Information on Organism Methanospirillum hungatei

TaxTree of Organism Methanospirillum hungatei
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(4Z,7Z,10Z,13Z,16Z)-docosapentaenoate biosynthesis (6-desaturase)
-
-
(8E,10E)-dodeca-8,10-dienol biosynthesis
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
10-cis-heptadecenoyl-CoA degradation (yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (MFE-dependent, yeast)
-
-
10-trans-heptadecenoyl-CoA degradation (reductase-dependent, yeast)
-
-
2-deoxy-D-ribose degradation II
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
2-methylpropene degradation
-
-
2-oxoglutarate decarboxylation to succinyl-CoA
-
-
2-oxoisovalerate decarboxylation to isobutanoyl-CoA
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-methylbutanol biosynthesis (engineered)
-
-
4-aminobutanoate degradation V
-
-
4-coumarate degradation (anaerobic)
-
-
4-ethylphenol degradation (anaerobic)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
4-oxopentanoate degradation
-
-
9-cis, 11-trans-octadecadienoyl-CoA degradation (isomerase-dependent, yeast)
-
-
acetaldehyde biosynthesis I
-
-
acetate and ATP formation from acetyl-CoA I
-
-
acetate conversion to acetyl-CoA
-
-
acetate fermentation
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetyl CoA biosynthesis
-
-
acetyl-CoA fermentation to butanoate II
-
-
acetylene degradation (anaerobic)
-
-
adipate degradation
-
-
adlupulone and adhumulone biosynthesis
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
alanine metabolism
-
-
alpha-Linolenic acid metabolism
-
-
Aminoacyl-tRNA biosynthesis
-
-
Aminobenzoate degradation
-
-
amygdalin and prunasin degradation
-
-
anaerobic aromatic compound degradation (Thauera aromatica)
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
androsrtendione degradation II (anaerobic)
-
-
androstenedione degradation I (aerobic)
-
-
Arginine and proline metabolism
-
-
ATP biosynthesis
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
benzoate biosynthesis I (CoA-dependent, beta-oxidative)
-
-
Benzoate degradation
-
-
benzoate degradation II (aerobic and anaerobic)
-
-
benzoyl-CoA degradation I (aerobic)
-
-
benzoyl-CoA degradation III (anaerobic)
-
-
beta-alanine biosynthesis II
-
-
beta-Alanine metabolism
-
-
betanidin degradation
-
-
Bifidobacterium shunt
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of unsaturated fatty acids
-
-
butanoate fermentation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
Caprolactam degradation
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
carbon tetrachloride degradation II
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin deacetylation
-
-
Chloroalkane and chloroalkene degradation
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
cis-geranyl-CoA degradation
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation in Crenarchaeota
-
-
coenzyme A metabolism
-
-
coenzyme B/coenzyme M regeneration I (methanophenazine-dependent)
-
-
coenzyme M biosynthesis
-
-
colupulone and cohumulone biosynthesis
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
docosahexaenoate biosynthesis III (6-desaturase, mammals)
-
-
Drug metabolism - cytochrome P450
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation III
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis V (engineered)
-
-
Ethylbenzene degradation
-
-
ethylmalonyl-CoA pathway
-
-
factor 430 biosynthesis
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation IV (unsaturated, even number)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
fatty acid beta-oxidation VII (yeast peroxisome)
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
folate polyglutamylation
folate transformations I
-
-
folate transformations II (plants)
-
-
folate transformations III (E. coli)
-
-
formaldehyde assimilation I (serine pathway)
-
-
formate assimilation into 5,10-methylenetetrahydrofolate
-
-
formate oxidation to CO2
-
-
gallate degradation III (anaerobic)
-
-
Geraniol degradation
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glutamate and glutamine metabolism
-
-
glutaryl-CoA degradation
-
-
Glycerolipid metabolism
-
-
glycine betaine degradation I
-
-
glycine betaine degradation II (mammalian)
-
-
glycine biosynthesis I
-
-
glycine biosynthesis II
-
-
glycine cleavage
-
-
glycine degradation (reductive Stickland reaction)
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycolate and glyoxylate degradation
-
-
glycolate and glyoxylate degradation I
-
-
glycolate and glyoxylate degradation II
-
-
glycolate and glyoxylate degradation III
-
-
Glycolysis / Gluconeogenesis
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
heterolactic fermentation
-
-
hydrogen oxidation I (aerobic)
-
-
hydrogen oxidation II (aerobic, NAD)
-
-
hydrogen production
-
-
hydrogen production II
-
-
hydrogen production VI
-
-
incomplete reductive TCA cycle
-
-
isopenicillin N biosynthesis
-
-
isoprene biosynthesis II (engineered)
-
-
isopropanol biosynthesis (engineered)
-
-
jasmonic acid biosynthesis
-
-
justicidin B biosynthesis
-
-
ketogenesis
-
-
ketogluconate metabolism
-
-
ketolysis
-
-
L-cysteine biosynthesis II (tRNA-dependent)
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation VII (to butanoate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-glutamine biosynthesis III
-
-
L-isoleucine biosynthesis V
-
-
L-isoleucine degradation I
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-lysine biosynthesis I
-
-
L-lysine biosynthesis II
-
-
L-lysine biosynthesis III
-
-
L-lysine biosynthesis VI
-
-
L-lysine degradation I
-
-
L-lysine degradation X
-
-
L-lysine fermentation to acetate and butanoate
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-threonine degradation I
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tyrosine degradation III
-
-
L-valine degradation I
-
-
L-valine degradation II
-
-
leucine metabolism
-
-
Limonene and pinene degradation
-
-
lipid metabolism
-
-
lupulone and humulone biosynthesis
-
-
luteolin triglucuronide degradation
-
-
Lysine biosynthesis
-
-
Lysine degradation
-
-
lysine metabolism
-
-
malate/L-aspartate shuttle pathway
-
-
matairesinol biosynthesis
-
-
Metabolic pathways
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methanogenesis from acetate
-
-
methanogenesis from CO2
-
-
methanogenesis from H2 and CO2
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl tert-butyl ether degradation
-
-
methyl-coenzyme M reduction to methane
-
-
methylaspartate cycle
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
N-Glycan biosynthesis
-
-
NAD metabolism
-
-
NAD(P)/NADPH interconversion
-
-
Naphthalene degradation
-
-
nitrate assimilation
-
-
nitrogen fixation I (ferredoxin)
-
-
Nitrogen metabolism
-
-
Nitrotoluene degradation
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
oleate beta-oxidation
-
-
One carbon pool by folate
-
-
ornithine metabolism
-
-
oxalate degradation III
-
-
oxalate degradation VI
-
-
oxidative decarboxylation of pyruvate
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
partial TCA cycle (obligate autotrophs)
-
-
Penicillin and cephalosporin biosynthesis
-
-
phenol degradation
-
-
phenol degradation II (anaerobic)
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
phenylethanol biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phosphopantothenate biosynthesis I
-
-
phosphopantothenate biosynthesis II
-
-
phosphopantothenate biosynthesis III (archaebacteria)
-
-
photorespiration
-
-
Photosynthesis
-
-
phytol degradation
-
-
platensimycin biosynthesis
-
-
polyhydroxybutanoate biosynthesis
-
-
Porphyrin and chlorophyll metabolism
-
-
propanoate fermentation to 2-methylbutanoate
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
protein N-glycosylation initial phase (eukaryotic)
-
-
purine metabolism
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
putrescine degradation I
-
-
putrescine degradation IV
-
-
putrescine degradation V
-
-
pyruvate decarboxylation to acetyl CoA I
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to hexanol (engineered)
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive acetyl coenzyme A pathway
-
-
reductive acetyl coenzyme A pathway I (homoacetogenic bacteria)
-
-
reductive acetyl coenzyme A pathway II (autotrophic methanogens)
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
salicortin biosynthesis
-
-
salidroside biosynthesis
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
Spodoptera littoralis pheromone biosynthesis
-
-
Starch and sucrose metabolism
-
-
succinate fermentation to butanoate
-
-
sulfoacetaldehyde degradation I
-
-
sulfolactate degradation II
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
superpathway of Clostridium acetobutylicum solventogenic fermentation
-
-
superpathway of coenzyme A biosynthesis III (mammals)
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of photosynthetic hydrogen production
-
-
Synthesis and degradation of ketone bodies
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
tetrahydroxyxanthone biosynthesis (from benzoate)
-
-
Toluene degradation
-
-
triacylglycerol degradation
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
valine metabolism
-
-
Valine, leucine and isoleucine degradation
-
-
valproate beta-oxidation
-
-
Various types of N-glycan biosynthesis
-
-
vitamin K-epoxide cycle
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
additional information
-
propionate-grown cell, fumarate-grown cell
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
loosely associated
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Methanospirillum hungatei)