids
-
-
degradation of sugar alcohols
-
-
denitrification
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
diethylphosphate degradation
-
-
Dioxin degradation
-
-
diphenyl ethers degradation
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
dopamine degradation
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
enterobactin biosynthesis
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
Entner-Doudoroff shunt
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
ethene biosynthesis V (engineered)
-
-
Ether lipid metabolism
-
-
ethiin metabolism
-
-
Ethylbenzene degradation
-
-
ethylmalonyl-CoA pathway
even iso-branched-chain fatty acid biosynthesis
-
-
extended VTC2 cycle
-
-
fatty acid alpha-oxidation I (plants)
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
fatty acid beta-oxidation V (unsaturated, odd number, di-isomerase-dependent)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (plant mitochondria)
-
-
fatty acid biosynthesis initiation (type I)
-
-
fatty acid biosynthesis initiation (type II)
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
fatty acid elongation -- saturated
-
-
fatty acid salvage
-
-
Fe(II) oxidation
-
-
FeMo cofactor biosynthesis
-
-
ferrichrome A biosynthesis
-
-
flavin biosynthesis
-
-
Flavone and flavonol biosynthesis
-
-
fluoroacetate and fluorothreonine biosynthesis
-
-
Fluorobenzoate degradation
-
-
Folate biosynthesis
-
-
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation
-
-
formaldehyde oxidation I
-
-
formaldehyde oxidation II (glutathione-dependent)
-
-
formate oxidation to CO2
-
-
fructose 2,6-bisphosphate biosynthesis
-
-
Fructose and mannose metabolism
-
-
GABA shunt
-
-
Galactose metabolism
-
-
gallate degradation III (anaerobic)
-
-
gamma-hexachlorocyclohexane degradation
-
-
gamma-linolenate biosynthesis II (animals)
-
-
gamma-resorcylate degradation I
-
-
gamma-resorcylate degradation II
-
-
GDP-alpha-D-glucose biosynthesis
-
-
GDP-L-galactose biosynthesis
-
-
GDP-mannose biosynthesis
-
-
gentisate degradation I
-
-
Geraniol degradation
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucose degradation (oxidative)
-
-
glutamate and glutamine metabolism
-
-
glutaryl-CoA degradation
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glycerol degradation I
-
-
glycerol degradation III
-
-
glycerol degradation to butanol
-
-
glycerol-3-phosphate shuttle
-
-
glycerol-3-phosphate to cytochrome bo oxidase electron transfer
-
-
glycerol-3-phosphate to fumarate electron transfer
-
-
glycerol-3-phosphate to hydrogen peroxide electron transport
-
-
Glycerolipid metabolism
-
-
glycerophosphodiester degradation
-
-
Glycerophospholipid metabolism
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
glycine degradation (reductive Stickland reaction)
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis
-
-
glycogen biosynthesis I (from ADP-D-Glucose)
-
-
glycogen biosynthesis II (from UDP-D-Glucose)
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolate and glyoxylate degradation
-
-
glycolate and glyoxylate degradation I
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate assimilation
-
-
glyoxylate cycle
-
-
glyphosate degradation III
-
-
gondoate biosynthesis (anaerobic)
-
-
gossypol biosynthesis
-
-
guanine and guanosine salvage
-
-
guanosine deoxyribonucleotides de novo biosynthesis II
-
-
guanosine nucleotides degradation III
-
-
heme b biosynthesis II (oxygen-independent)
-
-
heme metabolism
-
-
heptadecane biosynthesis
-
-
heterolactic fermentation
-
-
histamine degradation
-
-
Histidine metabolism
-
-
histidine metabolism
-
-
hydrogen oxidation I (aerobic)
-
-
hydrogen oxidation II (aerobic, NAD)
-
-
hydrogen oxidation III (anaerobic, NADP)
-
-
hydrogen production
-
-
hydrogen production II
-
-
hydrogen production III
-
-
hydrogen production IV
-
-
hydrogen production VI
-
-
hydrogen production VIII
-
-
hydroxylated fatty acid biosynthesis (plants)
-
-
hypotaurine degradation
-
-
IAA biosynthesis
-
-
icosapentaenoate biosynthesis II (6-desaturase, mammals)
-
-
icosapentaenoate biosynthesis III (8-desaturase, mammals)
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
inosine 5'-phosphate degradation
-
-
Inositol phosphate metabolism
-
-
Insect hormone biosynthesis
-
-
isoleucine metabolism
-
-
isoprene biosynthesis II (engineered)
-
-
isopropanol biosynthesis (engineered)
-
-
Isoquinoline alkaloid biosynthesis
-
-
jasmonic acid biosynthesis
-
-
justicidin B biosynthesis
-
-
ketogenesis
-
-
ketogluconate metabolism
-
-
ketolysis
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-arabinose degradation II
-
-
L-arabinose degradation IV
-
-
L-arginine biosynthesis I (via L-ornithine)
-
-
L-arginine biosynthesis II (acetyl cycle)
-
-
L-arginine biosynthesis IV (archaebacteria)
-
-
L-arginine degradation VI (arginase 2 pathway)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
L-arginine degradation XIII (reductive Stickland reaction)
-
-
L-arginine degradation XIV (oxidative Stickland reaction)
-
-
L-ascorbate biosynthesis I (plants, L-galactose pathway)
-
-
L-ascorbate biosynthesis II (plants, L-gulose pathway)
-
-
L-asparagine biosynthesis I
-
-
L-asparagine degradation I
-
-
L-asparagine degradation III (mammalian)
-
-
L-aspartate biosynthesis
-
-
L-aspartate degradation I
-
-
L-citrulline biosynthesis
-
-
L-citrulline degradation
-
-
L-cysteine degradation I
-
-
L-glutamate degradation I
-
-
L-glutamate degradation II
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation VII (to butanoate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-glutamine biosynthesis III
-
-
L-histidine degradation I
-
-
L-histidine degradation V
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis III
-
-
L-isoleucine biosynthesis IV
-
-
L-isoleucine biosynthesis V
-
-
L-isoleucine degradation I
-
-
L-isoleucine degradation II
-
-
L-lactaldehyde degradation
-
-
L-leucine biosynthesis
-
-
L-leucine degradation III
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
L-lysine fermentation to acetate and butanoate
-
-
L-methionine degradation III
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine biosynthesis II
-
-
L-phenylalanine biosynthesis III (cytosolic, plants)
-
-
L-phenylalanine degradation I (aerobic)
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation V
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-proline biosynthesis I (from L-glutamate)
-
-
L-proline biosynthesis III (from L-ornithine)
-
-
L-threonate degradation
-
-
L-threonine degradation I
-
-
L-threonine degradation II
-
-
L-threonine degradation III (to methylglyoxal)
-
-
L-threonine degradation V
-
-
L-tryptophan biosynthesis
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine biosynthesis II
-
-
L-tyrosine biosynthesis III
-
-
L-tyrosine biosynthesis IV
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine biosynthesis
-
-
L-valine degradation I
-
-
L-valine degradation II
-
-
lactate fermentation
-
-
lactose degradation II
-
-
leucine metabolism
-
-
Limonene and pinene degradation
-
-
limonene degradation IV (anaerobic)
-
-
linoleate biosynthesis II (animals)
-
-
lipid metabolism
-
-
long chain fatty acid ester synthesis (engineered)
-
-
long-chain fatty acid activation
-
-
lupulone and humulone biosynthesis
-
-
luteolin triglucuronide degradation
-
-
Lysine biosynthesis
-
-
Lysine degradation
-
-
lysine metabolism
-
-
m-cresol degradation
-
-
malate/L-aspartate shuttle pathway
-
-
matairesinol biosynthesis
-
-
melibiose degradation
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methane metabolism
-
-
Methanobacterium thermoautotrophicum biosynthetic metabolism
-
-
methanogenesis from acetate
-
-
methanol oxidation to carbon dioxide
-
-
methanol oxidation to formaldehyde II
-
-
methanol oxidation to formaldehyde IV
-
-
methiin metabolism
-
-
methionine metabolism
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl tert-butyl ether degradation
-
-
methylaspartate cycle
methylgallate degradation
-
-
methylglyoxal degradation
-
-
methylglyoxal degradation I
-
-
mevalonate metabolism
-
-
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Microbial metabolism in diverse environments
-
-
mitochondrial NADPH production (yeast)
-
-
mixed acid fermentation
-
-
molybdenum cofactor biosynthesis
-
-
molybdopterin biosynthesis
-
-
mupirocin biosynthesis
-
-
mycobacterial sulfolipid biosynthesis
-
-
mycolate biosynthesis
-
-
mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
-
-
myristate biosynthesis (mitochondria)
-
-
NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde
-
-
NAD de novo biosynthesis I (from aspartate)
-
-
NAD metabolism
-
-
NAD(P)/NADPH interconversion
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
Naphthalene degradation
-
-
naphthalene degradation (aerobic)
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
Nicotinate and nicotinamide metabolism
-
-
nicotine biosynthesis
-
-
nicotine degradation I (pyridine pathway)
-
-
nicotine degradation II (pyrrolidine pathway)
-
-
nicotine degradation IV
-
-
nitrate assimilation
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction IV (dissimilatory)
-
-
nitrate reduction IX (dissimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
nitric oxide biosynthesis II (mammals)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitrogen fixation I (ferredoxin)
-
-
Nitrogen metabolism
-
-
Nitrotoluene degradation
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
nucleoside and nucleotide degradation (archaea)
-
-
O-antigen building blocks biosynthesis (E. coli)
-
-
o-diquinones biosynthesis
-
-
octane oxidation
octanoyl-[acyl-carrier protein] biosynthesis (mitochondria, yeast)
-
-
odd iso-branched-chain fatty acid biosynthesis
-
-
oleate beta-oxidation
-
-
oleate beta-oxidation (isomerase-dependent, yeast)
-
-
oleate biosynthesis I (plants)
-
-
oleate biosynthesis II (animals and fungi)
-
-
oleate biosynthesis IV (anaerobic)
-
-
One carbon pool by folate
-
-
ornithine metabolism
-
-
orthanilate degradation
-
-
Other glycan degradation
-
-
oxalate degradation II
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
oxidative decarboxylation of pyruvate
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
palmitate biosynthesis
-
-
palmitate biosynthesis (type I fatty acid synthase)
-
-
palmitate biosynthesis (type II fatty acid synthase)
-
-
palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)
-
-
palmitoleate biosynthesis II (plants and bacteria)
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
partial TCA cycle (obligate autotrophs)
-
-
pederin biosynthesis
-
-
Penicillin and cephalosporin biosynthesis
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (oxidative branch) I
-
-
pentose phosphate pathway (partial)
-
-
Peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis
-
-
peptidoglycan biosynthesis II (staphylococci)
-
-
peptidoglycan biosynthesis III (mycobacteria)
-
-
peptidoglycan biosynthesis IV (Enterococcus faecium)
-
-
peptidoglycan biosynthesis V (beta-lactam resistance)
-
-
peptidoglycan maturation (meso-diaminopimelate containing)
-
-
petrobactin biosynthesis
-
-
petroselinate biosynthesis
-
-
Phenazine biosynthesis
-
-
phenol degradation
-
-
phenol degradation I (aerobic)
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
phenylethanol degradation
-
-
phenylethylamine degradation I
-
-
phenylethylamine degradation II
-
-
Phenylpropanoid biosynthesis
-
-
phosalacine biosynthesis
-
-
phosphatidylcholine acyl editing
-
-
phosphinothricin tripeptide biosynthesis
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
Phosphonate and phosphinate metabolism
-
-
phosphonoacetate degradation
-
-
phosphopantothenate biosynthesis I
-
-
photorespiration
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytol degradation
-
-
pinoresinol degradation
-
-
plasmalogen biosynthesis
-
-
plasmalogen degradation
-
-
platensimycin biosynthesis
-
-
polybrominated dihydroxylated diphenyl ethers biosynthesis
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
polyhydroxybutanoate biosynthesis
-
-
polyhydroxydecanoate biosynthesis
-
-
polyphosphate metabolism
-
-
Porphyrin and chlorophyll metabolism
-
-
ppGpp biosynthesis
-
-
ppGpp metabolism
-
-
proline metabolism
-
-
propanethial S-oxide biosynthesis
-
-
propanoate fermentation to 2-methylbutanoate
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
propanoyl CoA degradation I
-
-
propanoyl-CoA degradation II
-
-
propionate fermentation
-
-
protective electron sinks in the thylakoid membrane (PSII to PTOX)
-
-
protein S-nitrosylation and denitrosylation
-
-
protein SAMPylation and SAMP-mediated thiolation
-
-
protocatechuate degradation I (meta-cleavage pathway)
-
-
protocatechuate degradation III (para-cleavage pathway)
-
-
purine deoxyribonucleosides degradation I
-
-
purine deoxyribonucleosides degradation II
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
purine ribonucleosides degradation
-
-
putrescine degradation III
-
-
pyrimidine deoxyribonucleotides de novo biosynthesis II
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyruvate decarboxylation to acetyl CoA I
-
-
pyruvate decarboxylation to acetyl CoA II
-
-
pyruvate fermentation to (R)-acetoin I
-
-
pyruvate fermentation to (R)-acetoin II
-
-
pyruvate fermentation to (S)-acetoin
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
pyruvate fermentation to acetate VIII
-
-
pyruvate fermentation to acetoin III
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to hexanol (engineered)
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to propanoate I
-
-
pyruvate fermentation to propanoate II (acrylate pathway)
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive acetyl coenzyme A pathway
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
reductive monocarboxylic acid cycle
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
resorcinol degradation
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
ricinoleate biosynthesis
-
-
rosmarinic acid biosynthesis I
-
-
Rubisco shunt
-
-
salicin biosynthesis
-
-
salicortin biosynthesis
-
-
salicylate degradation II
-
-
salicylate glucosides biosynthesis II
-
-
salidroside biosynthesis
-
-
salinosporamide A biosynthesis
-
-
sedoheptulose bisphosphate bypass
-
-
Selenocompound metabolism
-
-
selenocysteine biosynthesis
-
-
serine metabolism
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
Sphingolipid metabolism
-
-
sphingosine and sphingosine-1-phosphate metabolism
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
spongiadioxin C biosynthesis
-
-
sporopollenin precursors biosynthesis
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch biosynthesis
-
-
starch degradation
-
-
starch degradation I
-
-
stearate biosynthesis I (animals)
-
-
stearate biosynthesis II (bacteria and plants)
-
-
stearate biosynthesis III (fungi)
-
-
Steroid hormone biosynthesis
-
-
Streptomycin biosynthesis
-
-
streptorubin B biosynthesis
-
-
styrene degradation
-
-
Styrene degradation
-
-
suberin monomers biosynthesis
-
-
succinate fermentation to butanoate
-
-
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose biosynthesis III
-
-
sucrose degradation II (sucrose synthase)
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation IV (sucrose phosphorylase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
sulfate reduction
-
-
sulfide oxidation I (to sulfur globules)
-
-
sulfide oxidation II (flavocytochrome c)
-
-
sulfide oxidation III (to sulfite)
-
-
sulfoacetaldehyde degradation I
-
-
sulfoacetate degradation
-
-
sulfolactate degradation II
-
-
sulfolactate degradation III
-
-
sulfopterin metabolism
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of L-aspartate and L-asparagine biosynthesis
-
-
superpathway of nicotine biosynthesis
-
-
superpathway of photosynthetic hydrogen production
-
-
superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)
-
-
superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
-
-
Synthesis and degradation of ketone bodies
-
-
syringate degradation
-
-
Taurine and hypotaurine metabolism
-
-
taurine biosynthesis I
-
-
taurine degradation
-
-
taurine degradation II
-
-
taurine degradation IV
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
Terpenoid backbone biosynthesis
-
-
testosterone and androsterone degradation to androstendione (aerobic)
-
-
tetrahydrofolate metabolism
-
-
Thiamine metabolism
-
-
threonine metabolism
-
-
thymine degradation
-
-
Toluene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
toluene degradation to benzoate
-
-
trans-caffeate degradation (aerobic)
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
triacylglycerol degradation
-
-
tRNA processing
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
UDP-alpha-D-galactofuranose biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-galactosamine biosynthesis III
-
-
UDP-N-acetyl-D-glucosamine biosynthesis I
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
uracil degradation I (reductive)
-
-
uracil degradation III
-
-
urea cycle
urea degradation II
-
-
valine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
Valine, leucine and isoleucine degradation
-
-
valproate beta-oxidation
-
-
vancomycin resistance I
-
-
vanillin and vanillate degradation I
-
-
vanillin and vanillate degradation II
-
-
vitamin B1 metabolism
-
-
vitamin K-epoxide cycle
-
-
VTC2 cycle
-
-
wax esters biosynthesis II
-
-
xanthine and xanthosine salvage
-
-
Xylene degradation
-
-
xylitol degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
zerumbone biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
inducible activity. Extracts of acetate-, taurine-, or isethionate-grown cells show no activity, extracts of sulfoacetate-grown cells catalyze the reaction
Manually annotated by BRENDA team
-
unusually high specific activity of enzyme
Manually annotated by BRENDA team
-
study of the effect of various carbon sources on pH of the broth and L-asparaginase production
Manually annotated by BRENDA team
-
study of the effect of various carbon sources on pH of the broth and L-asparaginase production
Manually annotated by BRENDA team
-
study of the effect of various carbon sources on pH of the broth and L-asparaginase production
Manually annotated by BRENDA team
oxalate enrichment culture
Manually annotated by BRENDA team
soil samples are collected below the Ca-oxalate producing trees Milicia excelsa and Afzelia africana and in a similar soil distant from trees
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
additional information
LINKS TO OTHER DATABASES (specific for Cupriavidus necator)