Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(RS)-mandelic hydrazide + benzyloxycarbonyl-Ala
N1-(benzyloxycarbonyl-Ala)-N2-[(R)-mandelyl]hydrazine + N1-(benzyloxycarbonyl-Ala)-N2-[(S)-mandelyl]hydrazine
-
-
mixture of diastereoisomers containing 73% N1-(benzyloxycarbonyl-Ala)-N2-[(R)-mandelyl]hydrazine
?
(RS)-mandelic hydrazide + benzyloxycarbonyl-Gly
N1-(benzyloxycarbonyl-Gly)-N2-[(R)-mandelyl]hydrazine + N1-(benzyloxycarbonyl-Gly)-N2-[(S)-mandelyl]hydrazine
-
-
-
?
(RS)-mandelic hydrazide + hippuric acid
?
-
-
-
-
?
(RS)-mandelic hydrazide + N(tert-amyloxycarbonyl)-Gly
(+)-N1-(tert-amyloxycarbonyl-Gly)-NH2-[(R)-mandelyl]hydrazine + N1-(tert-butoxycarbonyl-Gly)-N2-[(S)-mandelyl]hydrazine
-
-
-
?
(RS)-mandelic hydrazide + N-(tert-butyloxycarbonyl)-Gly
(+)-N1-(tert-butyloxycarbonyl-Gly)-N2[(R)-mandelyl]hydrazine + (+)-(N1)-(tert-butyloxycarbonyl-Gly)-N2[(S)-mandelyl]hydrazine
-
-
-
-
?
2-(amino)ethyl 2'-pyridyl disulfide + H2O
?
-
-
-
-
?
3-(amino)trimethylene 2'-pyridyl disulfide + H2O
?
-
-
-
-
?
4-(amino)-tetramethylene 2'-pyridyl disulfide + H2O
?
-
-
-
-
?
Ac-L-Phe-Gly 4-nitroanilide + H2O
Ac-L-Phe-Gly + 4-nitroaniline
-
whole hydrolysis process includes two stages: acylation and deacylation. The first step is a proton transfer to form a zwitterionic form (i.e. Cys-S-/His-H+ion-pair), and the second step is the nucleophilic attack on the carboxyl carbon of the substrate accompanied with the dissociation of 4-nitroaniline. The deacylation stage includes the nucleophilic attack of a water molecule on the carboxyl carbon of the substrate and dissociation between the carboxyl carbon of the substrate and the sulfhydryl sulfur of Cys25 side chain. The acylation is rate-limiting
-
-
?
acetyl-Ala-Ala-Ala-p-nitroanilide + H2O
?
-
-
-
?
acetyl-L-Phe-Gly-4-nitroanilide + H2O
acetyl-L-Phe-Gly + 4-nitroaniline
-
-
-
-
?
alpha-lactalbumin + H2O
?
-
-
-
-
?
alpha-N-benzoyl-DL-Arg-p-nitroanilide + H2O
?
-
-
-
?
azocasein + H2O
?
-
-
-
-
?
azocasein + H2O
azopeptide + peptides
-
-
-
?
benzaldehyde + acetylacetone
3-benzylidenepentane-2,4-dione
-
35% yield after 72 h at 25°C or 55% yield after 81 h at 60°C. 150 mg of papain is the optimum quantity for the Knoevenagel reaction between 2 mM of benzaldehyde and 2.4 mM of acetylacetone in 5 ml of DMSO/H2O
-
-
?
benzoyl arginine ethyl ester + H2O
?
-
pH 6.3, 20°C
-
-
?
benzoyl-L-Arg-2-naphthylamide + H2O
benzoyl-L-Arg + 2-naphthylamine
-
-
-
-
?
benzoyl-thiocarbamic acid + H2O
N-benzoyl-Gly + SH2
-
-
-
-
?
benzoyl-thiocarbamic acid ethyl ester + H2O
N-benzoyl-Gly + ethanethiol
-
-
-
-
?
benzoyl-thiocarbamic acid methyl ester + H2O
N-benzoyl thioglycine + methanol
-
-
-
-
?
benzyl-Phe-Val-Arg-4-nitroanilide + H2O
benzyl-Phe-Val-Arg + 4-nitroaniline
-
-
-
-
?
benzyloxycarbonyl-Ala methyl ester + L-Arg
benzyloxycarbonyl-Ala-Arg-OH
-
-
-
?
benzyloxycarbonyl-Ala-Arg-NH2 + Arg-NH2
benzyloxycarbonyl-Ala-Arg-Arg-NH2
-
-
-
?
benzyloxycarbonyl-Ala-OMe + 4-aminoantipyrine
benzyloxycarbonyl-Ala-4-aminoantipyrine + methanol
-
-
-
?
benzyloxycarbonyl-Arg-Arg 4-methylcoumarin-7-amide + H2O
?
-
-
-
-
?
benzyloxycarbonyl-citrullyl-Arg 4-methylcoumarin-7-amide + H2O
?
-
-
-
-
?
benzyloxycarbonyl-Gly-OMe + 4-aminoantipyrine
benzyloxycarbonyl-Gly-4-aminoantipyrine + methanol
-
-
-
?
benzyloxycarbonyl-L-citrullyl-L-Arg-7-amido-4-methylcoumarin + H2O
benzyloxycarbonyl-L-citrullyl-L-Arg + 7-amino-4-methylcoumarin
-
-
-
-
?
benzyloxycarbonyl-L-Phe-L-Arg-7-amido-4-methylcoumarin + H2O
benzyloxycarbonyl-L-Phe-L-Arg + 7-amino-4-methylcoumarin
-
-
-
-
?
benzyloxycarbonyl-Phe-Arg 4-methylcoumarin-7-amide + H2O
?
-
-
-
-
?
benzyloxycarbonyl-Phe-Arg-4-methylcoumaryl-7-amide + H2O
?
-
-
-
?
benzyloxycarbonyl-Phe-Arg-4-nitroanilide + H2O
benzyloxycarbonyl-Phe-Arg + 4-nitroaniline
-
-
-
-
?
benzyloxycarbonyl-Phe-Leu-4-nitroanilide + H2O
benzyloxycarbonyl-Phe-Leu + 4-nitroaniline
-
-
-
-
?
benzyloxycarbonyl-Ser-OMe + 4-aminoantipyrine
benzyloxycarbonyl-Ser-4-aminoantipyrine + methanol
-
-
-
?
beta-lactoglobulin + H2O
?
-
-
-
-
?
Bovine serum albumin + H2O
?
-
-
-
-
?
carboxybenzoyl-Phe-Arg-7-(4-methyl)coumarylamide + H2O
carboxybenzoyl-Phe-Arg + 7-amino-4-methylcoumarin
fluorogenic substrate
-
-
?
casein + H2O
L-tyrosine + ?
-
-
-
-
?
CBZ-beta-Ala 4-guanidinophenyl ester + L-Phe-NH2 + H2O
CBZ-beta-Ala-L-Phe-NH2 + CBZ-beta-Ala + 4-guanidinophenol
-
-
31.6% yield of CBZ-beta-Ala-L-Phe-NH2
-
?
CBZ-D-Ala 4-guanidinophenyl ester + L-Phe-NH2 + H2O
CBZ-D-Ala-L-Phe-NH2 + CBZ-D-Ala + 4-guanidinophenol
-
-
11.6% yield of CBZ-D-Ala-L-Phe-NH2
-
?
CBZ-Gly 4-guanidinophenyl ester + D-Phe-NH2 + H2O
CBZ-Gly-D-Phe-NH2 + CBZ-Gly + 4-guanidinophenol
-
-
22.9% yield for CBZ-Gly-D-Phe-NH2 and 74.3% yield for CBZ-Gly
-
?
CBZ-Gly 4-guanidinophenyl ester + H2O
CBZ-Gly + 4-guanidinophenol
-
-
94.8% yield for CBZ-Gly
-
?
CBZ-Gly 4-guanidinophenyl ester + L-Ala 4-nitroanilide + H2O
CBZ-Gly-L-Ala 4-nitroanilide + CBZ-Gly + 4-guanidinophenol
-
-
96% yield for CBZ-Gly-L-Ala 4-nitroanilide
-
?
CBZ-Gly 4-guanidinophenyl ester + L-Ala-NH2 + H2O
CBZ-Gly-L-Ala-NH2 + CBZ-Gly + 4-guanidinophenol
-
-
87% yield for Gly-L-Ala-NH2 and 7.7% yield for Gly-OH
-
?
CBZ-Gly 4-guanidinophenyl ester + L-Phe tert-butyl ester + H2O
CBZ-Gly-L-Phe tert-butyl ester + CBZ-Gly + 4-guanidinophenol
-
-
11.8% yield for CBZ-Gly-L-Phe tert-butyl ester
-
?
CBZ-Gly 4-guanidinophenyl ester + L-Phe-NH2 + H2O
CBZ-Gly-L-Phe-NH2 + CBZ-Gly + 4-guanidinophenol
-
-
92% yield of CBZ-Gly-L-Phe-NH2
-
?
CBZ-Gly 4-guanidinophenyl ester + L-Pro 4-nitroanilide + H2O
CBZ-Gly-L-Pro 4-nitroanilide + CBZ-Gly + 4-guanidinophenol
-
-
90.3% yield for CBZ-Gly
-
?
CBZ-Gly 4-guanidinophenyl ester + L-Ser 4-nitroanilide + H2O
CBZ-Gly-L-Ser 4-nitroanilide + CBZ-Gly + 4-guanidinophenol
-
-
94% yield for CBZ-Gly-L-Ser 4-nitroanilide
-
?
CBZ-Gly 4-guanidinophenyl ester + L-Tyr 4-nitroanilide + H2O
CBZ-Gly-L-Tyr 4-nitroanilide + CBZ-Gly + 4-guanidinophenol
-
-
90.6% yield for CBZ-Gly-L-Tyr 4-nitroanilide and 4.3% yield for CBZ-Gly
-
?
CBZ-Gly 4-guanidinophenyl ester + L-Tyr-NH2 + H2O
CBZ-Gly-L-Tyr-NH2 + CBZ-Gly + 4-guanidinophenol
-
-
91.3% yield for CBZ-Gly-L-Tyr-NH2 and 2.5% yield for CBZ-Gly
-
?
CBZ-L-Ala 4-guanidinophenyl ester + L-Phe-NH2 + H2O
CBZ-L-Ala-L-Phe-NH2 + CBZ-L-Ala + 4-guanidinophenol
-
-
77.5% yield of CBZ-L-Ala-L-Phe-NH2
-
?
CBZ-L-Arg 4-guanidinophenyl ester + L-Phe-NH2 + H2O
CBZ-L-Arg-L-Phe-NH2 + CBZ-L-Arg + 4-guanidinophenol
-
-
45.9% yield of CBZ-L-Arg-L-Phe-NH2
-
?
CBZ-L-Asn 4-guanidinophenyl ester + L-Phe-NH2 + H2O
L-Asn-L-Phe-NH2 + CBZ-L-Asn + 4-guanidinophenol
-
-
6.1% yield of CBZ-L-Asn-L-Phe-NH2
-
?
CBZ-L-Glu 4-guanidinophenyl ester + L-Phe-NH2 + H2O
CBZ-Glu-L-Phe-NH2 + CBZ-L-Glu + 4-guanidinophenol
-
-
68.5% yield of CBZ-L-Glu-L-Phe-NH2
-
?
CBZ-L-Ile 4-guanidinophenyl ester + L-Phe-NH2 + H2O
CBZ-L-Ile-L-Phe-NH2 + CBZ-L-Ile + 4-guanidinophenol
-
-
24.5% yield of CBZ-L-Ile-L-Phe-NH2
-
?
CBZ-L-Thr 4-guanidinophenyl ester + L-Phe-NH2 + H2O
CBZ-L-Thr-L-Phe-NH2 + CBZ-L-Thr + 4-guanidinophenol
-
-
90.7% yield of CBZ-L-Thr-L-Phe-NH2
-
?
CH3-CH2-2-pyridyl disulfide + H2O
?
-
-
-
-
?
CH3CO-(D-Phe)-NH-[CH2]2-2-pyridyl disulfide + H2O
?
-
-
-
-
?
CH3CO-(D-Phe)-O-[CH2]2-2-pyridyl disulfide + H2O
?
-
-
-
-
?
CH3CO-(L-Phe)-NH-[CH2]2-2-pyridyl disulfide + H2O
?
-
-
-
-
?
CH3CO-(L-Phe)-O-[CH2]2-2-pyridyl disulfide + H2O
?
-
-
-
-
?
CH3CO-NH-[CH2]2-2-pyridyl disulfide + H2O
?
-
-
-
-
?
CH3CO-O-[CH2]2-2-pyridyl disulfide + H2O
?
-
-
-
-
?
chicken IgY + H2O
?
-
-
-
-
?
chitosan + H2O
low molecular weight chitosan + ?
the enzymolysis process is analyzed using pseudo-first-order and pseudo-second-order kinetic models and the experiment data are more consistent with the pseudo-second-order kinetic model. The Haldane kinetic model adequately describes the dynamic behavior of the chitosan enzymolysis by papain. When the initial chitosan concentration is above 8.0 g/l, the papain is overloaded and exhibits significant inhibition
-
-
?
chitosan + H2O
low-molecular mass chitosan + chito-oligomeric-monomeric mixture
CopA + H2O
?
-
CopA is a bacterial Cu+-ATPase from Thermotoga maritima and contains 3 papain cleavage sites on the C-terminal side of the N-terminal metal binding domain
-
-
?
cucurbitin + H2O
?
-
the reaction occurs in two successive steps. In the first step, limited proteolysis consisting of detachments of short terminal peptides from the alpha and beta chains are observed. The cooperative proteolysis, which occurs as a pseudo-first order reaction, started at the second step. The limited proteolysis at the first step plays a regulatory role, impacting the rate of deep degradation of cucurbitin molecules by the cooperative mechanism
-
-
?
Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans + H2O
Dabcyl-Lys-Phe-Gly + Gly-Ala-Ala-Edans
DL-4-hydroxyphenylglycine methyl ester + H2O
?
-
asymmetric hydrolysis
-
-
?
fibroin + H2O
?
-
-
upon papain hydrolysis of fibroin composed of highly repetitive Ala- and Gly-rich blocks even-numbered peptides are obtained. The even-numbered peptides are in the forms of di-, tetra-, hexa-, and octa-peptides with repeating units in combination of Ala-Gly, Ser-Gly, Tyr-Gly, and Val-Gly. The sequences of the tetra-peptides are in the order of Ala-Gly-X-Gly, where X is Tyr or Val
-
?
fish IgM + H2O
?
-
-
-
-
?
Glucagon + H2O
?
-
-
-
-
?
Hemoglobin + H2O
?
-
alpha-chain and beta-chain
-
-
?
hippuric acid + aniline
hippuryl anilide
-
weak activity, 0.1% of the hydrolytic activity with N-benzoyl-L-argininamide
-
r
human IgG + H2O
fragment Fab + fragment Fc
-
-
-
?
immunoglobulin M + H2O
IgMI +
-
release of a basic subunit-like fragment which is designated IgMI, by proteolysis of the mü-chain near the carboxyl terminus
-
?
L-Arg-7-amido-4-methylcoumarin + H2O
L-Arg + 7-amino-4-methylcoumarin
-
-
-
-
?
L-glutamic acid diethyl ester + L-glutamic acid diethyl ester
L-Glu-gamma-diethyl ester polymer
-
polymerization reaction
-
-
?
L-glutamic acid diethyl ester + L-glutamic acid diethyl ester
oligo-gamma-ethyl-L-glutamate
-
oligomerization reaction
-
-
?
L-glutamic acid diethyl ester + N-alpha-benzoyl-L-arginine ethyl ester
N-alpha-benzoyl-L-argininyl-L-glutamte-diethyl ester + ethanol
-
-
-
-
?
L-glutamic acid triethyl ester + N-alpha-benzoyl-L-arginine ethyl ester
N-alpha-benzoyl-L-arginine + N-alpha-benzoyl-L-argininyl-Glu-Glu-triethyl ester
-
L-glutamic acid triethyl ester shows higher affinity for papain than L-glutamic acid diethyl ester
-
-
?
L-phenylalanine amide + H2O
L-phenylalanine + NH3
-
-
-
-
?
L-Pro-L-Phe-L-Leu-4-nitroanilide + H2O
L-Pro-L-Phe-L-Leu + 4-nitroaniline
-
-
-
-
?
L-Pro-Phe-Leu-4-nitroanilide + H2O
L-Pro-Phe-Leu + 4-nitroaniline
-
-
-
-
?
lambda repressor + H2O
?
-
no cleavage of the operator-bound repressor dimer
-
?
lipid transfer protein + H2O
?
-
-
-
-
?
low molecular weight heparin + H2O
?
-
-
-
-
?
methyl red-Abu-Ala-Pro-Val-Lys-Lys(N5-(5-carboxyfluorescein))-NH2 + H2O
?
-
pH 6.2 or pH 7.4, 10 min, 37°C
-
-
?
methyl red-Abu-Ala-Pro-Val-Lys-Lys(N5-(5-carboxyfluorescein))-NH2 + H2O
methyl red-Abu-Ala-Pro-Val-Lys + Lys(N5-(5-carboxyfluorescein))-NH2
-
FRET 2, fluorescence resonance energy transfer peptide 2
-
-
?
methyl red-Abu-Ser-Ala-Pro-Val-Lys-Ala-Lys(N5-(5-carboxyfluorescein))-NH2 + H2O
?
-
pH 6.2 or pH 7.4, 10 min, 37°C
-
-
?
methyl red-Abu-Ser-Ala-Pro-Val-Lys-Ala-Lys(N6-(5-carboxyfluorescein))-NH2 + H2O
methyl red-Abu-Ser-Ala-Pro-Val-Lys + Ala-Lys(N6-(5-carboxyfluorescein))-NH2
-
FRET 1, fluorescence resonance energy transfer peptide 1
-
-
?
N(beta-phenylpropionyl)Gly methyl ester + H2O
?
-
-
-
-
?
N,N-diBoc-dityrosine-(isoniazid)2 + H2O
?
-
-
-
-
?
N-(beta-phenylpropionyl)Gly methyl thiono ester + H2O
?
-
-
-
-
?
N-acetyl-L-Trp p-nitrophenyl ester + H2O
?
-
-
-
-
?
N-acetyl-L-tyrosinamide + H2O
N-acetyl-L-Tyr + NH3
-
-
-
-
?
N-alpha-benzoyl-DL-Arg-4-nitroanilide + H2O
N-alpha-benzoyl-DL-Arg + 4-nitroaniline
-
-
-
-
?
N-alpha-benzoyl-L-Arg-4-nitroanilide + H2O
N-alpha-benzoyl-L-Arg + 4-nitroaniline
-
-
-
-
?
N-alpha-benzyloxycarbonyl-L-lysine 4-nitrophenyl ester + H2O
?
-
-
-
-
?
N-benzoyl-Arg-p-nitroanilide + H2O
Nalpha-benzoyl-Arg + p-nitroaniline
-
-
-
?
N-benzoyl-DL-arginine-2-naphthylamide + H2O
N-benzoyl-DL-arginine + 2-naphthylamine
-
-
-
-
?
N-benzoyl-Gly ethyl ester + H2O
N-benzoyl-Gly + ethanol
-
-
-
-
?
N-benzoyl-Gly methyl ester + H2O
?
-
-
-
-
?
N-benzoyl-Gly methyl ester + H2O
N-benzoyl-Gly + methanol
-
-
-
-
?
N-benzoyl-Gly methyl thiono ester + H2O
?
-
-
-
-
?
N-benzoylglycinamide + H2O
Nalpha-benzoyl-Gly + NH3
-
-
-
-
?
N-benzyloxycarbonyl-Ala methyl ester + H2O
?
-
-
-
-
?
N-benzyloxycarbonyl-Gly 2-nitrophenyl ester + H2O
N-benzyloxycarbonyl-Gly + 2-nitrophenol
-
-
-
-
?
N-benzyloxycarbonyl-Gly 3-nitrophenyl ester + H2O
N-benzyloxycarbonyl-Gly + 3-nitrophenol
-
-
-
-
?
N-Benzyloxycarbonyl-Gly 4-nitrophenyl ester + H2O
N-Benzyloxycarbonyl-Gly + 4-nitrophenol
-
-
-
-
?
N-benzyloxycarbonyl-Gly ethyl ester + H2O
?
-
-
-
-
?
N-benzyloxycarbonyl-Gly phenyl ester + H2O
?
-
-
-
-
?
N-benzyloxycarbonyl-Gly-Gly + H2O
?
-
-
-
-
?
N-benzyloxycarbonyl-Gly-p-nitroanilide + H2O
?
-
-
-
?
N-benzyloxycarbonyl-L-Glu diamide + H2O
?
-
-
-
-
?
N-benzyloxycarbonyl-L-glycine + H2O
?
-
-
-
-
?
N-benzyloxycarbonyl-L-histidinamide + H2O
Nalpha-benzoyl-L-His + NH3
-
-
-
-
?
N-benzyloxycarbonyl-L-leucinamide + H2O
Nalpha-benzoyl-L-Leu + NH3
-
-
-
-
?
N-benzyloxycarbonyl-L-Lys + H2O
?
-
-
-
-
?
n-propyl 2-pyridyl disulfide + H2O
?
-
-
-
-
?
Nalpha-benzoyl-Arg-p-nitroanilide + H2O
Nalpha-benzoyl-Arg + p-nitroaniline
-
-
-
?
Nalpha-benzoyl-DL-Arg-4-nitroanilide + H2O
Nalpha-benzoyl-DL-Arg + 4-nitroaniline
-
-
-
?
Nalpha-benzoyl-DL-arginine-4-nitroanilide + H2O
?
-
-
-
?
Nalpha-benzoyl-DL-arginine-4-nitroanilide + H2O
Nalpha-benzoyl-DL-arginine + 4-nitroaniline
-
-
-
-
?
Nalpha-benzoyl-Gly methyl ester + H2O
Nalpha-benzoyl-Gly + methanol
-
-
-
-
?
Nalpha-benzoyl-L-Arg ethyl ester
?
-
-
-
-
?
Nalpha-Benzoyl-L-Arg ethyl ester + H2O
?
-
-
-
-
?
Nalpha-benzoyl-L-argininamide + H2O
Nalpha-benzoyl-L-Arg + NH3
-
-
-
-
?
Nalpha-benzoyl-L-arginine ethyl ester + H2O
?
-
-
-
-
?
Nalpha-benzoyl-L-citrulline methyl ester + H2O
?
-
-
-
-
?
Nalpha-benzoyl-L-lysinamide + H2O
Nalpha-benzoyl-L-Lys + NH3
-
-
-
-
?
Nalpha-benzyloxycarbonyl-L-histidinamide + H2O
?
-
-
-
-
?
ovalbumin + H2O
?
-
-
-
-
?
oxidized beta-chain of insulin + H2O
?
-
-
-
-
?
Phe-Arg-4-methylcoumaryl-7-amide + H2O
?
-
-
-
?
phthalyl-Phe-Leu-p-nitroanilide + H2O
phthalyl-Phe-Leu + 4-nitroaniline
-
-
-
?
rabbit IgG + H2O
?
-
-
-
-
?
sarcoendoplasmic reticulum Ca2+-ATPase 1 + H2O
?
-
-
-
-
?
sheep IgG + H2O
?
-
-
-
-
?
succinyl-Phe-Leu-4-methylcoumaryl-7-amide + H2O
?
-
-
-
?
succinyl-Phe-Leu-4-nitroanilide + H2O
succinyl-Phe-Leu + 4-nitroaniline
-
-
-
-
?
succinyl-Phe-Leu-p-nitroanilide + H2O
?
-
-
-
?
succinyl-Phe-Leu-p-nitrophenol + H2O
?
-
-
-
?
tarocystatin + H2O
?
the C-terminal cystatin-like extension of tarocystatin is easily digested by papain
-
-
?
ubiquitin-7-amido-4-trifluoromethylcoumarin + H2O
?
-
-
-
-
?
Z-Phe-Arg-4-nitroanilide + H2O
Z-Phe-Arg + 4-nitroaniline
-
-
-
-
?
additional information
?
-
casein + H2O

?
-
-
-
-
?
chitosan + H2O

low-molecular mass chitosan + chito-oligomeric-monomeric mixture
-
depolymerization
product analysis by FTIR and NMR spectroscopy, overview
-
?
chitosan + H2O
low-molecular mass chitosan + chito-oligomeric-monomeric mixture
-
depolymerization, the enzyme inhibits the growth of bacteria such as Bacillus cereus strain F4810, Bacillus licheniformis, and Escherichia coli strain D21, mechanism of bactericidal action of the chito-oligomeric-monomeric mixture, overview
-
-
?
Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans + H2O

Dabcyl-Lys-Phe-Gly + Gly-Ala-Ala-Edans
-
-
-
?
Dabcyl-Lys-Phe-Gly-Gly-Ala-Ala-Edans + H2O
Dabcyl-Lys-Phe-Gly + Gly-Ala-Ala-Edans
-
-
-
?
additional information

?
-
-
existence of an acyl-enzyme intermediate
-
-
?
additional information
?
-
-
the enzyme may play a protective role guarding the plant against attack by pests such as insects and fungi
-
-
?
additional information
?
-
-
papain protects papaya trees from herbivorous insects, e.g. lepidoteran larvae of Samia ricini or polyphagous pests Mamestra brassicae and Spodoptera litura, the enzyme is toxic for the insect larvae, overview
-
-
?
additional information
?
-
-
activation reaction of the enzyme with seven different substrate-derived 2-pyridyl disulfide reactivity probes, specificity, overview
-
-
?
additional information
?
-
-
interaction anaylsis of enzyme with diverse synthetic peptides in a phage display assay, overview
-
-
?
additional information
?
-
molecular recognition of mature enzyme and prosegment, overview
-
-
?
additional information
?
-
-
enzyme catalyses the hydrolysis of peptide bonds of basic amino acids, such as leucine or glycine
-
-
?
additional information
?
-
papain is the founding member of the large C1 family of papain-like cysteine proteases
-
-
?
additional information
?
-
-
glycine is not recognized by papain
-
-
?
additional information
?
-
-
papain is also able to synthesize L-aminoacylantipyrine amides, Z-Gly-Phe-NH2 and Boc-Gly-Phe-OMe, and performs hydrogenation of methyl 2-acetamidoacrylate
-
-
?
additional information
?
-
-
interaction between papain and two ionic liquids, 1-octyl-3-methylimidazolium chloride ([C8mim]Cl) and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl), is investigated by using fluorescence spectroscopy technique at a pH value of 7.4. 1-octyl-3-methylimidazolium chloride has a stronger binding ability with papain than 1-butyl-3-methylimidazolium chloride
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.