Information on Organism Callithrix jacchus

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
(S)-reticuline biosynthesis II
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
3,5-dimethoxytoluene biosynthesis
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
3-methylbutanol biosynthesis (engineered)
-
-
3-phosphoinositide biosynthesis
-
-
4-aminobutanoate degradation V
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
Ac/N-end rule pathway
-
-
acetaldehyde biosynthesis I
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetylene degradation (anaerobic)
-
-
adenine and adenosine salvage III
-
-
adenine salvage
-
-
aerobic respiration (NDH-1 to cytochrome c oxidase via plastocyanin)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
alpha-Linolenic acid metabolism
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminobenzoate degradation
-
-
ammonia oxidation II (anaerobic)
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
androgen and estrogen metabolism
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arg/N-end rule pathway (eukaryotic)
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
aromatic biogenic amine degradation (bacteria)
-
-
arsenite oxidation I (respiratory)
-
-
Ascorbate and aldarate metabolism
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
Atrazine degradation
-
-
atromentin biosynthesis
-
-
bacterial bioluminescence
-
-
baicalein degradation (hydrogen peroxide detoxification)
-
-
beta-Alanine metabolism
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
Betalain biosynthesis
-
-
betalamic acid biosynthesis
-
-
betanidin degradation
-
-
betaxanthin biosynthesis
-
-
betaxanthin biosynthesis (via dopamine)
-
-
Bifidobacterium shunt
-
-
Biosynthesis of secondary metabolites
-
-
bupropion degradation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C20 prostanoid biosynthesis
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
carnitine metabolism
-
-
catecholamine biosynthesis
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
chlorogenic acid degradation
-
-
cholesterol biosynthesis
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
chorismate metabolism
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
creatine-phosphate biosynthesis
-
-
cutin biosynthesis
-
-
Cutin, suberine and wax biosynthesis
-
-
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cytosolic NADPH production (yeast)
-
-
D-sorbitol degradation I
-
-
degradation of sugar acids
-
-
degradation of sugar alcohols
-
-
denitrification
-
-
diethylphosphate degradation
-
-
dissimilatory sulfate reduction I (to hydrogen sufide))
-
-
dopamine degradation
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
Entner-Doudoroff pathway I
-
-
ergothioneine biosynthesis I (bacteria)
-
-
estradiol biosynthesis I (via estrone)
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis IV (engineered)
-
-
Ether lipid metabolism
-
-
Fatty acid degradation
-
-
Fe(II) oxidation
-
-
firefly bioluminescence
-
-
Flavone and flavonol biosynthesis
-
-
Folate biosynthesis
-
-
formaldehyde assimilation I (serine pathway)
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation I
-
-
Fructose and mannose metabolism
-
-
GABA shunt
-
-
Galactose metabolism
-
-
gamma-glutamyl cycle
-
-
GDP-alpha-D-glucose biosynthesis
-
-
gliotoxin biosynthesis
-
-
glucocorticoid biosynthesis
-
-
gluconeogenesis I
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucose degradation (oxidative)
-
-
glutamate and glutamine metabolism
-
-
glutathione biosynthesis
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glutathione-peroxide redox reactions
-
-
Glycerophospholipid metabolism
-
-
glycine biosynthesis II
-
-
glycine biosynthesis III
-
-
glycine cleavage
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis III (from glucose)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glycosphingolipid biosynthesis - globo and isoglobo series
-
-
Glycosphingolipid biosynthesis - lacto and neolacto series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate cycle
-
-
guaiacol biosynthesis
-
-
guanine and guanosine salvage
-
-
guanine and guanosine salvage II
-
-
heme degradation I
-
-
heme metabolism
-
-
heterolactic fermentation
-
-
Histidine metabolism
-
-
homoglutathione biosynthesis
-
-
hypoglycin biosynthesis
-
-
incomplete reductive TCA cycle
-
-
indole glucosinolate activation (intact plant cell)
-
-
Inositol phosphate metabolism
-
-
isoprene biosynthesis II (engineered)
-
-
Isoquinoline alkaloid biosynthesis
-
-
justicidin B biosynthesis
-
-
L-alanine biosynthesis II
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation III
-
-
L-alanine degradation V (oxidative Stickland reaction)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
L-dopa degradation I (mammalian)
-
-
L-dopa degradation II (bacterial)
-
-
L-glutamate degradation I
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation IX (via 4-aminobutanoate)
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamate degradation XI (reductive Stickland reaction)
-
-
L-glutamine biosynthesis III
-
-
L-histidine degradation V
-
-
L-isoleucine degradation II
-
-
L-lactaldehyde degradation
-
-
L-leucine degradation III
-
-
L-methionine degradation III
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation VI (via tryptamine)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine degradation II
-
-
lactate fermentation
-
-
lactose degradation II
-
-
lanosterol biosynthesis
-
-
leucine metabolism
-
-
leukotriene biosynthesis
-
-
Linoleic acid metabolism
-
-
lipid metabolism
-
-
luteolin triglucuronide degradation
-
-
Lysine degradation
-
-
malate/L-aspartate shuttle pathway
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
melatonin degradation II
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methylaspartate cycle
methylsalicylate degradation
-
-
mevalonate metabolism
-
-
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Microbial metabolism in diverse environments
-
-
mineralocorticoid biosynthesis
-
-
mitochondrial L-carnitine shuttle
-
-
mixed acid fermentation
-
-
NAD metabolism
-
-
NAD(P)/NADPH interconversion
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
Naphthalene degradation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction VII (denitrification)
-
-
nitric oxide biosynthesis II (mammals)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
Nitrogen metabolism
-
-
nocardicin A biosynthesis
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
oleandomycin activation/inactivation
-
-
ophthalmate biosynthesis
-
-
Other glycan degradation
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) I
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (oxidative branch) I
-
-
pentose phosphate pathway (partial)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
pheomelanin biosynthesis
-
-
phosphate acquisition
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
photosynthesis
-
-
phytol degradation
-
-
plasmalogen degradation
-
-
polyamine pathway
-
-
Porphyrin and chlorophyll metabolism
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
Purine metabolism
-
-
purine metabolism
-
-
putrescine biosynthesis III
-
-
putrescine degradation III
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyrimidine nucleobases salvage II
-
-
pyrimidine ribonucleosides salvage III
-
-
pyruvate fermentation to (S)-lactate
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
pyruvate fermentation to propanoate I
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive TCA cycle I
-
-
reductive TCA cycle II
-
-
resolvin D biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
rosmarinic acid biosynthesis I
-
-
rosmarinic acid biosynthesis II
-
-
Rubisco shunt
-
-
salidroside biosynthesis
-
-
serotonin and melatonin biosynthesis
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
sophorolipid biosynthesis
-
-
Sphingolipid metabolism
-
-
sporopollenin precursors biosynthesis
-
-
Starch and sucrose metabolism
-
-
Steroid biosynthesis
-
-
Steroid hormone biosynthesis
-
-
Streptomycin biosynthesis
-
-
Styrene degradation
-
-
suberin monomers biosynthesis
-
-
sucrose biosynthesis II
-
-
sucrose degradation III (sucrose invertase)
-
-
sulfate reduction
-
-
sulfite oxidation II
-
-
sulfite oxidation III
-
-
sulfopterin metabolism
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
superpathway of ornithine degradation
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
terminal O-glycans residues modification (via type 2 precursor disaccharide)
-
-
Terpenoid backbone biosynthesis
-
-
the visual cycle I (vertebrates)
-
-
Thiamine metabolism
-
-
thyroid hormone metabolism I (via deiodination)
-
-
thyroid hormone metabolism II (via conjugation and/or degradation)
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
Ubiquinone and other terpenoid-quinone biosynthesis
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
urea cycle
-
-
urea degradation II
-
-
valine metabolism
-
-
vancomycin resistance I
-
-
vanillin biosynthesis I
-
-
vitamin B1 metabolism
-
-
xylitol degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
-
contains tyrosine hydroxylase-immunoreactive neurons
Manually annotated by BRENDA team
-
beta1-subunit, alpha2-subunit not present
Manually annotated by BRENDA team
-
alpha2-subunit most prominent in the molecular layer followed by the ganglionic layer, low amounts in the granular layer
Manually annotated by BRENDA team
detectable throughout the luteal phase of the ovarian cycle and during pregnancy
Manually annotated by BRENDA team
-
neuronal and endothelial cells exclusively express the bone TNAP transcript
Manually annotated by BRENDA team
-
isoforms GSTM4, GSTO1, and GSTP1 mRNAs are expressed most abundantly in lung
Manually annotated by BRENDA team
-
contains tyrosine hydroxylase-immunoreactive neurons
Manually annotated by BRENDA team
-
contains tyrosine hydroxylase-immunoreactive neurons
Manually annotated by BRENDA team
-
contains tyrosine hydroxylase-immunoreactive neurons
Manually annotated by BRENDA team
-
contains tyrosine hydroxylase-immunoreactive neurons
Manually annotated by BRENDA team
-
contains tyrosine hydroxylase-immunoreactive neurons
Manually annotated by BRENDA team
-
contains tyrosine hydroxylase-immunoreactive neurons
Manually annotated by BRENDA team
-
isoforms GSTM2, GSTM3, GSTM5, GSTS1, MGST2, and MGST3 mRNAs are expressed most abundantly in small intestine
Manually annotated by BRENDA team
-
contains tyrosine hydroxylase-immunoreactive neurons
Manually annotated by BRENDA team
-
preoptic, contains tyrosine hydroxylase-immunoreactive neurons
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
-
content of alpha2-subunit in Purkinje cell somata is low
Manually annotated by BRENDA team
-
S-COMT
-
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Callithrix jacchus)