Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Galili, U.
    Significance of the evolutionary alpha1,3-galactosyltransferase (GGTA1) gene inactivation in preventing extinction of apes and old world monkeys (2014), J. Mol. Evol., 80, 1-9.
    View publication on PubMed

Cloned(Commentary)

EC Number Cloned (Comment) Organism
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Platyrrhini
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Macaca mulatta
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Chlorocebus sabaeus
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Pan troglodytes
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Pongo pygmaeus
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Erythrocebus patas
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Saimiri sp.
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Gorilla gorilla
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Callithrix jacchus
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Ateles sp.
2.4.1.87 gene GGTA1, partial sequence comparisons and phylogenetic analysis Pongo abelii

Natural Substrates/ Products (Substrates)

EC Number Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R Platyrrhini
-
UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R Saimiri sp.
-
UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R Callithrix jacchus
-
UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R Metatheria
-
UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R Ateles sp.
-
UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R Lemuridae
-
UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R Eutheria
-
UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?

Organism

EC Number Organism UniProt Comment Textmining
2.4.1.87 Ateles sp.
-
new world monkey, gene GGTA1 encoding an active enzyme
-
2.4.1.87 Callithrix jacchus Q8SQ20 new world monkey, gene GGTA1 encoding an active enzyme
-
2.4.1.87 Cercopithecoidea
-
old world monkeys evolved into large populations of diverse species only during the late Miocene and subsequent periods, gene GGTA1 encoding an inactivated enzyme
-
2.4.1.87 Chlorocebus sabaeus
-
old world monkey, gene GGTA1 encoding an inactivated enzyme
-
2.4.1.87 Erythrocebus patas
-
old world mokey, gene GGTA1 encoding an inactivated enzyme
-
2.4.1.87 Eutheria
-
gene GGTA1 encoding an active enzyme
-
2.4.1.87 Gorilla gorilla
-
gene GGTA1 encoding an inactivated enzyme
-
2.4.1.87 Hominoidea
-
apes, gene GGTA1 encoding an inactivated enzyme
-
2.4.1.87 Homo sapiens Q4G0N0 gene GGTA1 encoding an inactivated enzyme
-
2.4.1.87 Lemuridae
-
gene GGTA1 encoding an active enzyme
-
2.4.1.87 Macaca mulatta
-
old world monkey, gene GGTA1 encoding an inactivated enzyme
-
2.4.1.87 Metatheria
-
gene GGTA1 encoding an active enzyme
-
2.4.1.87 Pan troglodytes
-
gene GGTA1 encoding an inactivated enzyme
-
2.4.1.87 Platyrrhini
-
new world monkey, gene GGTA1 encoding an active enzyme
-
2.4.1.87 Platyrrhini
-
new world monkeys, gene GGTA1 encoding an active enzyme
-
2.4.1.87 Pongo abelii
-
Sumatra, gene GGTA1 encoding an inactivated enzyme
-
2.4.1.87 Pongo pygmaeus
-
Borneo, gene GGTA1 encoding an inactivated enzyme
-
2.4.1.87 Saimiri sp.
-
new world monkey, gene GGTA1 encoding an active enzyme
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R
-
Platyrrhini UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R
-
Saimiri sp. UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R
-
Callithrix jacchus UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R
-
Metatheria UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R
-
Ateles sp. UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R
-
Lemuridae UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?
2.4.1.87 UDP-alpha-D-galactose + beta-D-galactosyl-(1->4)-beta-N-acetyl-D-glucosaminyl-R
-
Eutheria UDP + alpha-D-galactosyl-(1->3)-beta-D-galactosyl-(1->4)-beta-N-acetylglucosaminyl-R
-
?

Synonyms

EC Number Synonyms Comment Organism
2.4.1.87 alpha1,3-galactosyltransferase
-
Platyrrhini
2.4.1.87 alpha1,3-galactosyltransferase
-
Macaca mulatta
2.4.1.87 alpha1,3-galactosyltransferase
-
Chlorocebus sabaeus
2.4.1.87 alpha1,3-galactosyltransferase
-
Pan troglodytes
2.4.1.87 alpha1,3-galactosyltransferase
-
Pongo pygmaeus
2.4.1.87 alpha1,3-galactosyltransferase
-
Erythrocebus patas
2.4.1.87 alpha1,3-galactosyltransferase
-
Saimiri sp.
2.4.1.87 alpha1,3-galactosyltransferase
-
Gorilla gorilla
2.4.1.87 alpha1,3-galactosyltransferase
-
Hominoidea
2.4.1.87 alpha1,3-galactosyltransferase
-
Callithrix jacchus
2.4.1.87 alpha1,3-galactosyltransferase
-
Homo sapiens
2.4.1.87 alpha1,3-galactosyltransferase
-
Metatheria
2.4.1.87 alpha1,3-galactosyltransferase
-
Ateles sp.
2.4.1.87 alpha1,3-galactosyltransferase
-
Pongo abelii
2.4.1.87 alpha1,3-galactosyltransferase
-
Cercopithecoidea
2.4.1.87 alpha1,3-galactosyltransferase
-
Lemuridae
2.4.1.87 alpha1,3-galactosyltransferase
-
Eutheria
2.4.1.87 alpha1,3GT
-
Platyrrhini
2.4.1.87 alpha1,3GT
-
Macaca mulatta
2.4.1.87 alpha1,3GT
-
Chlorocebus sabaeus
2.4.1.87 alpha1,3GT
-
Pan troglodytes
2.4.1.87 alpha1,3GT
-
Pongo pygmaeus
2.4.1.87 alpha1,3GT
-
Erythrocebus patas
2.4.1.87 alpha1,3GT
-
Saimiri sp.
2.4.1.87 alpha1,3GT
-
Gorilla gorilla
2.4.1.87 alpha1,3GT
-
Hominoidea
2.4.1.87 alpha1,3GT
-
Callithrix jacchus
2.4.1.87 alpha1,3GT
-
Homo sapiens
2.4.1.87 alpha1,3GT
-
Metatheria
2.4.1.87 alpha1,3GT
-
Ateles sp.
2.4.1.87 alpha1,3GT
-
Pongo abelii
2.4.1.87 alpha1,3GT
-
Cercopithecoidea
2.4.1.87 alpha1,3GT
-
Lemuridae
2.4.1.87 alpha1,3GT
-
Eutheria
2.4.1.87 GGTA1
-
Platyrrhini
2.4.1.87 GGTA1
-
Macaca mulatta
2.4.1.87 GGTA1
-
Chlorocebus sabaeus
2.4.1.87 GGTA1
-
Pan troglodytes
2.4.1.87 GGTA1
-
Pongo pygmaeus
2.4.1.87 GGTA1
-
Erythrocebus patas
2.4.1.87 GGTA1
-
Saimiri sp.
2.4.1.87 GGTA1
-
Gorilla gorilla
2.4.1.87 GGTA1
-
Callithrix jacchus
2.4.1.87 GGTA1
-
Metatheria
2.4.1.87 GGTA1
-
Ateles sp.
2.4.1.87 GGTA1
-
Pongo abelii
2.4.1.87 GGTA1
-
Eutheria
2.4.1.87 GGTA1
-
Hominoidea
2.4.1.87 GGTA1
-
Homo sapiens
2.4.1.87 GGTA1
-
Cercopithecoidea
2.4.1.87 GGTA1
-
Lemuridae

General Information

EC Number General Information Comment Organism
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope Platyrrhini
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope Hominoidea
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope Homo sapiens
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope Metatheria
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope Cercopithecoidea
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope Lemuridae
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope Eutheria
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Platyrrhini
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Macaca mulatta
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Chlorocebus sabaeus
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Pan troglodytes
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Pongo pygmaeus
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Erythrocebus patas
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Saimiri sp.
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Gorilla gorilla
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Callithrix jacchus
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Ateles sp.
2.4.1.87 evolution alpha1,3-galactosyltransferase gene displays unique evolutionary characteristics. This gene appeared early in mammalian evolution and is absent in other vertebrates. The alpha1,3GT gene is active in marsupials, nonprimate placental mammals, lemurs (prosimians) and New World monkeys, encoding the alpha1,3GT enzyme that synthesizes a carbohydrate antigen called alpha-gal epitope. The alpha-gal epitope is present in large numbers on cell membrane glycolipids and glycoproteins. The alpha1,3GT gene is inactivated in ancestral Old World monkeys and apes by frameshift single-base deletions forming premature stop codons. Because of this gene inactivation, humans, apes, and Old World monkeys lack alpha-gal epitopes and naturally produce an antibody called the anti-Gal antibody which binds specifically to alpha-gal epitopes and which is the most abundant antibody in humans. The evolutionary event that resulted in the inactivation of the alpha1,3GT gene in ancestral Old World primates might have been mediated by a pathogen endemic to Eurasia-Africa landmass that exerted pressure for selection of primate populations lacking the alpha-gal epitope. Once the alpha-gal epitope was eliminated, primates could produce the anti-Gal antibody, possibly as means of defense against pathogens expressing this epitope. Phylogenetic analysis Pongo abelii