Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
acetoin + NAD+
butan-2,3-dione + NADH + H+
butane-2,3-diol + NAD+
? + NADH
-
-
-
-
?
citric acid + NAD+
?
low activity
-
-
?
D-allothreonine + NAD+
D-2-amino-3-oxobutanoate + NADH
-
-
-
?
D-glucose + NAD+
?
-
-
-
?
D-threonine + NAD+
(2R)-2-amino-3-oxobutanoate + NADH + H+
lowest activity
-
-
?
D-threonine + NAD+
D-2-amino-3-oxobutyrate + NADH
-
-
-
-
?
DL-2-amino-3-hydroxypentanoate + NAD+
L-2-amino-3-oxopentanoate + NADH
DL-2-amino-3-hydroxyvalerate + NAD+
DL-2-amino-3-oxopentanoate + NADH + H+
DL-2-amino-3-hydroxyvalerate + NAD+
DL-2-amino-3-oxovalerate + NADH
DL-3-hydroxynorvaline + NAD+
3-oxonorvaline + NADH + H+
DL-allothreonine + NAD+
D-2-amino-3-oxobutanoate + NADH
-
-
-
?
DL-threo-3-hydroxynorvaline + NAD+
? + NADH
DL-threo-3-phenylserine + NAD+
? + NADH
DL-threo-beta-phenylserine + NAD+
DL-2-amino-3-phenyl-3-oxopropionate + NADH
DL-threonine hydroxamate + NAD+
DL-2-amino-3-oxobutoxamate + NADH
-
-
-
?
ethanol + NAD+
acetaldehyde + NADH + H+
high activity
-
-
?
glycerol + NAD+
?
-
-
-
?
isopropanol + NAD+
isopropylaldehyde + NADH + H+
-
-
-
?
L-allothreonine + NAD+
L-2-amino-3-oxobutanoate + NADH
-
-
-
?
L-serine + NAD+
3-oxo-L-alanine + NADH + H+
-
-
-
?
L-serine + NAD+
L-2-amino-3-oxopropionate + NADH + H+
L-threonine + 3-acetyl-pyridine adenine dinucleotide
L-2-amino-3-oxobutanoate + ?
L-threonine + 3-pyridinealdehyde adenine dinucleotide
L-2-amino-3-oxobutanoate + ?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
L-threonine + nicotinamide guanine dinucleotide
L-2-amino-3-oxobutanoate + ?
5.1% the rate of NAD+
-
-
?
L-threonine + thionicotinamide-NAD+
L-2-amino-3-oxobutanoate + ?
5.1% the rate of NAD+
-
-
?
L-threonine amide + NAD+
L-2-amino-3-oxobutyramide + NADH
L-threonine methyl ester + NAD+
L-2-amino-3-oxobutanoate methyl ester + NADH
lactic acid + NAD+
?
low activity
-
-
?
methanol + NAD+
formaldehyde + NADH + H+
low activity
-
-
?
n-butanol + NAD+
butanal + NADH + H+
highest activity
-
-
?
additional information
?
-
acetoin + NAD+

butan-2,3-dione + NADH + H+
1% of the activity compared to L-threonine
-
-
?
acetoin + NAD+
butan-2,3-dione + NADH + H+
1% of the activity compared to L-threonine
-
-
?
DL-2-amino-3-hydroxypentanoate + NAD+

L-2-amino-3-oxopentanoate + NADH
-
-
-
?
DL-2-amino-3-hydroxypentanoate + NAD+
L-2-amino-3-oxopentanoate + NADH
-
-
-
?
DL-2-amino-3-hydroxyvalerate + NAD+

DL-2-amino-3-oxopentanoate + NADH + H+
-
-
-
?
DL-2-amino-3-hydroxyvalerate + NAD+
DL-2-amino-3-oxopentanoate + NADH + H+
-
-
-
?
DL-2-amino-3-hydroxyvalerate + NAD+

DL-2-amino-3-oxovalerate + NADH
-
-
-
?
DL-2-amino-3-hydroxyvalerate + NAD+
DL-2-amino-3-oxovalerate + NADH
-
-
-
?
DL-3-hydroxynorvaline + NAD+

3-oxonorvaline + NADH + H+
20% of the activity compared to L-threonine
-
-
?
DL-3-hydroxynorvaline + NAD+
3-oxonorvaline + NADH + H+
20% of the activity compared to L-threonine
-
-
?
DL-threo-3-hydroxynorvaline + NAD+

? + NADH
31% the rate of L-threonine
-
-
?
DL-threo-3-hydroxynorvaline + NAD+
? + NADH
31% the rate of L-threonine
-
-
?
DL-threo-3-phenylserine + NAD+

? + NADH
-
53% of the activity with L-threonine
-
-
?
DL-threo-3-phenylserine + NAD+
? + NADH
-
53% of the activity with L-threonine
-
-
?
DL-threo-beta-phenylserine + NAD+

DL-2-amino-3-phenyl-3-oxopropionate + NADH
-
-
-
?
DL-threo-beta-phenylserine + NAD+
DL-2-amino-3-phenyl-3-oxopropionate + NADH
-
-
-
?
DL-threo-beta-phenylserine + NAD+
DL-2-amino-3-phenyl-3-oxopropionate + NADH
-
-
-
?
L-serine + NAD+

? + NADH
-
-
-
-
?
L-serine + NAD+
? + NADH
-
21% of the activity with L-threonine
-
-
?
L-serine + NAD+
? + NADH
-
21% of the activity with L-threonine
-
-
?
L-serine + NAD+

L-2-amino-3-oxopropionate + NADH + H+
-
-
-
?
L-serine + NAD+
L-2-amino-3-oxopropionate + NADH + H+
-
-
-
?
L-serine + NAD+
L-2-amino-3-oxopropionate + NADH + H+
-
-
-
?
L-serine + NAD+
L-2-amino-3-oxopropionate + NADH + H+
-
-
-
-
?
L-threonine + 3-acetyl-pyridine adenine dinucleotide

L-2-amino-3-oxobutanoate + ?
60.6% the rate of NAD+
-
-
?
L-threonine + 3-acetyl-pyridine adenine dinucleotide
L-2-amino-3-oxobutanoate + ?
60.6% the rate of NAD+
-
-
?
L-threonine + 3-pyridinealdehyde adenine dinucleotide

L-2-amino-3-oxobutanoate + ?
7.2% the rate of NAD+
-
-
?
L-threonine + 3-pyridinealdehyde adenine dinucleotide
L-2-amino-3-oxobutanoate + ?
7.2% the rate of NAD+
-
-
?
L-threonine + NAD+

(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
high activity
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
r
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
substrate binding involved residues G66, G71, G77, and V80, H94 is an active site residue
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
r
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
stereospecificity, overview
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
active site structure, overview
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
stereospecificity, overview
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
catabolism through the threonine dehydrogenase pathway does not account for the high first-pass extraction rate of dietary threonine by the portal drained viscera in pigs, overview
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
-
?
L-threonine + NAD+
(2S)-2-amino-3-oxobutanoate + NADH + H+
-
-
-
-
?
L-threonine amide + NAD+

L-2-amino-3-oxobutyramide + NADH
-
-
-
?
L-threonine amide + NAD+
L-2-amino-3-oxobutyramide + NADH
-
-
-
?
L-threonine amide + NAD+
L-2-amino-3-oxobutyramide + NADH
-
-
-
?
L-threonine methyl ester + NAD+

L-2-amino-3-oxobutanoate methyl ester + NADH
-
-
-
?
L-threonine methyl ester + NAD+
L-2-amino-3-oxobutanoate methyl ester + NADH
-
-
-
?
L-threonine methyl ester + NAD+
L-2-amino-3-oxobutanoate methyl ester + NADH
-
-
-
?
additional information

?
-
no activity with L-theronine methyl ester, L-threonine amide, DL-threonine hydroxamate, L-homoserine, (R)-1-amino-2-propanol, L-malate, (R)-3-hydroxybutyrate, DL-threo-phenylserine, L-serine
-
-
?
additional information
?
-
-
no activity with L-theronine methyl ester, L-threonine amide, DL-threonine hydroxamate, L-homoserine, (R)-1-amino-2-propanol, L-malate, (R)-3-hydroxybutyrate, DL-threo-phenylserine, L-serine
-
-
?
additional information
?
-
no activity with L-theronine methyl ester, L-threonine amide, DL-threonine hydroxamate, L-homoserine, (R)-1-amino-2-propanol, L-malate, (R)-3-hydroxybutyrate, DL-threo-phenylserine, L-serine
-
-
?
additional information
?
-
L-threonine and DL-2-amino-3-hydroxyvalerate are the only substrates for ThrDH among other L-amino acids, alcohols, and amino alcohols, substrate specificity, overview
-
-
?
additional information
?
-
-
L-threonine and DL-2-amino-3-hydroxyvalerate are the only substrates for ThrDH among other L-amino acids, alcohols, and amino alcohols, substrate specificity, overview
-
-
?
additional information
?
-
L-threonine and DL-2-amino-3-hydroxyvalerate are the only substrates for ThrDH among other L-amino acids, alcohols, and amino alcohols, substrate specificity, overview
-
-
?
additional information
?
-
-
L-threonine and DL-2-amino-3-hydroxyvalerate are the only substrates for ThrDH among other L-amino acids, alcohols, and amino alcohols, substrate specificity, overview
-
-
?
additional information
?
-
specific for L-form of threonine, no substrate: NADP, nicotinic acid adenine dinucleotide, alpha-NAD, nicotinamide hypoxanthine dinucleotide
-
-
?
additional information
?
-
-
specific for L-form of threonine, no substrate: NADP, nicotinic acid adenine dinucleotide, alpha-NAD, nicotinamide hypoxanthine dinucleotide
-
-
?
additional information
?
-
specific for L-form of threonine, no substrate: NADP, nicotinic acid adenine dinucleotide, alpha-NAD, nicotinamide hypoxanthine dinucleotide
-
-
?
additional information
?
-
-
broad substrate specificity, determinants, overview
-
-
?
additional information
?
-
-
substrate specificity, overview
-
-
?
additional information
?
-
-
the enzyme is an NAD+-dependent zinc-containing medium-chain enzyme
-
-
?
additional information
?
-
-
substrate specificity, overview
-
-
?
additional information
?
-
-
ste11 gene encoding a TDH may function as a modifier gene of ebosin during its biosynthesis
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
AlCl3
18% activation at 1 mM
BaCl2
13% activation at 1 mM
CoCl2
15% activation at 1 mM
CrCl3
10% activation at 1 mM
CsCl
17% activation at 1 mM
CuSO4
15% activation at 1 mM
Iron
the protein contains 0.424 mol of Fe per mol
MgSO4
12% activation at 1 mM
MnSO4
12% activation at 1 mM
Na2MoO4
13% activation at 1 mM
Ni2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 30%
NiCl2
19% activation at 1 mM
PbCl2
18% activation at 1 mM
ZnSO4
9% activation at 1 mM
Ca2+

-
0.54 mol Ca2+ per mol of enzyme subunit
Ca2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 40%
Cd2+

-
preincubation with 0.07 or 5 mM leads to 3fold increase of C38D mutant enzyme activity, 0.5 mM, 6.5fold increase of wild-type enzyme activity, substrate L-threonine
Cd2+
-
0.064 or 3.2 mM, 6fold increase of L-threonine dehydrogenase activity
Cd2+
-
activation is not thiol-dependent
Cd2+
-
activity of metal-ion free enzyme increases 10fold
Co2+

-
restores enzyme activity after EDTA treatment
Co2+
-
5 mM, 6fold increase of C38D mutant enzyme activity
Co2+
-
can replace Zn2+ with 35% of the activity with Zn2+
Co2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 54%
Cu2+

-
0.29 mol Ca2+ per mol of enzyme subunit
Cu2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 63%
Mg2+

-
0.2 mol Ca2+ per mol of enzyme subunit
Mg2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 27%
Mn2+

-
restores enzyme activity after EDTA treatment
Mn2+
-
preincubation with 1 mM, 3.5fold increase of L-threonine oxidation
Mn2+
-
0.064 or 3.2 mM, 4fold increase of L-threonine dehydrogenase activity, activation is dependent on the presence of a reduced thiol in all enzyme stock solutions and assay buffers, binding of 0.86 mol of Mn2+ per mol of enzyme subunit
Mn2+
-
0.064 mM, 1.6fold activation, 3.2 mM, 2.4fold activation
Mn2+
-
can replace Zn2+ with 77% of the activity with Zn2+
Mn2+
-
0.1 mM reactivates EDTA-100% inhibited enzyme by 38%
Zn2+

-
restores enzyme activity after EDTA treatment
Zn2+
the protein contains 0.914 mol of Zn2+ per mol
Zn2+
-
5 mM, 60fold increase of C38D mutant enzyme activity, Zn2+ stimulated activity decreases to 10% when 1 mM Mn2+ is added, no increase in activity for wild-type enzyme
Zn2+
-
enzyme contains 1 Zn2+ atom per subunit
Zn2+
-
exchange of Zn2+ with Co2+ or Cd2+ does not change the specific activity of the enzyme
Zn2+
-
2 Zn2+ per enzyme subunit, binding involves residues G168, G175, G180, and G212, overview
Zn2+
-
required, 1.22 mol Zn2+ per mol of enzyme subunit
Zn2+
1.22 mol of Zn2+ per mol of enzyme subunit, the catalytic zinc atom at the active center of TDH is coordinated by the highly conserved four residues Cys42, His67, Glu68 and Glu152 with low affinity
Zn2+
one molecule of TDH contains one zinc ion playing a structural role, the metal ion is ligated by foru Cys residues, coenzyme-binding domain shows a larger interdomain cleft compared to other ADHs, binding structure, overview
Zn2+
-
four zinc-binding cysteine residues, 0.1 mM reactivates EDTA-100% inhibited enzyme by 75%, 0.05 mM reactivates by 100%
additional information

no effect at 1 mM by AgNO3, MgCl2, and 10 mM EDTA and ethylene glycol tetraacetic acid
additional information
-
no effect at 1 mM by AgNO3, MgCl2, and 10 mM EDTA and ethylene glycol tetraacetic acid
additional information
the active site catalytic zinc ion is absent from the TDH structure
additional information
-
the active site catalytic zinc ion is absent from the TDH structure
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1,10-phenanthroline
-
1.26 mM, 41% inhibition after 1 h, 82% inhibition after 2 h, no change in remaining activity after removal of 1,10-phenanthroline
4-chloromercuribenzonic acid
94% inhibition at 10 mM
5,5'-dithiobis-(2-nitrobenzoic acid)
-
0.25 mM, 90% inhibition, 67% activity is recovered after incubation with 1 mM, 2-mercaptoethanol or dithieothreitol for 15 min
adenosine-5'-diphosphoribose
aminoacetone
-
uncompetitive inhibition vs. NAD+ or L-threonine
Be2+
-
3.2 mM, 20-50% inhibition
calcium pantothenate
slight inhibition
Cd2+
-
0.05 and 1.0 mM, 90% inhibition
Co2+
0.9 mM, 61% inhibiton
CuCl2
1 mM, 100% inhibition
dipicolinic acid
-
40 mM, 99% inhibition after 1 h, complete loss of enzyme-bound Zn2+
FeCl2
32% inhibition at 1 mM after 60 min
FeCl3
73% inhibition at 1 mM after 60 min
HCO3-
-
noncompetitive inhibition vs. NAD+ or L-threonine
iodoacetic acid
52% inhibition at 10 mM
Iodosobenzoic acid
-
0.3 mM, 17% inhibition
K3[Fe(CN)6]
25% inhibition at 10 mM
L-2-amino-3-oxobutyrate
-
competitive product inhibition by the unstable L-2-amino-3-oxobutyrate only in presence of NADH, which stabilizes
methyl p-nitrobenzenesulfonate
-
2 mM, 40% inhibition within 80 min, 65% protection with 250 mM L-threonine, 64% with 250 mM L-threonine methyl ester, 58% with 250 mM L-threonine amide
methylglyoxal
-
1.0 mM, 42% inhibition, 2 mM, 63% inhibition, methylglyoxal binds at an allosteric site of the enzyme
methylmethanethiosulfonate
-
0.4 mM, 350fold molar excess over enzyme sulfhydryl groups leads to complete inactivation
monoiodoacetate
10 mM, 100% inhibition
NAD+
-
competitive inhibition of L-2-amino-3-oxobutanoate reduction
NaN3
88% inhibition at 10 mM
p-chloromercuribenzoate
-
complete inhibition
p-chloromercuribenzoic acid
10 mM, 44% inhibition
phenazinemethosulfate
complete inhibition
phenylmethanesulfonyl fluoride
63% inhibition at 10 mM
SnCl2
16% inhibition at 1 mM after 60 min
thionitrobenzoate
-
40fold molar excess, gradual 99% loss of enzyme activity
ZnCl2
1 mM, 72% inhibition
adenosine-5'-diphosphoribose

-
adenosine-5'-diphosphoribose
-
competive inhibition vs. NAD+, noncompetitive inhibition vs. L-threonine
Ag+

-
-
Ag+
-
0.064 mM, activity is completely blocked
Cu2+

0.9 mM, 54% inhibiton
Cu2+
-
3.2 mM, 20-50% inhibition
Cu2+
-
3.2 mM, 67% inhibition
Cu2+
-
0.05 and 1.0 mM, 90% inhibition
EDTA

-
-
EDTA
-
50 mM, 99% inhibition after 1 h, complete loss of enzyme-bound Zn2+
EDTA
-
complete inhibition, fully reversible by Zn2+ or Co2+
EDTA
-
complete inhibition at 50 mM
EDTA
-
retains 65% of its original activity after dialysis at 48ưC against a buffer containing 1 mM EDTA. Activity is lost when TDH is heated at 60ưC for 40 min and in boiling water for 5 min in the presence of 1 mM EDTA
Hg2+

-
-
Hg2+
-
0.5 mM, 100% inhibition of wild-type and C38D mutant enzyme
Hg2+
-
0.064 mM, activity is completely blocked
Hg2+
-
0.25 mM, complete inhibition, 0.05 mM, 95% inhibition
HgCl2

77% inhibition at 1 mM after 60 min
HgCl2
10 mM, 100% inhibition
iodoacetamide

99% inhibition at 10 mM
iodoacetamide
-
3.2 mM, 10% inhibition
iodoacetamide
-
30 mM, 15% inhibition
iodoacetate

-
iodoacetate reacts with 1 sulfhydryl group per subunit of the enzyme, enzyme retains 15% of its initial activity
iodoacetate
-
15% protection against inhibition with 5 mM NAD+, 30% with 5 mM L-threonine, 60-70% protection in the presence of both NAD+ and L-threonine, inactivation occurs more rapidly in the presence of Cd2+; enzyme contains 6 half-cystine residues per subunit, 2 disulfide bonds and 4 sulfhydryl groups
Mn2+

-
preincubation with 1 mM, 47% inhibition of L-threonine amide oxidation, 73% inhibition of L-threonine methyl ester oxidation, 59% inhibition of L-serine oxidation, 48% inhibition of D,L-threo-beta-phenylserine oxidation
Mn2+
-
1.0 mM, 40-50% inhibition
N-ethylmaleimide

complete inhibition
N-ethylmaleimide
10 mM, 48% inhibition
N-ethylmaleimide
-
0.32 mM, 10 min, 37ưC, 23% inhibition
NADH

competitive to NAD+, noncompetitive to L-threonine
NADH
-
competitive inhibition vs. NAD+, noncompetitive vs. L-threonine
NADH
-
competitive inhibition vs. NAD+, noncompetitive vs. L-threonine
Ni2+

-
3.2 mM, 20-50% inhibition
Ni2+
-
3.2 mM, 69% inhibition
Ni2+
-
1 mM, 40-50% inhibition
p-mercuribenzoate

-
-
p-mercuribenzoate
-
10fold excess leads to immidiate inactivation
p-mercuribenzoate
-
0.0013 mM, 75% inhibition, completely reversed within 20 min by addition of 0.02-0.2 mM 2-mercaptoethanol or dithiothreitol
pyruvate

competitive to L-threonine
pyruvate
-
20% inhibition at 10 mM
Zn2+

0.9 mM, 23% inhibiton
Zn2+
-
0.05 and 1.0 mM, 90% inhibition
additional information

no inhibition by Ni2+, Ca2+, Mg2+, Mn2+
-
additional information
-
no inhibition by Ni2+, Ca2+, Mg2+, Mn2+
-
additional information
poor inhibition by K[Fe(CN)6], no inhibition by ethylene diamine tetraacetic acid and ethylene glycol tetraacetic acid, and by trypsin inhibitor T-9378
-
additional information
-
poor inhibition by K[Fe(CN)6], no inhibition by ethylene diamine tetraacetic acid and ethylene glycol tetraacetic acid, and by trypsin inhibitor T-9378
-
additional information
-
L-ThrDH is unaffected by EDTA, Li2SO4, MgCl2, MnCl2, CaCl2, NiCl2, CoCl2, BaCl2, HgCl2, CdSO4, CuSO4, ZnCl2, or iodoacetic acid, each at 1 mM
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Yuan, J.H.; austic, R.E.
Characterization of hepatic L-threonine dehydrogenase of chicken
Comp. Biochem. Physiol. B
130
65-73
2001
Gallus gallus
brenda
Johnson, A.R.; Chen, Y.W.; Dekker, E.E.
Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38
Arch. Biochem. Biophys.
358
211-221
1998
Escherichia coli K-12
brenda
Marcus, J.P.; Dekker, E.E.
Identification of a second active site residue in Escherichia coli L-threonine dehydrogenase: methylation of histidin-90 with methyl p-nitrobenzenesulfonate
Arch. Biochem. Biophys.
316
413-420
1995
Escherichia coli K-12
brenda
Chen, Y.W.; Dekker, E.E.; Somerville, R.L.
Functional analysis of E. coli threonine dehydrogenase by means of mutant isolation and characterization
Biochim. Biophys. Acta
1253
208-214
1995
Escherichia coli K-12
brenda
Kao, Y.C.; Davis, L.
Purification and structural characterization of porcine L-threonine dehydrogenase
Protein Expr. Purif.
5
423-431
1994
Sus scrofa
brenda
Marcus, J.P.; Dekker, E.E.
Threonine formation via the coupled activity of 2-amino-3-ketobutyrate coenzyme A lyase and threonine dehydrogenase
J. Bacteriol.
175
6505-6511
1993
Escherichia coli K-12
brenda
Pagani, R.; Leoncini, R.; Righi, S.; Guerranti, R.; Lazzerretti, L.; Marinello, E.
Mitochondrial L-threonine dehydrogenase
Biochem. Soc. Trans.
20
379
1992
Rattus norvegicus
-
brenda
Pagani, R.; Guerranti, R.; Right, S.; Leoncini, R.; Vannoni, D.; Marinello, E.
Rat liver L-threonine dehydrogenase
Biochem. Soc. Trans.
20
24
1991
Bos taurus, Rattus norvegicus
-
brenda
Epperly, B.R.; Dekker, E.E.
L-Threonine dehydrogenase from Escherichia coli
J. Biol. Chem.
266
6086-6092
1991
Escherichia coli K-12
brenda
Craig, P.A.; Dekker, E.E.
The sulfhydryl content of L-threonine dehydrogenase from Escherichia coli K-12: relation to catalytic activity and Mn2+ activation
Biochim. Biophys. Acta
1037
30-38
1990
Escherichia coli K-12
brenda
Aronson, B.D.; Somerville, R.L.; Epperly, B.R.; Dekker, E.E.
The primary structure of Escherichia coli L-threonine dehydrogenase
J. Biol. Chem.
264
5226-5232
1989
Escherichia coli K-12
brenda
Craig, P.A.; Dekker, E.E.
Cd2+ activation of L-threonine dehydrogenase from Escherichia coli K-12
Biochim. Biophys. Acta
957
222-229
1988
Escherichia coli K-12
brenda
Tressel, T.; Thompson, R.; Zieske, L.R.; Menendez, M.I.T.S.; Davis, L.
Interaction between L-threonine dehydrogenase and aminoacetone synthetase and mechanism of aminoacetone production
J. Biol. Chem.
261
16428-16437
1986
Sus scrofa
brenda
Craig, P.A.; Dekker, E.E.
L-Threonine dehydrogenase from Escherichia coli K-12: thiol-dependent activation by Mn2+
Biochemistry
25
1870-1876
1986
Escherichia coli K-12
brenda
Ray, M.; Ray, S.
L-Threonine dehydrogenase from goat liver
J. Biol. Chem.
260
5913-5918
1985
Capra hircus
brenda
Boylan, S.A.; Dekker, E.E.
L-threonine dehydrogenase
J. Biol. Chem.
256
1809-1815
1981
Escherichia coli K-12
brenda
Aoyama, Y.; Motokawa, Y.
L-Threonine dehydrogenase of chicken liver
J. Biol. Chem.
256
12367-12373
1981
Gallus gallus
brenda
Boylan, S.A.; Dekker, E.E.
L-Threonine dehydrogenase of Escherichia coli K-12
Biochem. Biophys. Res. Commun.
85
190-197
1978
Escherichia coli K-12
brenda
McGilvray, D.; Morris, J.G.
L-Threonine dehydrogenase (Arthrobacter)
Methods Enzymol.
17B
580-584
1971
Arthrobacter sp.
-
brenda
Green, M.L.; Elliott, W.H.
The enzymatic formation of aminoacetone from threonine and its further metabolism
biochem. J.
92
537-548
1964
Gallus gallus, Oryctolagus cuniculus, Staphylococcus aureus, Rattus norvegicus, Sus scrofa
brenda
Hartshorne, D.; Greenberg, D.M.
Studies on liver threonine dehydrogenase
Arch. Biochem. Biophys.
105
173-178
1964
Lithobates catesbeianus
brenda
Akagi, S.; Sato, K.; Ohmori, S.
Threonine metabolism in Japanese quail liver
Amino Acids
26
235-242
2004
Coturnix japonica, Rattus norvegicus
brenda
Edgar, A.J.
Molecular cloning and tissue distribution of mammalian L-threonine 3-dehydrogenases
BMC Biochem.
3
19
2002
Mus musculus (Q8K3F7), Mus musculus, Sus scrofa (Q8MIR0), Sus scrofa
brenda
Edgar, A.J.
The human L-threonine 3-dehydrogenase gene is an expressed pseudogene
BMC Genet.
3
18
2002
Homo sapiens
brenda
Kazuoka, T.; Takigawa, S.; Arakawa, N.; Hizukuri, Y.; Muraoka, I.; Oikawa, T.; Soda, K.
Novel psychrophilic and thermolabile L-threonine dehydrogenase from psychrophilic Cytophaga sp. strain KUC-1
J. Bacteriol.
185
4483-4489
2003
Cytophaga sp. (Q8KZM4), Cytophaga sp., Cytophaga sp. KUC-1 (Q8KZM4)
brenda
Higashi, N.; Matsuura, T.; Nakagawa, A.; Ishikawa, K.
Crystallization and preliminary X-ray analysis of hyperthermophilic L-threonine dehydrogenase from the archaeon Pyrococcus horikoshii
Acta crystallogr. Sect. F
61
432-434
2005
Pyrococcus horikoshii
brenda
Le Floch, N.; Seve, B.
Catabolism through the threonine dehydrogenase pathway does not account for the high first-pass extraction rate of dietary threonine by the portal drained viscera in pigs
Br. J. Nutr.
93
447-456
2005
Sus scrofa
brenda
Shimizu, Y.; Sakuraba, H.; Kawakami, R.; Goda, S.; Kawarabayasi, Y.; Ohshima, T.
L-Threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus horikoshii OT3: gene cloning and enzymatic characterization
Extremophiles
9
317-324
2005
Pyrococcus horikoshii, Pyrococcus horikoshii OT-3
brenda
Machielsen, R.; van der Oost, J.
Production and characterization of a thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus
FEBS J.
273
2722-2729
2006
Pyrococcus furiosus
brenda
Higashi, N.; Fukada, H.; Ishikawa, K.
Kinetic study of thermostable L-threonine dehydrogenase from an archaeon Pyrococcus horikoshii
J. Biosci. Bioeng.
99
175-180
2005
Pyrococcus horikoshii
brenda
Higashi, N.; Tanimoto, K.; Nishioka, M.; Ishikawa, K.; Taya, M.
Investigating a catalytic mechanism of hyperthermophilic L-threonine dehydrogenase from Pyrococcus horikoshii
J. Biochem.
144
77-85
2008
Pyrococcus horikoshii (O58389), Pyrococcus horikoshii
brenda
Ishikawa, K.; Higashi, N.; Nakamura, T.; Matsuura, T.; Nakagawa, A.
The first crystal structure of L-threonine dehydrogenase
J. Mol. Biol.
366
857-867
2007
Pyrococcus horikoshii (O58389), Pyrococcus horikoshii
brenda
Bowyer, A.; Mikolajek, H.; Wright, J.N.; Coker, A.; Erskine, P.T.; Cooper, J.B.; Bashir, Q.; Rashid, N.; Jamil, F.; Akhtar, M.
Crystallization and preliminary X-ray diffraction analysis of L-threonine dehydrogenase (TDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis
Acta Crystallogr. Sect. F
64
828-830
2008
Thermococcus kodakarensis (Q5JI69), Thermococcus kodakarensis
brenda
Bao, Y.; Xie, H.; Shan, J.; Jiang, R.; Zhang, Y.; Guo, L.; Zhang, R.; Li, Y.
Biochemical characteristics and function of a threonine dehydrogenase encoded by ste11 in Ebosin biosynthesis of Streptomyces sp. 139
J. Appl. Microbiol.
106
1140-1146
2009
Streptomyces sp. 139
brenda
Bashir, Q.; Rashid, N.; Jamil, F.; Imanaka, T.; Akhtar, M.
Highly thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis
J. Biochem.
146
95-102
2009
Thermococcus kodakarensis KOD1
brenda
Bowyer, A.; Mikolajek, H.; Stuart, J.W.; Wood, S.P.; Jamil, F.; Rashid, N.; Akhtar, M.; Cooper, J.B.
Structure and function of the l-threonine dehydrogenase (TkTDH) from the hyperthermophilic archaeon Thermococcus kodakaraensis
J. Struct. Biol.
168
294-304
2009
Thermococcus kodakarensis (Q5JI69), Thermococcus kodakarensis
brenda
Lee, J.H.; Sung, B.H.; Kim, M.S.; Blattner, F.R.; Yoon, B.H.; Kim, J.H.; Kim, S.C.
Metabolic engineering of a reduced-genome strain of Escherichia coli for L-threonine production
Microb. Cell Fact.
8
02
2009
Escherichia coli, Escherichia coli MDS42
brenda
Wang, J.; Alexander, P.; Wu, L.; Hammer, R.; Cleaver, O.; McKnight, S.L.
Dependence of mouse embryonic stem cells on threonine catabolism
Science
325
435-439
2009
Mus musculus
brenda
Ueatrongchit, T.; Asano, Y.
Highly selective L-threonine 3-dehydrogenase from Cupriavidus necator and its use in determination of L-threonine
Anal. Biochem.
410
44-56
2011
Cupriavidus necator (E5RQ20), Cupriavidus necator, Cupriavidus necator NBRC 102504 (E5RQ20), Cupriavidus necator NBRC 102504
brenda
Yoneda, K.; Sakuraba, H.; Araki, T.; Ohshima, T.
Crystal structure of binary and ternary complexes of archaeal UDP-galactose 4-epimerase-like L-threonine dehydrogenase from Thermoplasma volcanium
J. Biol. Chem.
287
12966-12974
2012
Thermoplasma volcanium
brenda
Han, C.; Gu, H.; Wang, J.; Lu, W.; Mei, Y.; Wu, M.
Regulation of L-threonine dehydrogenase in somatic cell reprogramming
Stem Cells
31
953-965
2013
Mus musculus
brenda
Wagner, M.; Andreesen, J.R.
Purification and characterization of threonine dehydrogenase from Clostridium sticklandi
Arch. Microbiol.
163
286-290
1995
Acetoanaerobium sticklandii (E3PS87), Acetoanaerobium sticklandii, Acetoanaerobium sticklandii DSM 519 (E3PS87)
brenda
Lee, C.; Cho, I.; Lee, Y.; Son, Y.; Kwak, I.; Ahn, Y.; Kim, S.; An, W.
Effects of dietary levels of glycine, threonine and protein on threonine efficiency and threonine dehydrogenase activity in hepatic mitochondria of chicks
Asian-australas. J. Anim. Sci.
27
69-76
2014
Gallus gallus
brenda
Nakano, S.; Okazaki, S.; Tokiwa, H.; Asano, Y.
Binding of NAD+ and L-threonine induces stepwise structural and flexibility changes in Cupriavidus necator L-threonine dehydrogenase
J. Biol. Chem.
289
10445-10454
2014
Cupriavidus necator
brenda
Ma, F.; Wang, T.; Ma, X.; Wang, P.
Identification and characterization of protein encoded by orf382 as L-threonine dehydrogenase
J. Microbiol. Biotechnol.
24
748-755
2014
Escherichia coli (P07913), Escherichia coli
brenda
He, C.; Huang, X.; Liu, Y.; Li, F.; Yang, Y.; Tao, H.; Han, C.; Zhao, C.; Xiao, Y.; Shi, Y.
Structural insights on mouse L-threonine dehydrogenase: A regulatory role of Arg180 in catalysis
J. Struct. Biol.
192
510-518
2015
Mus musculus (Q8K3F7), Mus musculus
brenda