Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2-aminobenzoyl)-Lys-Pro-Pro-4-nitroanilide + H2O
?
(4-nitro)Phe-Pro-HN-CH2-CH2-NH-o-aminobenzoyl + H2O
(4-nitro)Phe + Pro-HN-CH2-CH2-NH-o-aminobenzoyl
-
-
-
?
(4-nitro)Phe-Pro-Pro-HN-CH2-CH2-NH-o-aminobenzoyl + H2O
(4-nitro)Phe + Pro-Pro-HN-CH2-CH2-NH-o-aminobenzoyl
-
-
-
?
2-aminobenzoyl-L-Lys-L-Pro-L-Pro-4-nitroanilide + H2O
?
-
-
-
?
Abz-L-Lys-L-Pro-L-Pro-4-nitroanilide + H2O
Abz-L-Lys + L-Pro-L-Pro-4-nitroanilide
Abz-L-Lys-L-Pro-L-Pro-p-nitroanilide + H2O
Abz-L-Lys + L-Pro-L-Pro-p-nitroanilide
Ala-Pro-4-nitroanilide + H2O
Ala + Pro-4-nitroanilide
-
-
-
-
?
Ala-Pro-Gly + H2O
Ala + Pro-Gly
Ala-Pro-p-nitroanilide + H2O
Ala + Pro-p-nitroanilide
-
-
-
-
?
Ala-Pro-Tyr-Ala + H2O
Ala + Pro-Tyr-Ala
allostatin 1 + H2O
Ala + ?
-
-
cleavage of the Ala1-Pro2 bond
?
APKPKFIRF-amide + H2O
?
-
-
-
-
?
Arg-homoPro-Pro-Ala-NH2 + H2O
?
-
-
-
-
?
Arg-Pro + H2O
Arg + Pro
-
-
-
-
?
Arg-Pro-Ala + H2O
Arg + Pro-Ala
Arg-Pro-Lys-Pro + H2O
?
-
-
-
-
?
Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Leu-Gly-Met-NH2 + H2O
?
-
-
-
-
?
Arg-Pro-Pro + H2O
Arg + Pro-Pro
Arg-Pro-Pro-benzylamide + H2O
Arg + Pro-Pro-benzylamide
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe + H2O
?
Arg-Pro-Pro-Gly-Phe-Ser + H2O
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro + H2O
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe + H2O
?
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg + H2O
Arg + Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
Asp-Pro-Gly-Phe-Tyr + H2O
?
-
-
-
-
?
beta-casomorphin + H2O
?
-
-
-
-
?
bradykinin + H2O
Arg + des-Arg-bradykinin
bradykinin + H2O
Arg + PPGFSPFR
i.e. RPPGFSPFR, rapid hydrolysis of the N-terminal Arg1-Pro2 bond
-
?
bradykinin + H2O
des-Arg-bradykinin + Arg
i.e. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
-
-
?
bradykinin + H2O
des-Arg-bradykinin + L-Arg
-
-
-
-
?
bradykinin + H2O
L-Arg + des-Arg-bradykinin
-
-
-
-
?
centrosomal protein 290 kDa/NPHP6 + H2O
?
-
ciliary proteome is screened for proteins with a proline in the second position: 3 candidate substrates centrosomal protein 290 kDa/NPHP6 (CEP290/NPHP6), Alstrom syndrome 1 (ALMS1), and leucine rich repeat containing 50 (LRRC50), known to cause cystic renal disease are shown to be cleaved by ecAPP
-
-
?
des-Arg9-bradykinin + H2O
?
-
-
-
-
?
FLRF-amide + H2O
?
-
-
-
-
?
FMRF-amide + H2O
?
-
-
-
-
?
FPHFD + H2O
?
-
globin pentapeptide sequence, potential natural substrate, efficiently hydrolyzed by PfAPP
-
-
?
FPHFD + H2O
L-Phe + PHFD
-
a hemoglobin peptide
-
-
?
Glu-Pro-p-nitroanilide + H2O
Glu + Pro-p-nitroanilide
-
-
-
-
?
Gly-Pro-2-naphthylamide + H2O
Gly + Pro-2-naphthylamide
-
-
-
-
?
Gly-Pro-4-methylcoumarin 7-amide + H2O
Gly + Pro-4-methyl-7-coumarylamide
-
-
-
-
?
Gly-Pro-4-methylcoumarin 7-amide + H2O
Gly + Pro-4-methylcoumarin 7-amide
-
-
-
-
?
Gly-Pro-4-nitroanilide + H2O
Gly + Pro-4-nitroanilide
Gly-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
Gly + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
Gly-Pro-Ala + H2O
Gly + Pro-Ala
Gly-Pro-Arg-Pro + H2O
?
-
-
-
-
?
Gly-Pro-Gly-Gly + H2O
Gly + Pro-Gly-Gly
-
-
-
?
Gly-Pro-hydroxyPro + H2O
Gly + Pro-hydroxyPro
-
-
-
?
Gly-Pro-Hyp + H2O
Gly + Pro-Hyp
Gly-Pro-p-nitroanilide + H2O
Gly + Pro-p-nitroanilide
-
-
-
-
?
Gly-Pro-Pro-p-nitroanilide + H2O
Gly + Pro-Pro-p-nitroanilide
-
-
-
-
?
His-Pro-p-nitroanilide + H2O
His + Pro-p-nitroanilide
-
-
-
-
?
K(Dnp)PPGFSPK(Abz)NH2 + H2O
?
-
-
-
-
?
K(Dnp)PPGK(Abz)NH2 + H2O
?
-
-
-
-
?
K(Dnp)PPK(Abz)NH2 + H2O
?
-
-
-
-
?
KHEYLRF-amide + H2O
?
-
-
-
-
?
KNEFIRF-amide + H2O
?
-
-
-
-
?
KPNFLRF-amide + H2O
?
-
-
-
-
?
KPSFVRF-amide + H2O
?
-
-
-
-
?
KPSFVRFamide + H2O
Lys + PSFVRFamide
-
a neuropeptide
-
?
L-Ala-L-Pro-4-nitroanilide + H2O
L-Ala + L-Pro-4-nitroanilide
L-Ala-L-Pro-L-Ala
L-Ala + L-Pro-L-Ala
-
-
-
?
L-Ala-L-Pro-L-Ala + H2O
L-Ala + L-Pro-L-Ala
L-Ala-L-Pro-L-Ala-2-naphthylamide + H2O
L-Ala-L-Pro-L-Ala + 2-naphthylamine
-
-
-
?
L-Ala-L-Pro-p-nitroanilide + H2O
L-Ala-L-Pro + p-nitroaniline
-
-
-
?
L-Ala-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Ala + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Arg-L-Pro-L-Pro + H2O
L-Arg + L-Pro-L-Pro
-
-
-
-
?
L-Arg-L-Pro-L-Pro + H2O
L-Arg-L-Pro + L-Pro
-
-
-
-
?
L-Arg-L-Pro-L-Pro-Gly + H2O
L-Arg + L-Pro-L-Pro-Gly
-
-
-
-
?
L-Arg-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Arg + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Asn-L-Pro-L-Thr-L-Asn-L-Leu-L-His + H2O
L-Asn + L-Pro-L-Thr-L-Asn-L-Leu-L-His
-
-
-
-
?
L-Asn-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-ASn + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Asp-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Asp + Pro-7-amido-4-carbamoylmethylcoumarin
-
low activity
-
-
?
L-Gln-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Gln + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Glu-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Glu + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-His-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-His + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Ile-L-Pro-L-Pro + H2O
L-Ile + L-Pro-L-Pro
-
-
-
-
?
L-Ile-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Ile + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Leu 7-amido-4-carbamoylmethylcoumarin + H2O
L-Leu + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Leu-L-Pro-L-Pro + H2O
L-Leu + L-Pro-L-Pro
-
-
-
-
?
L-Lys-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Lys + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Met-L-Ala-L-Ser + H2O
L-Met + L-Ala-L-Ser
-
-
-
-
?
L-Met-L-Pro + H2O
L-Met + L-Pro
L-Met-L-Pro-Gly + H2O
L-Met + L-Pro-Gly
L-Met-L-Ser-Gly + H2O
L-Met + L-Ser-Gly
-
-
-
-
?
L-Met-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Met + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Nle-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Nle + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Phe-L-Pro-Gly + H2O
L-Phe + L-Pro-Gly
L-Phe-L-Pro-L-Ala + H2O
L-Phe + L-Pro-L-Ala
L-Phe-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Phe + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Pro-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Pro + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-prolyl-peptide + H2O
L-proline + peptide
-
X-prolyl aminopeptidase catalyzes the removal of a penultimate prolyl residue from the N-termini of peptides
-
-
?
L-Ser-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Ser + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Thr-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Thr + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Trp-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Trp + Pro-7-amido-4-carbamoylmethylcoumarin
-
best substrate
-
-
?
L-Tyr-L-Pro-L-Phe-NH2 + H2O
L-Tyr + L-Pro-L-Phe-NH2
-
-
-
-
?
L-Tyr-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Tyr + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
L-Val-L-Pro-L-Leu + H2O
L-Val + L-Pro-L-Leu
-
-
-
?
L-Val-L-Pro-L-Pro + H2O
L-Val + L-Pro-L-Pro
-
-
-
-
?
L-Val-Pro-7-amido-4-carbamoylmethylcoumarin + H2O
L-Val + Pro-7-amido-4-carbamoylmethylcoumarin
-
-
-
-
?
LemTRP-1 + H2O
Ala + PSGFLGVRamide
-
i.e. APSGFLGVRamide
-
?
Leu-4-nitroanilide + H2O
Leu + 4-nitroaniline
-
-
-
-
?
Leu-Ala-Pro + H2O
Leu + Ala-Pro
-
-
-
-
?
Leu-Pro-Gly-Gly + H2O
Leu + Pro-Gly-Gly
-
-
-
?
Leu-Pro-Pro + H2O
Leu + Pro-Pro
-
-
-
-
?
leucine rich repeat containing 50 + H2O
?
-
ciliary proteome is screened for proteins with a proline in the second position: 3 candidate substrates centrosomal protein 290 kDa/NPHP6 (CEP290/NPHP6), Alstrom syndrome 1 (ALMS1), and leucine rich repeat containing 50 (LRRC50), known to cause cystic renal disease are shown to be cleaved by ecAPP
-
-
?
Lys(epsilon-dinitrophenol)-Pro-Pro-NH-CH3-CH2-NH-2-aminobenzoyl + H2O
Lys(epsilon-dinitrophenol) + Pro-Pro-NH-CH3-CH2-NH-2-aminobenzoyl
Lys-Pro-Arg + H2O
Lys + Pro-Arg
-
-
-
-
?
Lys-Pro-p-nitroanilide + H2O
Lys + Pro-p-nitroanilide
-
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
Met-Pro-Ala + H2O
Met + Pro-Ala
N6-(2-aminobenzoyl)-L-Lys-L-Pro-L-Pro-4-nitroanilide + H2O
N6-(2-aminobenzoyl)-L-Lys + Pro-Pro-4-nitroanilide
Nalpha-(2-aminobenzoyl)-Lys-Pro-Pro 4-nitroanilide + H2O
Nalpha-(2-aminobenzoyl)-Lys + Pro-Pro-4-nitroanilide
-
-
?
Nepsilon-(2-aminobenzoyl)-Lys-Pro-Pro-4-nitroanilide + H2O
?
-
-
-
-
?
neuropeptide Y + H2O
Tyr + ?
-
-
cleavage of the Try1-Pro2 bond
?
papain + H2O
?
-
reduced and carboxymethylated, with the N-terminal sequence Ile-Pro-Glu-Tyr-Val
-
-
?
PPGFSPFR + H2O
Pro + PGFSPFR
low activity
-
?
Pro-Pro-Gly-(Pro-Pro-Gly)4 + H2O
?
-
-
-
-
?
RNKFEFIRF-amide + H2O
?
-
-
-
-
?
RPPGFSPFR + H2O
L-Arg + PPGFSPFR
-
i.e. bradykinin
-
-
?
Ser-Pro + H2O
Ser + Pro
-
-
-
?
Ser-Pro-p-nitroanilide + H2O
Ser + Pro-p-nitroanilide
-
-
-
-
?
Substance P + H2O
?
-
-
-
-
?
substance P + H2O
Arg + des-Arg-substance P
substance P + H2O
Arg + PKPQQFFGLM
i.e. RPKPQQFFGLM, hydrolysis of the N-terminal Arg1-Pro2 bond
-
?
substance P + H2O
L-Arg + PKPQQFFGLM
-
-
-
?
Tyr-Ala-Ala + H2O
Tyr + Ala-Ala
Tyr-Pro-Ala + H2O
Tyr + Pro-Ala
Tyr-Pro-Leu-Gly-NH2 + H2O
?
-
-
-
-
?
Tyr-Pro-Phe + H2O
?
-
-
-
-
?
Tyr-Pro-Phe-Pro + H2O
?
-
-
-
-
?
Tyr-Pro-Phe-Pro-Gly + H2O
?
Tyr-Pro-Phe-Pro-Gly-Pro-Ile + H2O
?
YPWTQ + H2O
?
-
globin pentapeptide sequence, potential natural substrate, efficiently hydrolyzed by PfAPP
-
-
?
YPWTQ + H2O
L-Tyr + PWTQ
-
a hemoglobin peptide
-
-
?
additional information
?
-
(2-aminobenzoyl)-Lys-Pro-Pro-4-nitroanilide + H2O

?
-
-
-
-
?
(2-aminobenzoyl)-Lys-Pro-Pro-4-nitroanilide + H2O
?
-
-
-
-
?
Abz-L-Lys-L-Pro-L-Pro-4-nitroanilide + H2O

Abz-L-Lys + L-Pro-L-Pro-4-nitroanilide
-
-
-
?
Abz-L-Lys-L-Pro-L-Pro-4-nitroanilide + H2O
Abz-L-Lys + L-Pro-L-Pro-4-nitroanilide
-
-
-
?
Abz-L-Lys-L-Pro-L-Pro-p-nitroanilide + H2O

Abz-L-Lys + L-Pro-L-Pro-p-nitroanilide
-
-
-
-
?
Abz-L-Lys-L-Pro-L-Pro-p-nitroanilide + H2O
Abz-L-Lys + L-Pro-L-Pro-p-nitroanilide
-
-
-
-
?
Ala-Pro + H2O

Ala + Pro
-
-
-
?
Ala-Pro + H2O
Ala + Pro
-
-
-
?
Ala-Pro + H2O
Ala + Pro
-
-
-
?
Ala-Pro + H2O
Ala + Pro
-
-
-
-
?
Ala-Pro + H2O
Ala + Pro
-
-
-
?
Ala-Pro + H2O
Ala + Pro
-
-
-
-
?
Ala-Pro-Gly + H2O

Ala + Pro-Gly
-
-
-
-
?
Ala-Pro-Gly + H2O
Ala + Pro-Gly
-
-
-
?
Ala-Pro-Tyr-Ala + H2O

Ala + Pro-Tyr-Ala
-
-
-
?
Ala-Pro-Tyr-Ala + H2O
Ala + Pro-Tyr-Ala
-
-
-
?
Ala-Pro-Tyr-Ala + H2O
Ala + Pro-Tyr-Ala
-
-
-
?
Arg-Pro-Ala + H2O

Arg + Pro-Ala
-
-
-
?
Arg-Pro-Ala + H2O
Arg + Pro-Ala
-
-
-
?
Arg-Pro-Ala + H2O
Arg + Pro-Ala
-
-
-
?
Arg-Pro-Ala + H2O
Arg + Pro-Ala
-
-
-
?
Arg-Pro-Ala + H2O
Arg + Pro-Ala
-
-
-
?
Arg-Pro-Ala + H2O
Arg + Pro-Ala
-
-
-
?
Arg-Pro-Ala + H2O
Arg + Pro-Ala
-
-
-
?
Arg-Pro-Ala + H2O
Arg + Pro-Ala
-
-
-
?
Arg-Pro-Ala + H2O
Arg + Pro-Ala
-
-
-
?
Arg-Pro-Pro + H2O

Arg + Pro-Pro
-
-
-
-
?
Arg-Pro-Pro + H2O
Arg + Pro-Pro
-
-
-
-
?
Arg-Pro-Pro + H2O
Arg + Pro-Pro
-
-
-
-
?
Arg-Pro-Pro + H2O
Arg + Pro-Pro
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe + H2O

?
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe + H2O
?
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser + H2O

?
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser + H2O
?
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser + H2O
?
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro + H2O

?
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro + H2O
?
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro + H2O
?
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg + H2O

Arg + Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg + H2O
Arg + Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
-
i.e. bradykinin
-
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg + H2O
Arg + Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
-
i.e. bradykinin
one Arg is released per mol of bradykinin in less than 5 min, the following Pro residue is released within 1 h
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg + H2O
Arg + Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg + H2O
Arg + Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
-
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg + H2O
Arg + Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
-
-
-
?
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg + H2O
Arg + Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
-
-
-
-
?
bradykinin + H2O

?
-
potential natural substrate, efficiently hydrolyzed by PfAPP
-
-
?
bradykinin + H2O
?
-
-
-
-
?
bradykinin + H2O

Arg + des-Arg-bradykinin
i.e. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
-
-
?
bradykinin + H2O
Arg + des-Arg-bradykinin
-
i.e. RPPGFSPFR, hydrolysis of the N-terminal Arg1-Pro2 bond
i.e. PPGFSPFR
?
bradykinin + H2O
Arg + des-Arg-bradykinin
i.e. RPPGFSPFR, hydrolysis of the N-terminal Arg1-Pro2 bond
i.e. PPGFSPFR
?
bradykinin + H2O
Arg + des-Arg-bradykinin
-
-
-
-
?
bradykinin + H2O
Arg + des-Arg-bradykinin
hydrolysis of the N-terminal Arg1-Pro bond
-
?
bradykinin + H2O
Arg + des-Arg-bradykinin
-
hydrolysis of the N-terminal Arg1-Pro2 bond
-
?
bradykinin + H2O
Arg + des-Arg-bradykinin
-
hydrolysis of the N-terminal Arg1-Pro2 bond
-
?
bradykinin + H2O
Arg + des-Arg-bradykinin
-
enzyme activity in plasma of humans with previous angio-oedema, a rare but potentially life-threatening side-effect of angiotensin-converting enzyme inhibitor treatment, is low compared to humans without this sensitivity and might be a predisposing factor for development of angio-oedema
-
?
bradykinin + H2O
Arg + des-Arg-bradykinin
-
the enzyme contributes to the degradation of bradykinin in human skin, especially in case of angiotensin-converting enzyme inhibition
-
?
bradykinin + H2O
Arg + des-Arg-bradykinin
-
-
-
?
bradykinin + H2O
Arg + des-Arg-bradykinin
-
hydrolysis of the N-terminal Arg1-Pro2 bond
-
?
Gly-Pro + H2O

Gly + Pro
-
-
-
-
?
Gly-Pro + H2O
Gly + Pro
-
-
-
-
?
Gly-Pro + H2O
Gly + Pro
-
-
-
?
Gly-Pro-4-nitroanilide + H2O

Gly + Pro-4-nitroanilide
-
-
-
-
?
Gly-Pro-4-nitroanilide + H2O
Gly + Pro-4-nitroanilide
-
-
-
-
?
Gly-Pro-4-nitroanilide + H2O
Gly + Pro-4-nitroanilide
-
-
-
-
?
Gly-Pro-4-nitroanilide + H2O
Gly + Pro-4-nitroanilide
-
-
-
-
?
Gly-Pro-Ala + H2O

Gly + Pro-Ala
-
-
-
?
Gly-Pro-Ala + H2O
Gly + Pro-Ala
-
-
-
?
Gly-Pro-Gly-Gly + H2O

?
-
-
-
-
?
Gly-Pro-Gly-Gly + H2O
?
-
-
-
-
?
Gly-Pro-Gly-Gly + H2O
?
-
-
-
-
?
Gly-Pro-Hyp + H2O

Gly + Pro-Hyp
-
-
-
?
Gly-Pro-Hyp + H2O
Gly + Pro-Hyp
-
-
-
?
Gly-Pro-Hyp + H2O
Gly + Pro-Hyp
-
-
-
?
Gly-Pro-Hyp + H2O
Gly + Pro-Hyp
-
-
-
-
?
Gly-Pro-Hyp + H2O
Gly + Pro-Hyp
-
-
-
-
?
Gly-Pro-Hyp + H2O
Gly + Pro-Hyp
-
-
-
?
L-Ala-L-Pro-4-nitroanilide + H2O

L-Ala + L-Pro-4-nitroanilide
-
best substrate
-
-
?
L-Ala-L-Pro-4-nitroanilide + H2O
L-Ala + L-Pro-4-nitroanilide
best substrate
-
-
?
L-Ala-L-Pro-4-nitroanilide + H2O
L-Ala + L-Pro-4-nitroanilide
best substrate
-
-
?
L-Ala-L-Pro-L-Ala + H2O

L-Ala + L-Pro-L-Ala
-
-
-
-
?
L-Ala-L-Pro-L-Ala + H2O
L-Ala + L-Pro-L-Ala
-
-
-
?
L-Met-L-Pro + H2O

L-Met + L-Pro
-
-
-
?
L-Met-L-Pro + H2O
L-Met + L-Pro
-
-
-
?
L-Met-L-Pro + H2O
L-Met + L-Pro
-
-
-
?
L-Met-L-Pro-Gly + H2O

L-Met + L-Pro-Gly
-
-
-
-
?
L-Met-L-Pro-Gly + H2O
L-Met + L-Pro-Gly
-
-
-
?
L-Met-L-Pro-Gly + H2O
L-Met + L-Pro-Gly
-
-
-
?
L-Phe-L-Pro-Gly + H2O

L-Phe + L-Pro-Gly
-
-
-
?
L-Phe-L-Pro-Gly + H2O
L-Phe + L-Pro-Gly
-
-
-
?
L-Phe-L-Pro-L-Ala + H2O

L-Phe + L-Pro-L-Ala
-
-
-
?
L-Phe-L-Pro-L-Ala + H2O
L-Phe + L-Pro-L-Ala
-
-
-
?
Leu-Pro + H2O

Leu + Pro
-
-
-
-
?
Leu-Pro + H2O
Leu + Pro
-
-
-
?
Lys(epsilon-dinitrophenol)-Pro-Pro-NH-CH3-CH2-NH-2-aminobenzoyl + H2O

Lys(epsilon-dinitrophenol) + Pro-Pro-NH-CH3-CH2-NH-2-aminobenzoyl
-
-
-
-
?
Lys(epsilon-dinitrophenol)-Pro-Pro-NH-CH3-CH2-NH-2-aminobenzoyl + H2O
Lys(epsilon-dinitrophenol) + Pro-Pro-NH-CH3-CH2-NH-2-aminobenzoyl
-
-
-
-
?
Met-Ala-Ala + H2O

Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Ala-Ala + H2O
Met + Ala-Ala
-
-
-
?
Met-Pro + H2O

Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro + H2O
Met + Pro
-
-
-
?
Met-Pro-Ala + H2O

Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
Met-Pro-Ala + H2O
Met + Pro-Ala
-
-
-
?
N6-(2-aminobenzoyl)-L-Lys-L-Pro-L-Pro-4-nitroanilide + H2O

N6-(2-aminobenzoyl)-L-Lys + Pro-Pro-4-nitroanilide
-
-
-
?
N6-(2-aminobenzoyl)-L-Lys-L-Pro-L-Pro-4-nitroanilide + H2O
N6-(2-aminobenzoyl)-L-Lys + Pro-Pro-4-nitroanilide
-
APP cleaves the Lys-Pro peptide bond separating the fluorogenic aminobenzoyl residue and the internal quenching residue 4-nitroanilide
-
-
?
N6-(2-aminobenzoyl)-L-Lys-L-Pro-L-Pro-4-nitroanilide + H2O
N6-(2-aminobenzoyl)-L-Lys + Pro-Pro-4-nitroanilide
-
APP cleaves the Lys-Pro peptide bond separating the fluorogenic aminobenzoyl residue and the internal quenching residue 4-nitroanilide
-
-
?
Phe-Pro + H2O

Phe + Pro
-
-
-
?
Phe-Pro + H2O
Phe + Pro
-
-
-
?
Phe-Pro + H2O
Phe + Pro
-
-
-
?
Phe-Pro + H2O
Phe + Pro
-
-
-
-
?
Phe-Pro + H2O
Phe + Pro
-
-
-
?
Pro-Pro + H2O

Pro
-
-
-
-
?
Pro-Pro + H2O
Pro
-
-
-
-
?
Pro-Pro + H2O
Pro
-
-
-
?
Pro-Pro-Ala + H2O

?
-
-
-
-
?
Pro-Pro-Ala + H2O
?
-
-
-
-
?
substance P + H2O

Arg + des-Arg-substance P
i.e. RPKPQQFFGLM, hydrolysis of the N-terminal Arg1-Pro2 bond
i.e. PKPQQFFGLM
?
substance P + H2O
Arg + des-Arg-substance P
-
-
?
Tyr-Ala-Ala + H2O

Tyr + Ala-Ala
-
-
-
?
Tyr-Ala-Ala + H2O
Tyr + Ala-Ala
-
-
-
?
Tyr-Pro-Ala + H2O

Tyr + Pro-Ala
-
-
-
?
Tyr-Pro-Ala + H2O
Tyr + Pro-Ala
-
-
-
?
Tyr-Pro-Phe-Pro-Gly + H2O

?
-
-
-
-
?
Tyr-Pro-Phe-Pro-Gly + H2O
?
-
-
-
-
?
Tyr-Pro-Phe-Pro-Gly-Pro-Ile + H2O

?
-
-
-
-
?
Tyr-Pro-Phe-Pro-Gly-Pro-Ile + H2O
?
-
-
-
-
?
Val-Pro + H2O

Val + Pro
-
-
-
-
?
Val-Pro + H2O
Val + Pro
-
-
-
-
?
Val-Pro + H2O
Val + Pro
-
-
-
?
additional information

?
-
the recombinant enzyme XpmA shows hydrolysis activity toward Xaa-Pro-oligopeptides, especially the two dipeptides Ala-Pro and Phe-Pro. Peptides APRTPGGRR, RPPGFSPFR, LPFFD, and Gly-Pro-Ala show poor activity with the enzyme, while the dipeptide Gly-Pro gives no activity. rXpmA also shows no activity toward three peptides with proline at the N-terminus (Pro-Ala, Pro-Leu-Gly, and Pro-Leu-Ser-Arg-Tyr-Leu-Ser-Val-Ala-Ala-Lys-Lys)
-
-
?
additional information
?
-
-
the recombinant enzyme XpmA shows hydrolysis activity toward Xaa-Pro-oligopeptides, especially the two dipeptides Ala-Pro and Phe-Pro. Peptides APRTPGGRR, RPPGFSPFR, LPFFD, and Gly-Pro-Ala show poor activity with the enzyme, while the dipeptide Gly-Pro gives no activity. rXpmA also shows no activity toward three peptides with proline at the N-terminus (Pro-Ala, Pro-Leu-Gly, and Pro-Leu-Ser-Arg-Tyr-Leu-Ser-Val-Ala-Ala-Lys-Lys)
-
-
?
additional information
?
-
the recombinant enzyme XpmA shows hydrolysis activity toward Xaa-Pro-oligopeptides, especially the two dipeptides Ala-Pro and Phe-Pro. Peptides APRTPGGRR, RPPGFSPFR, LPFFD, and Gly-Pro-Ala show poor activity with the enzyme, while the dipeptide Gly-Pro gives no activity. rXpmA also shows no activity toward three peptides with proline at the N-terminus (Pro-Ala, Pro-Leu-Gly, and Pro-Leu-Ser-Arg-Tyr-Leu-Ser-Val-Ala-Ala-Lys-Lys)
-
-
?
additional information
?
-
the recombinant enzyme XpmA shows hydrolysis activity toward Xaa-Pro-oligopeptides, especially the two dipeptides Ala-Pro and Phe-Pro. Peptides APRTPGGRR, RPPGFSPFR, LPFFD, and Gly-Pro-Ala show poor activity with the enzyme, while the dipeptide Gly-Pro gives no activity. rXpmA also shows no activity toward three peptides with proline at the N-terminus (Pro-Ala, Pro-Leu-Gly, and Pro-Leu-Ser-Arg-Tyr-Leu-Ser-Val-Ala-Ala-Lys-Lys)
-
-
?
additional information
?
-
-
the enzyme favors peptides with 2 proline residues or proline analogs in position 2 and 3 of the substrate
-
-
?
additional information
?
-
-
enzyme may be important for the modulation of the biological activity of neuropeptides
-
-
?
additional information
?
-
-
the enzyme is involved in the pulmonary inactivation of circulating bradykinin
-
-
?
additional information
?
-
-
the enzyme may have an important role in the pulmonary degradation of the potent vasoactive peptide, bradykinin
-
-
?
additional information
?
-
-
no activity with angiotensin I, des-Arg-bradykinin, AF1, i.e. KNEFIRNRVYIHPFHL, and substance P
-
?
additional information
?
-
enzyme APP specifically cleaves the N-terminal Xaa-Pro peptide bond from oligopeptides and is distinct from prolidase, which acts only on dipeptides
-
-
?
additional information
?
-
-
enzyme APP specifically cleaves the N-terminal Xaa-Pro peptide bond from oligopeptides and is distinct from prolidase, which acts only on dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
-
the enzyme can only hydrolyze the trans form of the X-L-Pro-peptide bond, the cis form has to isomerize before it can be cleaved
-
-
?
additional information
?
-
-
enzyme hydrolyzes the Xaa-Pro peptide bond when the first amino acid is Asn, Ala, or Met
-
-
?
additional information
?
-
peptides in which L-Pro is replaced by N-methyl-L-Ala or L-Ala are extremely poor substrates
-
-
?
additional information
?
-
-
peptides in which L-Pro is replaced by N-methyl-L-Ala or L-Ala are extremely poor substrates
-
-
?
additional information
?
-
-
ciliary proteome is screened for proteins with a proline in the second position: 3 candidate substrates centrosomal protein 290 kDa/NPHP6 (CEP290/NPHP6), Alstrom syndrome 1 (ALMS1), and leucine rich repeat containing 50 (LRRC50), known to cause cystic renal disease are shown to be cleaved by ecAPP
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
no activity with Gly-Pro-hydroxyPro
-
?
additional information
?
-
-
no activity with Gly-Pro-hydroxyPro
-
?
additional information
?
-
a proline-specific APaseP
-
-
?
additional information
?
-
-
a proline-specific APaseP
-
-
?
additional information
?
-
aminopeptidase P targets Xaa-Proline peptides for cleavage. Roles of active site residues Tyr527 and Arg535, both residues make significant contributions to the catalytic efficiency, overview
-
-
?
additional information
?
-
-
aminopeptidase P targets Xaa-Proline peptides for cleavage. Roles of active site residues Tyr527 and Arg535, both residues make significant contributions to the catalytic efficiency, overview
-
-
?
additional information
?
-
-
the enzyme removes the N-terminal amino acid from peptides only where Pro, and in one case Ala, is present in the penultimate position. No hydrolysis of dipeptides even when Pro is present in the C-terminal position or when either N-termial Pro or pyroglutamate is present preceeding a Pro residue in the penultimate position of longer peptides
-
-
?
additional information
?
-
-
aminopeptidase P appears to be an important enzyme for debittering of casein-derived peptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
substrate specificity for Xaa-Pro dipeptides and Xaa-Pro-Ala tripeptides is analyzed, the enzyme is significantly more active toward the tripeptides than the corresponding dipeptides
-
-
?
additional information
?
-
-
the enzyme releases only amino acid X from the NH2-termini of peptides with the general structure X-Pro-Y-Z
-
-
?
additional information
?
-
specific role in the catabolism of proline-containing peptides in both the vacuole and the cytosol, enzyme is required for efficient parasite proliferation
-
-
?
additional information
?
-
-
substrate specificity, overview. Design and synthesis of a library composed of 20 fluorogenic substrates, which is used to determine the substrate fingerprint of mature PfAPP (PfAPP, residues 121-777). The enzyme from Plasmodium falciparum can catalyze the removal of any residue immediately prior to a proline. The coupled assay uses a prolyl iminopeptidase (EC 3.4.11.5) to release the free 7-amino-4-carbamoylmethylcoumarin for fluorogenic detection
-
-
?
additional information
?
-
modeling of the Val-Pro-Leu bound Pa-PepP complex by superposing Pa-PepP structure with the substrate-bound Escherichia coli PepP structure (PDB ID 2BN7)
-
-
?
additional information
?
-
-
no cleavage of human erythropoietin
-
-
?
additional information
?
-
-
the enzyme liberates all unblocked preferentially basic or hydrophobic ultimate amino acids from dipeptides, tripeptides and oligopeptides with N-terminal Xaa-Pro- sequences, overview
-
-
?
additional information
?
-
-
the enzyme accounts for virtually all of the pulmonary inactivation of bradykinin injected in vitro
-
-
?
additional information
?
-
-
the enzyme probably plays an important role in conjunction with other intestinal prolyl peptidases in the digestion of proline containing peptides and proteins
-
-
?
additional information
?
-
-
the enzyme plays an important role in hydrolysis of Xaa-Pro-Yaa peptides
-
-
?
additional information
?
-
-
the enzyme participates in the myocardial kinin metabolism to the same extent as angiotensin-converting enzyme, APP inhibition leads to a reduction in myocardial infarct size by the bradykinin-dependent pathway, synergistic with inhibition of angiotensin-converting enzyme, overview
-
?
additional information
?
-
the enzyme is active towards substrates with proline at P1' position (M-/-PA and Y-/-PA). Icp55 cleaves off bulky residues from N-termini of proteins. Active towards substrates Y-/-AA, Y-/-TA and Y-/-SA
-
-
?
additional information
?
-
-
the enzyme is active towards substrates with proline at P1' position (M-/-PA and Y-/-PA). Icp55 cleaves off bulky residues from N-termini of proteins. Active towards substrates Y-/-AA, Y-/-TA and Y-/-SA
-
-
?
additional information
?
-
the enzyme is active towards substrates with proline at P1' position (M-/-PA and Y-/-PA). Icp55 cleaves off bulky residues from N-termini of proteins. Active towards substrates Y-/-AA, Y-/-TA and Y-/-SA
-
-
?
additional information
?
-
-
the enzyme is involved in degradation of peptide intermediates
-
-
?
additional information
?
-
systemin, a peptide hormone-like signaling molecule from tomato plants, is no substrate
-
?
additional information
?
-
systemin, a peptide hormone-like signaling molecule from tomato plants, is no substrate
-
?
additional information
?
-
-
systemin, a peptide hormone-like signaling molecule from tomato plants, is no substrate
-
?
additional information
?
-
aminopeptidase P catalyzes the cleavage of the first amino acid residue in peptides and proteins when it is followed by the proline residue. PepP is able to hydrolyze the Xaa-Pro-bond and belongs to the family of proline-specific aminopeptidases. Substrate specificity, overview
-
-
?
additional information
?
-
-
X-prolyl aminopeptidase (APP) is a proline-specific metalloaminopeptidase that specifically catalyzes the removal of N-terminal amino acid present adjacent to a penultimate proline residue
-
-
?
additional information
?
-
-
X-prolyl aminopeptidase (APP) is a proline-specific metalloaminopeptidase that specifically catalyzes the removal of N-terminal amino acid present adjacent to a penultimate proline residue
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Sn2+
-
10 mM, strong inhibitory effect
Ca2+

slight activation at 10 mM
Ca2+
-
0.5-1.0 mM, slight activation
Ca2+
activates the enzyme at concentrations of 0.01-0.1 mM with substrate substance P, inhibits above 1 mM
Ca2+
stimulation of enzyme activity at 0.4 mM, inhibition at 4 mM
Co2+

strong activation at 0.01-1.0 mM, inhibitory at 10 mM
Co2+
-
stimulatory at 0.01 mM, inhibitory above 0.1 mM
Co2+
-
0.03 mM, activates
Co2+
activates the enzyme at concentrations of 0.01-0.1 mM with substrate substance P, inhibits above 1 mM
Co2+
in a metal:protein ratio of 0.11:1, slightly activates the enzyme at 0.01-0.1 mM, 2.8fold activation at 1 mM in presence of 1 mM glutathione
Co2+
-
10 mM, moderate inhibitory effect
Co2+
-
metal ion required, Co2+ is the best activator
Co2+
stimulation of enzyme activity at 0.4 mM, inhibition at 4 mM
Co2+
or Mn2+, Zn2+, required. Maximal activity at 3 mM
Cu2+

-
0.1 mM, moderate inhibitory effect
Cu2+
-
10 mM, strong inhibitory effect
Fe2+

slight activation at 0.05 mM, complete inhibition at 1 mM
Fe2+
in a metal:protein ratio of 0.07:1
Mg2+

activates
Mg2+
activates the enzyme at concentrations of 0.01-0.1 mM with substrate substance P, inhibits above 1 mM
Mg2+
stimulation of the enzyme
Mn2+

required, best metal ion, the enzyme activity increases 27.6 times of the control level at 1 mM Mn2+, strong activation at 0.01-50 mM
Mn2+
-
0.25-1 mM activates
Mn2+
activates the enzyme at concentrations of 0.01-0.1 mM with substrate substance P, inhibits above 1 mM with substrates substance P and bradykinin
Mn2+
-
activates, sharp optimum at 0.37 mM
Mn2+
-
0.05 mM, 3-4fold activatiion
Mn2+
-
0.005 mM, 3fold activation
Mn2+
-
2 ions per enzyme molecule, ligand binding structure determination
Mn2+
-
may substitute for Co2+
Mn2+
-
wild-type and mutat R404A, binding of Mn2+ with a stoichiometry of 2 per monomer
Mn2+
2 mol of Mn2+ ions per mol of enzyme
Mn2+
required for activity
Mn2+
-
required, maximal activity at 0.05 mM
Mn2+
in a metal:protein ratio of 1:1, activates the enzyme 2.80fold at 0.1 mM with substrate substance P, maximal at 0.3 mM, 4.6fold activation at 1 mM in presence of 1 mM glutathione
Mn2+
-
the enzyme is double Mn2+-dependent for its activity
Mn2+
-
using the QM/MM method it is shown that XPNPEP1 employs two divalent manganese atoms (Mn(II)-Mn(II)) in the active site. The possibility of a single Mn(II) atom or other combination of divalent metal ions: Ca(II), Fe(II), Mg(II) is excluded
Mn2+
activates, required, Km values for Mn2+ are 0.0022 mM for the wild-type enzyme, 0.004 mM for mutant Y527F, and 0.0018 mM for mutant R535A. Kinetic analysis of MnCl2 activation of wild-type, Y527F and R535A hcAMPPs
Mn2+
-
1 mM, 6.8fold stimulates
Mn2+
-
the active site is internally located at the junction of the three domains and shows a di-metal coordination consistent with the presence of two catalytic manganese ions
Mn2+
activates at up to 5 mM, a trimetal manganese cluster is observed at the active site involving residues Asp260, Asp271, Glu384, Glu408, and His354, elucidating the binding structure and mechanism of inhibition by metal ions. Inhibitory at 8-15 mM. There is a Mn2+ ion concentration-dependent activity regulation pattern
Mn2+
-
0.3-0.4 mM, 4fold stimulation with Gly-Pro-Hyp as substrate
Mn2+
-
required, maximal activity at 0.05 mM
Mn2+
the activity of the enzyme depends critically on the presence of Mn2+. Reducing concentration of Mn2+ in reaction buffer from 1 mM to 0.006 mM reduces the activity of the enzyme by about 60%. Other divalent metal ions (Mg2+, Ca2+, Co2+, Ni2+ and Zn2+) fail to fully restore activity of the enzyme
Mn2+
stimulation of the enzyme, most effective at 4 mM
Mn2+
-
enhances activity, atomic absorption studies reveal the presence of Mn2+ in the protein as a co-factor
Mn2+
-
4-10 mM, activates hydrolysis of Gly-Pro-Hyp, beta-casomorphin or substance P
Mn2+
-
stimulates, optimal activity at 4 mM
Mn2+
activates 5fold at 0.01 mM, 2.5fold at 5 mM. The active site of PepP is involved in the binding of two Mn2+ ions
Mn2+
or Co2+, Zn2+, required. Maximal activity at 20 mM
Mn2+
-
required, activates
NaCl

increases the enzyme activity in the concentration range 0.5-3.0 M, suggesting that the enzyme is halophilic
NaCl
activates the wild-type enzyme at 160 mM, inhibits the enzyme mutant R353A at 160 mM
Ni2+

-
may substitute for Co2+
Ni2+
-
1 mM, 26% increase in activity
Zn2+

APP-1 is a dimer that uses dinuclear zinc at the active site
Zn2+
required, di-metal center, one metal ion (ZnA) is penta-coordinated and exhibits distorted trigonal bipyramidal geometry, whereas the other (ZnB) is tetra-coordinated and exhibits a tetrahedral geometry. Metal ZnA of Dr-smAPP is coordinated by O3 of phosphate ion, His285 Nepsilon2, and Glu328 Oepsilon1 in the equatorial plane and Asp221 Odelta2 and Glu314 Oepsilon2 in the axial sites. Metal ZnB of Dr-smAPP is coordinated by O3 of phosphate ion, Asp210 Odelta1, Asp221 Odelta1, and Glu328 Oepsilon2. Glu328 and Asp221 act as bidentate ligands and bind to both the metals
Zn2+
required, di-metal center, one metal ion (ZnA) is penta-coordinated and exhibits distorted trigonal bipyramidal geometry, whereas the other (ZnB) is tetra-coordinated and exhibits a tetrahedral geometry. Metal ZnA is coordinated by O1 of cacodylate ion, Glu335 Oepsilon2, Glu321 Oepsilon2, His292 Nepsilon2, and Asp223 Odelta2. Metal ZnB is coordinated by O1 of cacodylate ion, Glu335 Oepsilon1, Asp212 Odelta1, and Asp223 Odelta1. Glu335 and Asp223 act as bidentate ligands and bind to both the metals
Zn2+
in a metal:protein ratio of 0.11:1
Zn2+
-
1 mM, 2fold increase in activity
Zn2+
-
0.01 mM, moderate inhibitory effect
Zn2+
-
10 mM, strong inhibitory effect
Zn2+
-
mono-zinc-containing enzyme, lacks any of the typical metal binding motifs found in other zinc metalloproteases
Zn2+
or Mn2+, Co2+, required. Maximal activity at 0.4 mM
additional information

rXpmA is a metalloprotease
additional information
-
rXpmA is a metalloprotease
additional information
-
metalloenzyme, enzyme which is free of metals due to EDTA-treatment cannot be reactivated by addition of Co2+, Zn2+, or Mn2+
additional information
metalloprotease
additional information
-
metalloprotease
additional information
-
the active site contains a dinuclear metal binding site, the enzyme contains 12 metal atoms per molecule, 2 of which are Mn2+ ions
additional information
not activating: Mg2+, Zn2+, Na+, Ca2+
additional information
-
not activating: Mg2+, Zn2+, Na+, Ca2+
additional information
a metalloprotease
additional information
-
a metalloprotease
additional information
XPNPEP1 is a metallopeptidase
additional information
XPNPEP1 is a metallopeptidase
additional information
-
XPNPEP1 is a metallopeptidase
additional information
XPNPEP2 is a metallopeptidase
additional information
XPNPEP2 is a metallopeptidase
additional information
-
XPNPEP2 is a metallopeptidase
additional information
the enzyme activity is dependent on metal ions and influenced by different metal ions. This enzyme's pita-bread fold is commonly found in N-terminal amido-, imido-, and amidino-scissile bond-cleaving enzymes, and serves as a structural basis for the metal-dependent catalysis. Addition of Mn2+ significantly restores the Pa-PepP activity of the apoenzyme, while the limited enhancement of activity is observed upon addition of Ca2+ or Mg2+
additional information
structure modeling reveals that residues Thr273 and Thr383 do not directly interact with metal ions but may be important for their retention in the protein active site
additional information
-
activity of rTgAPP is enhanced by the addition of divalent cations
additional information
the active site of each subunit of puified recombinant TVMP50 contains two metals Ca2+ and Ni2+. The Ni2+ is likely also dragged from the IMAC resin purification. Additional Ca2+ atoms are detected bound in the structure, one on the N-terminal and two on the C-terminal domain. The conserved residues responsible for direct interaction with metallic ions are Glu407, Glu364, Asp232, Asp243, His328, and His335
additional information
-
the active site of each subunit of puified recombinant TVMP50 contains two metals Ca2+ and Ni2+. The Ni2+ is likely also dragged from the IMAC resin purification. Additional Ca2+ atoms are detected bound in the structure, one on the N-terminal and two on the C-terminal domain. The conserved residues responsible for direct interaction with metallic ions are Glu407, Glu364, Asp232, Asp243, His328, and His335
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2R,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-thiazolidide
(2R,3R)-3-amino-1-oxo-4-phenyl-1-(1,3-thiazolidin-3-yl)butan-2-ol
(2R,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro
(2R,3S)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-thiazolidide
(2R,3S)-3-amino-1-oxo-4-phenyl-1-(1,3-thiazolidin-3-yl)butan-2-ol
(2R,3S)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro
(2S,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-Pro-methyl ester
(2S,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-Pro-Phe-methyl ester
(2S,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-thiazolidide
(2S,3R)-(2-hydroxy-3-amino-5-methylhexanoic acid)-thiazolidide
(2S,3R)-2-hydroxy-3-amino-4-phenyl-butanoic acid pyrrolidide
(2S,3R)-3-amino-1-oxo-4-phenyl-1-(1,3-thiazolidin-3-yl)butan-2-ol
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl pyrrolidide
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro-L-Phe-OMe
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro-OMe
(2S,3R)-3-amino-2-hydroxy-5-methylhexanoyl-thiazolidide
(2S,3R)-3-amino-5-methyl-1-oxo-1-(1,3-thiazolidin-3-yl)hexan-2-ol
(2S,3S)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-Pro-methyl ester
(2S,3S)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro-OMe
2-hydroxy-3-aminoacyl-Pro-OH dipeptides
-
2-mercaptomethyl-3-guanidinoethylthiopropanoic acid
4-chloromercuriphenyl sulfonic acid
4-hydroxymercuribenzenesulfonate
-
-
acetyl-Phe(NO2)-Pro-Pro-HN-CH2-CH2-NH-2-aminobenzoyl
-
0.5 mM, 30% inhibition of hydrolysis of (4-nitr)Phe-Pro-Pro-HN-CH2-CH2-NH-o-aminobenzoyl
Arg-Pro
substrate inhibition at concentrations above 3 mM
cilazaprilat
-
inhibits hydrolysis of Gly-Pro-Hyp, Gly-Pro-4-methyl-7-coumarylamide, substance P, and beta-casomorphin. Weak inhibition of hydrolysis of Arg-Pro-Pro. No effect on hydrolysis of bradykinin
Cr6+
CrVI, a heavy metal endocrine-disrupting chemical industrially widely used, gestational exposure to CrVI increases germ cell/oocyte apoptosis and advance germ cell nest (GCN) breakdown. CrVI increases X-prolyl aminopeptidase (Xpnpep) 2 (a marker for premature ovarian failure in humans) during germ cell nest (GCN) breakdown, it decreases Xpnpep2 during postnatal follicle development, and increases colocalization of Xpnpep2 with collagens Col3 and Col4. Phenotype, overview
diethyldicarbonate
50% inhibition at 0.011 mM
diisopropylphosphofluoridate
-
-
enalapril
-
significant inhibition after repeated oral dosage
enalaprilat
-
inhibition only in presence of Mn2+
enaprilat
-
inhibits hydrolysis of Gly-Pro-Hyp, Gly-Pro-4-methylcoumarin 7-amide, substance P, and beta-casomorphin. Weak inhibition of hydrolysis of Arg-Pro-Pro. No effect on hydrolysis of bradykinin
Fe2+
slight activation at 0.05 mM, complete inhibition at 1 mM
glutathione
10% inhibition at 1 mM in absence of cations
hydrazine
inactivates wild-type hcAMPP and R535A mutant enzymes
L-Ala-(N-methyl)L-Ala-L-Ala
competitive
L-Ala-L-Ala-L-Ala
competitive
L-Ala-L-Pro-L-Ala
competitive; competitive, 50% inhibition at 0.22 mM
L-Pro-L-Leu
product inhibition, a third metal binding site is formed by two conserved His-residues and L-Pro-L-Leu
Leu-Pro
substrate inhibition at concentrations above 4 mM
N-benzyloxycarbonyl-Pro-prolinal
-
-
N-[1-(R,S)-carboxy-(2-phenylethyl)]-thiopropanoic acid
-
-
nitrilotriacetic acid
-
-
pepstatin A
complete inhibition at 0.1-5.0 mM
Peptides with N-terminal Pro
-
product inhibition
phenylmethylsulfonyl fluoride
Pro-HN-CH2-CH2-NH-2-aminobenzoyl
Ser-Pro
substrate inhibition at concentrations above 10 mM
(2R,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-thiazolidide

-
-
(2R,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-thiazolidide
-
-
(2R,3R)-3-amino-1-oxo-4-phenyl-1-(1,3-thiazolidin-3-yl)butan-2-ol

-
-
(2R,3R)-3-amino-1-oxo-4-phenyl-1-(1,3-thiazolidin-3-yl)butan-2-ol
-
-
(2R,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro

-
-
(2R,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro
-
-
(2R,3S)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-thiazolidide

-
-
(2R,3S)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-thiazolidide
-
-
(2R,3S)-3-amino-1-oxo-4-phenyl-1-(1,3-thiazolidin-3-yl)butan-2-ol

-
-
(2R,3S)-3-amino-1-oxo-4-phenyl-1-(1,3-thiazolidin-3-yl)butan-2-ol
-
-
(2R,3S)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro

-
-
(2R,3S)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro
-
-
(2S,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-Pro-methyl ester

-
-
(2S,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-Pro-methyl ester
-
-
(2S,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-Pro-Phe-methyl ester

-
-
(2S,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-Pro-Phe-methyl ester
-
-
(2S,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-thiazolidide

-
-
(2S,3R)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-thiazolidide
-
-
(2S,3R)-(2-hydroxy-3-amino-5-methylhexanoic acid)-thiazolidide

-
-
(2S,3R)-(2-hydroxy-3-amino-5-methylhexanoic acid)-thiazolidide
-
-
(2S,3R)-2-hydroxy-3-amino-4-phenyl-butanoic acid pyrrolidide

-
-
(2S,3R)-2-hydroxy-3-amino-4-phenyl-butanoic acid pyrrolidide
-
-
(2S,3R)-3-amino-1-oxo-4-phenyl-1-(1,3-thiazolidin-3-yl)butan-2-ol

-
-
(2S,3R)-3-amino-1-oxo-4-phenyl-1-(1,3-thiazolidin-3-yl)butan-2-ol
-
-
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl pyrrolidide

-
-
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl pyrrolidide
-
-
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro

-
-
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro
-
-
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro-L-Phe-OMe

-
-
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro-L-Phe-OMe
-
-
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro-OMe

-
-
(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro-OMe
-
-
(2S,3R)-3-amino-2-hydroxy-5-methylhexanoyl-thiazolidide

-
-
(2S,3R)-3-amino-2-hydroxy-5-methylhexanoyl-thiazolidide
-
-
(2S,3R)-3-amino-5-methyl-1-oxo-1-(1,3-thiazolidin-3-yl)hexan-2-ol

-
-
(2S,3R)-3-amino-5-methyl-1-oxo-1-(1,3-thiazolidin-3-yl)hexan-2-ol
-
-
(2S,3S)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-Pro-methyl ester

-
-
(2S,3S)-(2-hydroxy-3-amino-4-phenyl-butanoic acid)-Pro-methyl ester
-
-
(2S,3S)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro-OMe

-
-
(2S,3S)-3-amino-2-hydroxy-4-phenylbutanoyl-L-Pro-OMe
-
-
1,10-phenanthroline

-
-
1,10-phenanthroline
complete inhibition at 0.1 mM
1,10-phenanthroline
-
50% inhibition at 0.01 mM
1,10-phenanthroline
50% inhibition at 0.036 mM
1,10-phenanthroline
complete inhibition at 5.0 mM
2-hydroxy-3-aminoacyl-Pro-OH dipeptides

-
slow-binding inhibitors
-
2-hydroxy-3-aminoacyl-Pro-OH dipeptides
-
slow-binding inhibitors
-
2-mercaptoethanol

-
2-mercaptoethanol
50% inhibition at 0.043 mM
2-mercaptomethyl-3-guanidinoethylthiopropanoic acid

-
-
2-mercaptomethyl-3-guanidinoethylthiopropanoic acid
-
-
4-chloromercuriphenyl sulfonic acid

-
inhibits cleavage of Arg-Pro-Pro
4-chloromercuriphenyl sulfonic acid
-
-
4-chloromercuriphenyl sulfonic acid
-
-
4-chloromercuriphenyl sulfonic acid
-
inhibits hydrolysis of Gly-Pro-Hyp, activates hydrolysis of bradykinin
4-hydroxymercuribenzoate

-
partial
4-hydroxymercuribenzoate
-
-
4-hydroxymercuribenzoate
-
-
amastatin

-
-
Aprotinin

-
slight
apstatin

-
-
apstatin
92% inhibition at 0.01 mM, enzyme binding structure modeling, molecular interactions between APP-1 and the ligand, overview. Comparison between Caenorhabditis elegans APP-1-apstatin structure and Escherichia coli APP-1-apstatin structure
apstatin
-
binds to the active site with its N-terminal amino group coordinated to one of the two Mn(II) ions at the metal center
apstatin
complete inhibition at 0.1 mM
apstatin
-
specific inhibitor, in vivo
apstatin
-
50% inhibition at 0.0023 mM
apstatin
-
a APP inhibitor
apstatin
-
selective for aminopeptidase P
Ba2+

-
-
Ba2+
slight inhibition at 1-5 mM
bestatin

-
-
bestatin
50% inhibition at 0.1 mM
bradykinin

-
-
bradykinin
-
hydrolysis of Gly-Pro-Hyp
Ca2+

-
only inhibits Mn2+-activated enzyme
Ca2+
activates the enzyme at concentrations of 0.01-0.1 mM with substrate substance P, inhibits above 1 mM
Ca2+
83.1% inhibition at 1 mM
Ca2+
-
1 mM CaCl2, 27% inhibition
Ca2+
stimulation of enzyme activity at 0.4 mM, inhibition at 4 mM
Ca2+
slight inhibition at 1-5 mM
captopril

-
-
Cd2+

-
-
Cd2+
complete inhibition at 0.01-5.0 mM
Co2+

strong activation at 0.01-1.0 mM, inhibitory at 10 mM
Co2+
-
only inhibits Mn2+-activated enzyme
Co2+
-
stimulatory at 0.01 mM, inhibitory above 0.1 mM
Co2+
activates the enzyme at concentrations of 0.01-0.1 mM with substrate substance P, inhibits above 1 mM
Co2+
-
1.5 mM CoCl2, complete inhibition
Co2+
-
1 mM CoCl2, 90% inhibition
Co2+
stimulation of enzyme activity at 0.4 mM, inhibition at 4 mM
Cu2+

-
-
Cu2+
56% inhibition at 0.1 mM
Cu2+
complete inhibition at 1 mM
Cu2+
-
inhibitory effect at 1 mM
Cu2+
complete inhibition at 4 mM
Cu2+
-
0.04-4.0 mM 4CuCl2
dithiothreitol

-
DTT

-
EDTA

10 mM EDTA inhibits enzyme activity to 0.26 times of the control level
EDTA
80% inhibition at 0.1 mM
EDTA
-
reactivation by Mn2+, Co2+, Cd2+, or Ni2+
EDTA
-
0.1-1 mM, completely
EDTA
49% inhibition at 1 mM
EDTA
-
the activity of the enzyme drops to 10% after treatment with 50 mM EDTA
EDTA
50% inhibition at 0.34 m
EDTA
90% inhibition at 0.1 mM
EGTA

-
-
Hg2+

-
-
Mg2+

activates the enzyme at concentrations of 0.01-0.1 mM with substrate substance P, inhibits above 1 mM
Mg2+
38.2% inhibition at 1 mM
Mg2+
slight inhibition at 1-5 mM
Mn2+

-
-
Mn2+
activates the enzyme at concentrations of 0.01-0.1 mM with substrate substance P, inhibits above 1 mM with substrates substance P and bradykinin
Mn2+
activates at up to 5 mM, a trimetal manganese cluster is observed at the active site involving residues Asp260, Asp271, Glu384, Glu408, and His354, elucidating the binding structure and mechanism of inhibition by metal ions. Inhibitory at 8-15 mM. There is a Mn2+ ion concentration-dependent activity regulation pattern
Mn2+
-
above, 0.01 mM, hydrolysis of bradykinin and Arg-Pro-Pro
NaCl

-
above 0.25 M
NaCl
activates the wild-type enzyme at 160 mM, inhibits the enzyme mutant R353A at 160 mM
NaCl
-
2 M, complete inhibition
NEM

-
-
NEM
50% inhibition at 0.079 mM
Ni2+

-
Ni2+
complete inhibition at 0.001 mM
Ni2+
93.5% inhibition at 1 mM
Ni2+
-
inhibitory effect at 1 mM
Pb2+

-
-
PCMB

-
inhibits cleavage of Arg-Pro-Pro
phenylmethylsulfonyl fluoride

-
-
phenylmethylsulfonyl fluoride
-
-
phenylmethylsulfonyl fluoride
-
-
PMSF

-
-
PMSF
60% inhibition at 5.0 mM
Pro-HN-CH2-CH2-NH-2-aminobenzoyl

-
-
Pro-HN-CH2-CH2-NH-2-aminobenzoyl
-
0.01 mM, complete inhibition of hydrolysis of (4-nitro)Phe-Pro-Pro-HN-CH2-CH2-NH-2-aminobenzoyl
Pro-HN-CH2-CH2-NH-2-aminobenzoyl
-
-
ramiprilat

-
inhibition only in presence of Mn2+
ramiprilat
-
inhibits hydrolysis of Gly-Pro-Hyp, Gly-Pro-4-methylcoumarin 7-amide, substance P or beta-casomorphin. Weak inhibition of hydrolysis of Arg-Pro-Pro. No effect on hydrolysis of bradykinin
Zn2+

complete inhibition at 1 mM
Zn2+
complete inhibition at 0.001 mM
Zn2+
complete inhibition at 0.1 mM
Zn2+
-
inhibitory effect at 1 mM
Zn2+
the Zn2+ ion has high affinity for APPro and inhibits the hydrolysis reaction by occupying a third metal binding site
Zn2+
-
10 mM, complete inhibition
Zn2+
-
1 mM ZnSO4, 96% inhibition
Zn2+
complete inhibition at 4 mM
Zn2+
complete inhibition at 0.01-5.0 mM
additional information

no inhibition by 4-(2-aminoethyl)benzensulfonylfluoride, tosyl lysyl chloromethyl ketone, and tosyl phenylalanyl chloromethyl ketone
-
additional information
-
no inhibition by 4-(2-aminoethyl)benzensulfonylfluoride, tosyl lysyl chloromethyl ketone, and tosyl phenylalanyl chloromethyl ketone
-
additional information
not inhibitory: L-Ala-(N-methyl)-L-Ala-L-Ala, L-Ala-L-Ala-L-Ala
-
additional information
-
not inhibitory: L-Ala-(N-methyl)-L-Ala-L-Ala, L-Ala-L-Ala-L-Ala
-
additional information
no significant inhibition by amastatin and enalaprilat
-
additional information
-
no significant inhibition by amastatin and enalaprilat
-
additional information
-
not inhibitory: bestatin, phosphoamidon
-
additional information
-
more intense processing conditions, above 100-200 MPa and 20-30°C, lead to enzyme inactivation with PepX HP-induced conformational changes, investigated by circular dichroism spectroscopy, kinetic analysis, overview
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Alzheimer Disease
Generation of Alzheimer disease-associated amyloid ?42/43 peptide by ?-secretase can be inhibited directly by modulation of membrane thickness.
Alzheimer Disease
Targeting Cannabinoid Receptor Activation and BACE-1 Activity Counteracts TgAPP Mice Memory Impairment and Alzheimer's Disease Lymphoblast Alterations.
Angioedema
A functional XPNPEP2 promoter haplotype leads to reduced plasma aminopeptidase P and increased risk of ACE inhibitor-induced angioedema.
Angioedema
A variant in XPNPEP2 is associated with angioedema induced by angiotensin I-converting enzyme inhibitors.
Angioedema
Diagnosis and treatment of bradykinin-mediated angioedema: outcomes from an angioedema expert consensus meeting.
Angioedema
Sex-dependent and race-dependent association of XPNPEP2 C-2399A polymorphism with angiotensin-converting enzyme inhibitor-associated angioedema.
Asthma
Eastern Carolina Asthma Prevention Program (ECAPP): An Environmental Intervention Study Among Rural and Underserved Children with Asthma in Eastern North Carolina.
Biliary Atresia
Association of X-prolyl aminopeptidase 1 rs17095355 polymorphism with biliary atresia in Thai children.
Carcinoma
Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease.
Carcinoma, Renal Cell
Proteome profiling of clear cell renal cell carcinoma in von Hippel-Lindau patients highlights upregulation of Xaa-Pro aminopeptidase-1, an anti-proliferative and anti-migratory exoprotease.
Cervical Intraepithelial Neoplasia
XPNPEP2 is overexpressed in cervical cancer and promotes cervical cancer metastasis.
Ciliopathies
Individuals with mutations in XPNPEP3, which encodes a mitochondrial protein, develop a nephronophthisis-like nephropathy.
Ciliopathies
Lights on for aminopeptidases in cystic kidney disease.
Cough
PNPT1 and PCGF3 variants associated with angiotensin-converting enzyme inhibitor-induced cough: a nested case-control genome-wide study.
Kidney Diseases
Mitochondrial aminopeptidase deletion increases chronological lifespan and oxidative stress resistance while decreasing respiratory metabolism in S. cerevisiae.
Kidney Diseases, Cystic
Structure of the human aminopeptidase XPNPEP3 and comparison of its in vitro activity with Icp55 orthologs: Insights into diverse cellular processes.
Lymphatic Metastasis
XPNPEP2 is associated with lymph node metastasis in prostate cancer patients.
Lymphatic Metastasis
XPNPEP2 is overexpressed in cervical cancer and promotes cervical cancer metastasis.
Lymphoma
ECAPP chemotherapy for lymphoma.
Microcephaly
Developmental retardation, microcephaly, and peptiduria in mice without aminopeptidase P1.
Neoplasm Metastasis
XPNPEP2 is associated with lymph node metastasis in prostate cancer patients.
Neoplasm Metastasis
XPNPEP2 is overexpressed in cervical cancer and promotes cervical cancer metastasis.
Neoplasms
Identification of DEGs and transcription factors involved in H. pylori-associated inflammation and their relevance with gastric cancer.
Neoplasms
XPNPEP2 is associated with lymph node metastasis in prostate cancer patients.
Neoplasms
XPNPEP2 is overexpressed in cervical cancer and promotes cervical cancer metastasis.
Neoplasms
XPNPEP3 is a novel transcriptional target of canonical Wnt/?-catenin signaling.
Primary Ovarian Insufficiency
Physical mapping of nine Xq translocation breakpoints and identification of XPNPEP2 as a premature ovarian failure candidate gene.
Prostatic Neoplasms
XPNPEP2 is associated with lymph node metastasis in prostate cancer patients.
Stroke
Recurrent ischemic stroke in patients with atrial fibrillation ablation and prior stroke: A study based on etiological classification.
Trichomonas Infections
The 50kDa metalloproteinase TvMP50 is a zinc-mediated Trichomonas vaginalis virulence factor.
Trichomonas Infections
TvMP50 is an immunogenic metalloproteinase during male trichomoniasis.
Uterine Cervical Neoplasms
XPNPEP2 is overexpressed in cervical cancer and promotes cervical cancer metastasis.
xaa-pro aminopeptidase deficiency
Altered hippocampal gene expression, glial cell population, and neuronal excitability in aminopeptidase P1 deficiency.
xaa-pro aminopeptidase deficiency
Deficiency of aminopeptidase P1 causes behavioral hyperactivity, cognitive deficits, and hippocampal neurodegeneration.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
3
(4-nitro)Phe-Pro-HN-CH2-CH2-NH-o-aminobenzoyl
-
-
0.22
(4-nitro)Phe-Pro-Pro-HN-CH2-CH2-NH-o-aminobenzoyl
-
-
0.087 - 0.14
2-aminobenzoyl-L-Lys-L-Pro-L-Pro-4-nitroanilide
0.087 - 0.14
Abz-L-Lys-L-Pro-L-Pro-4-nitroanilide
0.15
Arg-homoPro-Pro-Ala-NH2
-
-
0.0007
Arg-Pro-Pro-benzylamide
-
-
0.048 - 0.34
Arg-Pro-Pro-Gly-Phe
0.032 - 0.15
Arg-Pro-Pro-Gly-Phe-Ser
0.051 - 0.25
Arg-Pro-Pro-Gly-Phe-Ser-Pro
0.039 - 0.15
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe
0.076
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg
-
-
0.056
des-Arg9-bradykinin
-
pH 7.4, 37°C
0.4697
Gly-Pro-4-nitroanilide
-
pH 8, 37°C
13.82
Gly-Pro-Pro-p-nitroanilide
-
-
0.018
K(Dnp)PPGFSPK(Abz)NH2
-
-
0.02
K(Dnp)PPGK(Abz)NH2
-
-
0.019
K(Dnp)PPK(Abz)NH2
-
-
0.51 - 16.9
L-Ala-L-Pro-4-nitroanilide
0.77
L-Ala-L-Pro-L-Ala
wild-type, pH 8.1, 37°C
0.308 - 0.837
L-Arg-L-Pro-L-Pro
0.03
L-Arg-L-Pro-L-Pro-Gly
-
-
-
2.5
L-Ile-L-Pro-L-Pro
-
pH 7, temperature not specified in the publication
4.7
L-Leu-L-Pro-L-Pro
-
pH 7, temperature not specified in the publication
0.96
L-Met-L-Pro
pH 5.0, 80°C
1.33
L-Tyr-L-Pro-L-Phe-NH2
-
-
-
13.6
L-Val-L-Pro-L-Pro
-
pH 7, temperature not specified in the publication
0.038 - 0.1
Lys(epsilon-dinitrophenol)-Pro-Pro-NH-CH3-CH2-NH-2-aminobenzoyl
0.00883
N6-(2-aminobenzoyl)-L-Lys-L-Pro-L-Pro-4-nitroanilide
recombinant enzyme, pH 7.5, 30°C
0.077
Substance P
pH 8.2, 37°C, recombinant wild-type enzyme
0.72
Tyr-Ala-Ala
pH 7.5, 40°C
1.8
Tyr-Pro-Ala
pH 7.5, 40°C
0.72
Tyr-Pro-Leu-Gly-NH2
-
-
1.02 - 1.6
Tyr-Pro-Phe-Pro-Gly
0.6 - 1.4
Tyr-Pro-Phe-Pro-Gly-Pro-Ile
additional information
additional information
-
0.087
2-aminobenzoyl-L-Lys-L-Pro-L-Pro-4-nitroanilide

wild-type, pH 8.1, 37°C
0.14
2-aminobenzoyl-L-Lys-L-Pro-L-Pro-4-nitroanilide
mutant H350A, pH 8.1, 37°C
0.087
Abz-L-Lys-L-Pro-L-Pro-4-nitroanilide

wild-type, pH 8.1, 37°C
0.14
Abz-L-Lys-L-Pro-L-Pro-4-nitroanilide
mutant H350, pH 8.1, 37°C
2.1
Arg-Pro-Ala

pH 8.0, 55°C, recombinant wild-type
3.5
Arg-Pro-Ala
pH 8.0, 55°C, recombinant mutant R55A
6
Arg-Pro-Ala
pH 8.0, 55°C, recombinant mutant D53A
8.4
Arg-Pro-Ala
pH 8.0, 55°C, recombinant mutant Y56A
0.16
Arg-Pro-Pro

-
-
0.35
Arg-Pro-Pro
-
without Mn2+
0.36
Arg-Pro-Pro
-
in presence of 4 mM Mn2+
0.048
Arg-Pro-Pro-Gly-Phe

-
-
0.34
Arg-Pro-Pro-Gly-Phe
-
-
0.032
Arg-Pro-Pro-Gly-Phe-Ser

-
-
0.15
Arg-Pro-Pro-Gly-Phe-Ser
-
-
0.051
Arg-Pro-Pro-Gly-Phe-Ser-Pro

-
-
0.25
Arg-Pro-Pro-Gly-Phe-Ser-Pro
-
-
0.039
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe

-
-
0.15
Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe
-
-
0.021
bradykinin

-
-
0.045
bradykinin
-
pH 8.0, 35°C
0.047
bradykinin
-
mutant R404A, pH 7.5, 37°C
0.058
bradykinin
-
37°C, wild-type enzyme
0.075
bradykinin
-
pH 7.4, 37°C
0.078
bradykinin
-
wild type enzyme in 100 mM Tris-HCl (pH 8.0) and 100 mM NaCl at 37°C
0.101
bradykinin
pH 8.2, 37°C, recombinant wild-type enzyme
0.14
bradykinin
-
pH 7.5, 37°C
0.144
bradykinin
pH 7.5, 37°C, recombinant mutant R535A, with 1.0 mM guanidine hydrochloride
0.16
bradykinin
-
mutant R153W/R370L, pH 7.5, 37°C
0.163
bradykinin
pH 7.5, 37°C, recombinant mutant R535A, with 10 mM guanidine hydrochloride
0.17
bradykinin
pH 7.5, 37°C, recombinant wild-type enzyme
0.18
bradykinin
-
mutant R153L/R370L, pH 7.5, 37°C
0.2
bradykinin
pH 7.5, 37°C, recombinant mutant Y527F
0.21
bradykinin
-
mutant R370L, pH 7.5, 37°C
0.327
bradykinin
pH 7.5, 37°C, recombinant mutant R535A, with 0.1 mM guanidine hydrochloride
0.35
bradykinin
pH 7.5, 37°C, recombinant mutant R535A
0.391
bradykinin
-
37°C, mutant H519L
0.41
bradykinin
-
mutant R404K, pH 7.5, 37°C
0.42
bradykinin
-
mutant R153A, pH 7.5, 37°C
0.43
bradykinin
-
mutant R153W, pH 7.5, 37°C
0.5
bradykinin
-
37°C, mutant H519K
0.51
bradykinin
-
mutant R153L, pH 7.5, 37°C
0.6396
bradykinin
-
pH 8, 37°C
0.78
bradykinin
-
wild-type, pH 7.5, 37°C
0.84
bradykinin
-
mutant Y387F, pH 7.5, 37°C
0.97
bradykinin
-
pH 6.5, 37°C
1.02
bradykinin
-
mutant W88L, pH 7.5, 37°C
6.7
bradykinin
-
pH 5.5, 37°C
0.51
FPHFD

-
pH 7.5, 37°C
0.86
FPHFD
-
pH 5.5, 37°C
0.32
Gly-Pro-Hyp

-
without Mn2+
2
Gly-Pro-Hyp
-
in presence of 4 mM Mn2+
0.51
L-Ala-L-Pro-4-nitroanilide

-
chimera th-sl cAPP, pH 7.0, 30°C
0.51
L-Ala-L-Pro-4-nitroanilide
chimera th-sl cAPP, pH 7.0, 30°C
1.4
L-Ala-L-Pro-4-nitroanilide
-
recombinant enzyme, pH 7.4, 30°C
1.5
L-Ala-L-Pro-4-nitroanilide
native enzyme, pH 7.4, 30°C
1.7
L-Ala-L-Pro-4-nitroanilide
recombinant enzyme, pH 7.4, 30°C
16.9
L-Ala-L-Pro-4-nitroanilide
-
chimera sl-th cAPP, pH 8.2, 30°C
16.9
L-Ala-L-Pro-4-nitroanilide
chimera sl-th cAPP, pH 8.2, 30°C
0.308
L-Arg-L-Pro-L-Pro

-
wild type enzyme in 100 mM Tris-HCl (pH 8.0) and 100 mM NaCl at 37°C
0.837
L-Arg-L-Pro-L-Pro
-
pH 7.4, 37°C
0.038
Lys(epsilon-dinitrophenol)-Pro-Pro-NH-CH3-CH2-NH-2-aminobenzoyl

-
-
0.1
Lys(epsilon-dinitrophenol)-Pro-Pro-NH-CH3-CH2-NH-2-aminobenzoyl
-
-
0.15
Met-Ala-Ala

pH 8.0, 55°C, recombinant wild-type
0.23
Met-Ala-Ala
pH 8.0, 55°C, recombinant wild-type
0.46
Met-Ala-Ala
pH 8.0, 55°C, recombinant wild-type
6.3
Met-Pro

pH 8.0, 55°C, recombinant wild-type
7.9
Met-Pro
pH 8.0, 55°C, recombinant wild-type
11.9
Met-Pro
pH 8.0, 55°C, recombinant wild-type
1.9
Met-Pro-Ala

pH 8.0, 55°C, recombinant wild-type
2
Met-Pro-Ala
pH 7.5, 40°C
3
Met-Pro-Ala
pH 8.0, 55°C, recombinant wild-type
3.9
Met-Pro-Ala
pH 8.0, 55°C, recombinant mutant Y56A
4
Met-Pro-Ala
pH 8.0, 55°C, recombinant mutant D53A
6.1
Met-Pro-Ala
pH 8.0, 55°C, recombinant mutant R55A
9
Met-Pro-Ala
pH 8.0, 55°C, recombinant wild-type
1.02
Tyr-Pro-Phe-Pro-Gly

-
-
1.6
Tyr-Pro-Phe-Pro-Gly
-
-
0.6
Tyr-Pro-Phe-Pro-Gly-Pro-Ile

-
-
1.4
Tyr-Pro-Phe-Pro-Gly-Pro-Ile
-
-
1.4
YPWTQ

-
pH 7.5, 37°C
1.8
YPWTQ
-
pH 5.5, 37°C
additional information
additional information

-
-
-
additional information
additional information
-
Michaelis-Menten kinetics
-
additional information
additional information
Michaelis-Menten steady-state kinetics. Kinetic parameters for R535A hcAMPP measured in the presence and absence of guanidine hydrochloride, overview
-
additional information
additional information
-
Michaelis-Menten steady-state kinetics. Kinetic parameters for R535A hcAMPP measured in the presence and absence of guanidine hydrochloride, overview
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.