Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
acetyl-Ala-Ala-Lys-Phe(4-NO2)-Ala-Ala-NH2 + H2O
?
-
-
-
-
?
acetyl-L-phenylalanyl-L-diiodotyrosine + H2O
acetyl-L-phenylalanine + L-diiodotyrosine
AFPLEFEREL + H2O
AFPLEF + EREL
AFPLEFFREL + H2O
AFPLEF + FREL
AFPLEFIREL + H2O
AFPLEF + IREL
benzyloxycarbonyl-Gly-Ala-(4-nitro)Phe-Trp-NHCH2CH2OH + H2O
?
-
-
-
-
?
benzyloxycarbonyl-His-(4-nitro)Phe-Phe-OMet + H2O
?
-
-
-
-
?
benzyloxycarbonyl-His-Phe(NO2)-beta-phenyl-L-lactyl-O-methyl ester + H2O
benzyloxycarbonyl-His-Phe(NO2) + phenyl-L-lactyl-O-methyl ester
benzyloxycarbonyl-His-Phe-Phe-NH2 + H2O
?
-
-
-
-
?
benzyloxycarbonyl-His-Phe-Phe-O-methyl ester + H2O
?
-
-
-
-
?
benzyloxycarbonyl-His-Phe-Trp-OEt + H2O
?
-
-
-
-
?
benzyloxycarbonyl-His-Tyr-Phe-O-methyl ester + H2O
?
-
-
-
-
?
bis-phenyl sulfite + H2O
?
-
-
-
-
?
Cry1A(b) protein + H2O
?
-
from transgenic maize or from Bacillus thuringiensis
-
-
?
dynorphin A (1-7) + H2O
?
HPHLSFMAI + H2O
HPHLSF + Met-Ala-Ile + ?
KPAEFF(NO2)-AL + H2O
?
-
-
-
-
?
KPAEFFRL + H2O
KPAEF + FRL
KPIEF(NO2)RL + H2O
?
-
-
-
?
KPIKF(NO2)RL + H2O
?
-
-
-
?
KPILF(NO2)RL + H2O
?
-
-
-
?
KPIQF(NO2)RL + H2O
?
-
-
-
?
KPPEF(NO2)RL + H2O
?
-
-
-
?
KYSSWYVAL + H2O
KYSSW + YVAL
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu + H2O
?
-
-
-
-
?
Leu-Ser-Phe(NO2)-Nle-Ala-Leu + H2O
?
-
-
-
-
?
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu + H2O
?
-
-
-
?
LSF(NO2)-Nle-AL + H2O
?
-
-
-
?
Lys-Pro-Ala-Glu-Phe-Phe(4NO2)-Ala-Leu + H2O
?
Lys-Pro-Ala-Glu-Phe-Phe(NO2)-Ala-Leu + H2O
?
-
-
-
-
?
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu + H2O
?
-
-
-
?
Mca-KKPAEFFALK-Dnp + H2O
Mca-KKPAEF + FFALK-Dnp
this peptide is preferentially cleaved at Phe-Phe, with a second minor cleavage occurring at Phe-Ala
-
-
?
Mca-KLHPEVLFVLEK-Dnp + H2O
Mca-KLHPEVL + FVLEK-Dnp
the preferred cleavage site is between Leu-Phe, a minor cleavage site is between Phe-Ala
-
-
?
metmyoglobin + H2O
?
-
-
treatment with pepsin at pH 4.0 results in lowering the (pseudo)peroxidase activity of metmyoglobin both at physiological pH and at meat pH, leading to strongly enhanced prooxidative effect of mildly proteolyzed metmyoglobin on lipid oxidation
-
?
MOCAc-Ala-Pro-Ala-Lys-Phe-Phe-Arg-Leu-Lys(Dnp)-NH2 + H2O
?
-
-
-
-
?
N,N-dimethyl-casein + H2O
?
N,N-dimethylhemoglobin + H2O
?
-
-
-
-
?
N-trifluoroacetyl aromatic L-amino acids + H2O
?
-
-
-
-
?
NT/NMN (142-151) + H2O
KIPYIL + KRQL
ovalbumin + H2O
?
-
-
-
-
?
oxidized insulin B chain + H2O
FVNQHLCGSHLVEAL + L-Tyr + LVCGERGFFYTPKA
two major cleavage sites are at Leu15-Tyr16 and Tyr16-Leu17
-
-
?
Oxidized insulin B-chain + H2O
?
-
-
-
?
Phe-Gly-His-(4-nitro)Phe-Phe-Ala-Phe-OMe + H2O
?
-
-
-
-
?
POMC (165-174) + H2O
AFPLE + FKREL
Pro-Thr-Glu-Lys-Phe(4-NO2)-Arg-Leu-NH2 + H2O
?
-
-
-
-
?
Pro-Thr-Glu-Phe-(4-nitro)Phe-Arg-Leu + H2O
?
-
-
-
-
?
Pro-Thr-Glu-Phe-(p-nitro-Phe)-Arg-Leu-OH + H2O
Pro-Thr-Glu-Phe + (p-nitro-Phe)-Arg-Leu-OH
-
-
-
?
Pro-Thr-Glu-Phe-Phe(4-NO2)-Arg-Leu + H2O
?
-
-
-
-
?
Ribonuclease + H2O
?
-
reduced and carboxymethylated ribonuclease A
-
?
serum albumin + H2O
?
dogfish
-
-
-
-
?
SGGYDLSFLPQPPQE + H2O
?
-
predominant cleavage of the peptide corresponding to the carboxy-terminal telopeptide region of bovine type I collagen alpha1 chain at Asp-Leu, Leu-Ser and Phe-Leu and at a significant lower rate at Ser-Phe
-
?
substance P + H2O
RPKPQQF + FGLM
additional information
?
-
acetyl-L-phenylalanyl-L-diiodotyrosine + H2O

acetyl-L-phenylalanine + L-diiodotyrosine
-
low activity
-
-
?
acetyl-L-phenylalanyl-L-diiodotyrosine + H2O
acetyl-L-phenylalanine + L-diiodotyrosine
-
-
-
-
?
acetyl-L-phenylalanyl-L-diiodotyrosine + H2O
acetyl-L-phenylalanine + L-diiodotyrosine
-
-
-
-
?
acetyl-L-phenylalanyl-L-diiodotyrosine + H2O
acetyl-L-phenylalanine + L-diiodotyrosine
-
low activity
-
-
?
acetyl-L-phenylalanyl-L-diiodotyrosine + H2O
acetyl-L-phenylalanine + L-diiodotyrosine
-
-
-
-
?
acetyl-L-phenylalanyl-L-diiodotyrosine + H2O
acetyl-L-phenylalanine + L-diiodotyrosine
-
-
-
-
?
acetyl-L-phenylalanyl-L-diiodotyrosine + H2O
acetyl-L-phenylalanine + L-diiodotyrosine
-
-
-
-
?
AFPLEFEREL + H2O

AFPLEF + EREL
-
-
-
-
?
AFPLEFEREL + H2O
AFPLEF + EREL
-
-
-
-
?
AFPLEFFREL + H2O

AFPLEF + FREL
-
-
-
-
?
AFPLEFFREL + H2O
AFPLEF + FREL
-
-
-
-
?
AFPLEFIREL + H2O

AFPLEF + IREL
-
-
-
-
?
AFPLEFIREL + H2O
AFPLEF + IREL
-
-
-
-
?
benzyloxycarbonyl-His-Phe(NO2)-beta-phenyl-L-lactyl-O-methyl ester + H2O

benzyloxycarbonyl-His-Phe(NO2) + phenyl-L-lactyl-O-methyl ester
dogfish
-
-
-
-
?
benzyloxycarbonyl-His-Phe(NO2)-beta-phenyl-L-lactyl-O-methyl ester + H2O
benzyloxycarbonyl-His-Phe(NO2) + phenyl-L-lactyl-O-methyl ester
-
-
-
-
?
benzyloxycarbonyl-His-Phe(NO2)-beta-phenyl-L-lactyl-O-methyl ester + H2O
benzyloxycarbonyl-His-Phe(NO2) + phenyl-L-lactyl-O-methyl ester
salmon
-
-
-
-
?
benzyloxycarbonyl-His-Phe(NO2)-beta-phenyl-L-lactyl-O-methyl ester + H2O
benzyloxycarbonyl-His-Phe(NO2) + phenyl-L-lactyl-O-methyl ester
-
-
-
-
?
benzyloxycarbonyl-His-Phe(NO2)-beta-phenyl-L-lactyl-O-methyl ester + H2O
benzyloxycarbonyl-His-Phe(NO2) + phenyl-L-lactyl-O-methyl ester
shark
-
-
-
-
?
benzyloxycarbonyl-His-Phe(NO2)-beta-phenyl-L-lactyl-O-methyl ester + H2O
benzyloxycarbonyl-His-Phe(NO2) + phenyl-L-lactyl-O-methyl ester
-
-
-
-
?
casein + H2O

?
-
-
-
-
?
dynorphin A (1-7) + H2O

?
-
-
-
-
?
dynorphin A (1-7) + H2O
?
-
-
-
-
?
Hemoglobin + H2O

?
-
-
-
-
?
Hemoglobin + H2O
?
-
-
-
-
?
Hemoglobin + H2O
?
dogfish
-
-
-
-
?
Hemoglobin + H2O
?
-
-
-
-
?
Hemoglobin + H2O
?
-
-
-
-
?
Hemoglobin + H2O
?
-
-
TCA-soluble peptides
-
?
Hemoglobin + H2O
?
-
bovine
-
-
?
Hemoglobin + H2O
?
-
-
-
?
Hemoglobin + H2O
?
-
-
-
-
?
Hemoglobin + H2O
?
-
-
-
-
?
Hemoglobin + H2O
?
-
-
-
-
?
Hemoglobin + H2O
?
-
-
-
-
?
Hemoglobin + H2O
?
-
-
-
-
?
Hemoglobin + H2O
?
-
-
TCA-soluble peptides
-
?
HPHLSFMAI + H2O

HPHLSF + Met-Ala-Ile + ?
-
best substrate
-
-
?
HPHLSFMAI + H2O
HPHLSF + Met-Ala-Ile + ?
-
best substrate
-
-
?
insulin + H2O

?
-
B-chain of oxidized insulin
-
-
?
insulin + H2O
?
-
B-chain of oxidized insulin
-
-
?
KPAEFF(NO2)AL + H2O

?
-
-
-
?
KPAEFF(NO2)AL + H2O
?
-
-
-
-
?
KPAEFFRL + H2O

KPAEF + FRL
-
-
-
-
?
KPAEFFRL + H2O
KPAEF + FRL
-
-
-
-
?
KYSSWYVAL + H2O

KYSSW + YVAL
-
-
-
-
?
KYSSWYVAL + H2O
KYSSW + YVAL
-
-
-
-
?
Lys-Pro-Ala-Glu-Phe-Phe(4NO2)-Ala-Leu + H2O

?
-
-
-
-
?
Lys-Pro-Ala-Glu-Phe-Phe(4NO2)-Ala-Leu + H2O
?
-
-
-
-
?
N,N-dimethyl-casein + H2O

?
-
-
-
-
?
N,N-dimethyl-casein + H2O
?
-
-
-
-
?
NT/NMN (142-151) + H2O

KIPYIL + KRQL
-
-
-
-
?
NT/NMN (142-151) + H2O
KIPYIL + KRQL
-
-
-
-
?
POMC (165-174) + H2O

AFPLE + FKREL
-
-
-
-
?
POMC (165-174) + H2O
AFPLE + FKREL
-
-
-
-
?
Proteins + H2O

?
-
enzyme formed from pepsinogen A, agent of gastric digestion in mammals and birds
-
-
-
Proteins + H2O
?
-
preferential cleavage: Phe-, Leu-
-
-
-
Proteins + H2O
?
-
low specificity
-
-
-
Proteins + H2O
?
-
preferential cleavage: Phe-, Leu-
-
-
-
substance P + H2O

RPKPQQF + FGLM
-
-
-
-
?
substance P + H2O
RPKPQQF + FGLM
-
-
-
-
?
additional information

?
-
-
milk clotting activity
-
-
-
additional information
?
-
dogfish
-
transpeptidation reactions
-
-
-
additional information
?
-
dogfish
-
absolute requirement for L-enantiomer in both the X and Y position of substrate
-
-
-
additional information
?
-
dogfish
-
condensation reaction: pH 4, high substrate concentrations, oligopeptides converted to polymeric products
-
-
-
additional information
?
-
dogfish
-
side chain specificity
-
-
-
additional information
?
-
dogfish
-
organic sulfites
-
-
-
additional information
?
-
-
transpeptidation reactions
-
-
-
additional information
?
-
-
absolute requirement for L-enantiomer in both the X and Y position of substrate
-
-
-
additional information
?
-
-
condensation reaction: pH 4, high substrate concentrations, oligopeptides converted to polymeric products
-
-
-
additional information
?
-
-
side chain specificity
-
-
-
additional information
?
-
-
organic sulfites
-
-
-
additional information
?
-
-
preference for hydrophobic and aromatic residues at Pā1 site of substrate
-
-
-
additional information
?
-
-
pepsin A strongly prefers a hydrophobic/aromatic residue at P1ā in any type of peptide
-
-
-
additional information
?
-
the cleavage site of isoform PG1 to produce pepsin is clearly at the 41-42 bond of Phe-Ala
-
-
-
additional information
?
-
salmon
-
transpeptidation reactions
-
-
-
additional information
?
-
salmon
-
absolute requirement for L-enantiomer in both the X and Y position of substrate
-
-
-
additional information
?
-
salmon
-
condensation reaction: pH 4, high substrate concentrations, oligopeptides converted to polymeric products
-
-
-
additional information
?
-
salmon
-
side chain specificity
-
-
-
additional information
?
-
salmon
-
organic sulfites
-
-
-
additional information
?
-
-
transpeptidation reactions
-
-
-
additional information
?
-
-
absolute requirement for L-enantiomer in both the X and Y position of substrate
-
-
-
additional information
?
-
-
condensation reaction: pH 4, high substrate concentrations, oligopeptides converted to polymeric products
-
-
-
additional information
?
-
-
side chain specificity
-
-
-
additional information
?
-
-
organic sulfites
-
-
-
additional information
?
-
shark
-
transpeptidation reactions
-
-
-
additional information
?
-
shark
-
absolute requirement for L-enantiomer in both the X and Y position of substrate
-
-
-
additional information
?
-
shark
-
condensation reaction: pH 4, high substrate concentrations, oligopeptides converted to polymeric products
-
-
-
additional information
?
-
shark
-
side chain specificity
-
-
-
additional information
?
-
shark
-
organic sulfites
-
-
-
additional information
?
-
Edans-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Thr-Lys-Dabcyl-Arg, Arg-Glu-Edans-Ser-Gln-Asn-Tyr-Pro-Ile-Val-Gln-Lys-Dabcyl-Arg, and Mca-Lys-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-Dnp are not significantly processed by shewasin A
-
-
-
additional information
?
-
-
Edans-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Thr-Lys-Dabcyl-Arg, Arg-Glu-Edans-Ser-Gln-Asn-Tyr-Pro-Ile-Val-Gln-Lys-Dabcyl-Arg, and Mca-Lys-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-Dnp are not significantly processed by shewasin A
-
-
-
additional information
?
-
-
milk clotting activity
-
-
-
additional information
?
-
-
preference for hydrophobic L-amino acid residues on both sides of X-Y bond in benzyloxycarbonyl-L-histidyl-X-Y-OR
-
-
-
additional information
?
-
-
transpeptidation reactions
-
-
-
additional information
?
-
-
absolute requirement for L-enantiomer in both the X and Y position of substrate
-
-
-
additional information
?
-
-
condensation reaction: pH 4, high substrate concentrations, oligopeptides converted to polymeric products
-
-
-
additional information
?
-
-
side chain specificity
-
-
-
additional information
?
-
-
organic sulfites
-
-
-
additional information
?
-
-
the active site of pepsin is formed in the intermediate conformation dominant at mildly acidic pH
-
?
additional information
?
-
-
detailed study on the interaction of porcine pepsin A with derivatives of aromatic amino acids immobilized via a carboxyl or amino group to Sepharose activated with divinyl sulfone
-
-
-
additional information
?
-
-
digestibility of maize and sorghum proteins without and after heat-treatment
-
-
-
additional information
?
-
-
solubilization of collagens from the skin of Priacanthus tayenus and Priacanthus macracanthus
-
-
?
additional information
?
-
-
pepsin A strongly prefers a hydrophobic/aromatic residue at P1ā in any type of peptide
-
-
-
additional information
?
-
-
solubilization of collagens from the skin of Priacanthus tayenus and Priacanthus macracanthus
-
-
?
additional information
?
-
no digestion of Phe-Gly-His-Phe-(p-nitro-Phe)-Ala-Phe-OMe
-
-
-
additional information
?
-
no digestion of Phe-Gly-His-Phe-(p-nitro-Phe)-Ala-Phe-OMe
-
-
-
additional information
?
-
-
no digestion of Phe-Gly-His-Phe-(p-nitro-Phe)-Ala-Phe-OMe
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1,2-epoxy-3-(4-nitrophenoxy)propane
alpha2-Macroglobulin
-
activity towards reduced and carboxymethylated ribonuclease A is significantly inhibited at pH 5.5, the activity towards a peptide substrate, oxidized insulin B-chain, is scarcely inhibited
-
amastatin
97.2 residual activity at 0.01 mM
bestatin
92.7 residual activity at 0.01 mM
Bis-(beta-chloroethyl)sulfide
Diazoacetyl-DL-norleucine methyl ester
dimethyl sulfoxide
-
1%, complete loss of activity
E-64
89.5 residual activity at 0.01 mM
iodoacetamide
82.1 residual activity at 0.05 mM
leupeptin
91.9 residual activity at 0.01 mM
NaCl
-
30%, activity of pepsin A decreases by 60-65%
p-bromophenylacyl bromide
pefabloc
87.8 residual activity at 1 mM
PI-3
-
inhibitor from Ascaris suum
-
prosegment K36A-mutant of pepsinogen
-
N-terminal, 44 residue prosegment
-
prosegment of pepsinogen
-
N-terminal, 44 residue prosegment
-
prosegment R8A-mutant of pepsinogen
-
N-terminal, 44 residue prosegment
-
prosegment V4A-mutant of pepsinogen
-
N-terminal, 44 residue prosegment
-
Val-D-Leu-Pro-Phe-Phe-Val-D-Leu
1,2-epoxy-3-(4-nitrophenoxy)propane

-
-
1,2-epoxy-3-(4-nitrophenoxy)propane
-
-
1,2-epoxy-3-(4-nitrophenoxy)propane
-
-
1,2-epoxy-3-(4-nitrophenoxy)propane
-
-
1,2-epoxy-3-(4-nitrophenoxy)propane
-
-
1,2-epoxy-3-(4-nitrophenoxy)propane
-
-
1,2-epoxy-3-(4-nitrophenoxy)propane
-
-
amylopectin sulfate

dogfish
-
-
-
amylopectin sulfate
-
-
-
amylopectin sulfate
salmon
-
-
-
amylopectin sulfate
-
-
-
amylopectin sulfate
shark
-
-
-
amylopectin sulfate
-
-
-
Bis-(beta-chloroethyl)sulfide

dogfish
-
-
Bis-(beta-chloroethyl)sulfide
-
-
Bis-(beta-chloroethyl)sulfide
salmon
-
-
Bis-(beta-chloroethyl)sulfide
-
-
Bis-(beta-chloroethyl)sulfide
shark
-
-
Bis-(beta-chloroethyl)sulfide
-
-
Diazoacetyl-DL-norleucine methyl ester

-
presence of Cu2+
Diazoacetyl-DL-norleucine methyl ester
-
presence of Cu2+
Diazoacetyl-DL-norleucine methyl ester
-
presence of Cu2+
Diazoacetyl-DL-norleucine methyl ester
-
presence of Cu2+
Diazoacetyl-DL-norleucine methyl ester
-
presence of Cu2+
Diazoacetyl-DL-norleucine methyl ester
-
presence of Cu2+
Diazoacetyl-DL-norleucine methyl ester
-
presence of Cu2+
dithiothreitol

91.2 residual activity at 2 mM
EDTA

-
2 mM, 11.64% inhibition
EDTA
82.8 residual activity at 5 mM
I2

dogfish
-
-
imidazole

dogfish
-
hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
imidazole
-
hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
imidazole
salmon
-
hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
imidazole
-
hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
imidazole
shark
-
hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
imidazole
-
hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
KCN

dogfish
-
similar effect as with imidazole, hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
KCN
-
similar effect as with imidazole, hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
KCN
salmon
-
similar effect as with imidazole, hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
KCN
-
similar effect as with imidazole, hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
KCN
shark
-
similar effect as with imidazole, hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
KCN
-
similar effect as with imidazole, hemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
N-bromosuccinimide

dogfish
-
-
N-bromosuccinimide
salmon
-
-
N-bromosuccinimide
shark
-
-
p-bromophenylacyl bromide

dogfish
-
-
p-bromophenylacyl bromide
-
-
p-bromophenylacyl bromide
-
-
p-bromophenylacyl bromide
salmon
-
-
p-bromophenylacyl bromide
-
-
p-bromophenylacyl bromide
shark
-
-
p-bromophenylacyl bromide
-
-
Pepstatin

-
-
Pepstatin
-
the intermediate conformation of the enzyme binds the active site inhibitor with a strength similar to that of the native conformation
pepstatin A

-
0.01 mM, 98.2% inhibition
pepstatin A
-
0.005 mM, complete inhibition
pepstatin A
complete inhibition at a molar ratio of 1:20 (pepstatin A:pepsin)
pepstatin A
-
completely inhibited at a pepstatin/pepsin molar ratio of 1:2
pepstatin A
complete inhibition at 0.001 mM
pepstatin A
requires an inhibitor/enzyme ratio of 1:10 to reach about 50% inhibition; requires an inhibitor/enzyme ratio of 1:10 to reach about 60% inhibition
peptides

dogfish
-
29 amino acid peptide liberated in activation of pepsinogen
peptides
-
29 amino acid peptide liberated in activation of pepsinogen
peptides
salmon
-
29 amino acid peptide liberated in activation of pepsinogen
peptides
-
29 amino acid peptide liberated in activation of pepsinogen
peptides
shark
-
29 amino acid peptide liberated in activation of pepsinogen
peptides
-
29 amino acid peptide liberated in activation of pepsinogen
poly-L-lysine

dogfish
-
-
Tetranitromethane

dogfish
-
similar effect as with imidazole, haemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
Tetranitromethane
-
similar effect as with imidazole, haemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
Tetranitromethane
salmon
-
similar effect as with imidazole, haemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
Tetranitromethane
-
similar effect as with imidazole, haemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
Tetranitromethane
shark
-
similar effect as with imidazole, haemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
Tetranitromethane
-
similar effect as with imidazole, haemoglobin hydrolysis inhibited, cleavage of small synthetic peptide and ester substrates enhanced
Val-D-Leu-Pro-Phe-Phe-Val-D-Leu

-
-
Val-D-Leu-Pro-Phe-Phe-Val-D-Leu
-
-
Val-D-Leu-Pro-Phe-Phe-Val-D-Leu
-
-
Val-D-Leu-Pro-Phe-Phe-Val-D-Leu
-
competitive
Val-D-Leu-Pro-Phe-Phe-Val-D-Leu
-
-
Val-D-Leu-Pro-Phe-Phe-Val-D-Leu
-
competitive
additional information

dogfish
-
diazoketones; ketenes
-
additional information
-
diazoketones; ketenes
-
additional information
-
diazoketones
-
additional information
-
not inhibited by E-64 and EDTA
-
additional information
salmon
-
diazoketones; ketenes
-
additional information
-
diazoketones; ketenes
-
additional information
shark
-
diazoketones; ketenes
-
additional information
-
diazoketones; ketenes
-
additional information
-
diazoketones
-
additional information
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.16
acetyl-Ala-Ala-Lys-Phe(4-NO2)-Ala-Ala-NH2
-
T77D/G78(S)S79 double mutant
-
0.49
benzyloxycarbonyl-His-Phe-Phe-NH2
-
-
0.18
benzyloxycarbonyl-His-Phe-Phe-O-ethyl ester
-
-
0.37
benzyloxycarbonyl-His-Phe-Phe-O-methyl ester
-
-
0.25
benzyloxycarbonyl-His-Trp-Phe-O-methyl ester
-
-
0.68
benzyloxycarbonyl-His-Tyr-Phe-O-methyl ester
-
-
0.055 - 0.12
hemoglobin
-
0.034 - 0.083
KPAEFF(NO2)AL
0.011 - 0.035
KPIEF(NO2)RL
0.0051 - 0.0093
KPILF(NO2)RL
0.015 - 0.05
KPIQF(NO2)RL
0.013 - 0.074
KPPEF(NO2)RL
0.048 - 0.075
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
0.019
Leu-Ser-Phe(NO2)-Nle-Ala-Leu
-
-
0.011 - 0.044
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu
0.015 - 0.041
LSF(NO2)-Nle-AL
0.034
Lys-Pro-Ala-Glu-Phe-Phe(4NO2)-Ala-Leu
-
-
0.0433
Lys-Pro-Ala-Glu-Phe-Phe(NO2)-Ala-Leu
-
pH 5.3, 25°C
0.043 - 0.098
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu
0.0054
Mca-KKPAEFFALK-Dnp
at pH 4.0 and 37°C
0.05
N,N-dimethylcasein
-
-
-
0.046
N,N-dimethylhemoglobin
-
-
-
0.022 - 0.029
POMC (165-174)
0.15 - 0.18
Pro-Thr-Glu-Lys-Phe(4-NO2)-Arg-Leu-NH2
0.025 - 0.074
Pro-Thr-Glu-Phe-(p-nitro-Phe)-Arg-Leu-OH
0.04 - 0.2
Pro-Thr-Glu-Phe-Phe(4-NO2)-Arg-Leu
additional information
additional information
-
0.3
AFPLEFEREL

-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
0.4
AFPLEFEREL
-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
0.084
AFPLEFFREL

-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
0.17
AFPLEFFREL
-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
0.079
AFPLEFIREL

-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
0.098
AFPLEFIREL
-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
0.76
casein

-
B
0.055
hemoglobin

isoform pepsin 1, in 250 mM sodium acetate buffer (pH 3.0), at 37°C
-
0.098
hemoglobin
-
pH 3.0, 37°C
-
0.12
hemoglobin
-
isoform pepsin 1, in 250 mM sodium acetate buffer (pH 3.0), at 37°C
-
0.034
KPAEFF(NO2)AL

-
pH 3.95, 37°C, wild-type enzyme
0.036
KPAEFF(NO2)AL
-
mutant enzyme D215E
0.04
KPAEFF(NO2)AL
-
mutant enzyme D32E
0.051
KPAEFF(NO2)AL
-
mutant enzyme D32E/D215E
0.057
KPAEFF(NO2)AL
-
pH 3.95, 37°C, mutant enzyme S46K/D52N/N54K/Q55R/D60K/S196R/D200G/E202K
0.065
KPAEFF(NO2)AL
-
pH 3.95, 37°C, mutant enzyme L10M/T12A/E13S
0.07
KPAEFF(NO2)AL
-
pH 3.95, 37°C, mutant enzyme DELTA240-246/+GD
0.075
KPAEFF(NO2)AL
-
pH 3.95, 37°C, mutant enzyme G2S/D3Y
0.075
KPAEFF(NO2)AL
-
wild-type enzyme
0.08
KPAEFF(NO2)AL
-
pH 3.95, 37°C, mutant enzyme G2C/L167C
0.083
KPAEFF(NO2)AL
-
pH 3.95, 37°C, mutant enzyme G2S/D3Y/L10M/T12A/E13S
0.011
KPIEF(NO2)RL

-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M; pH 3.5, 25°C, mutant enzyme T222V/E287M
0.018
KPIEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
0.019
KPIEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F
0.02
KPIEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V
0.024
KPIEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M
0.035
KPIEF(NO2)RL
-
pH 3.5, 25°C, wild-type enzyme
0.03
KPIKF(NO2)RL

-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M
0.046
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F
0.075
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
0.079
KPIKF(NO2)RL
-
pH 3.5, 25°C, wild-type enzyme
0.085
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V
0.134
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V/E287M
0.16
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M
0.0051
KPILF(NO2)RL

-
pH 3.5, 25°C, mutant enzyme T222V
0.0052
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V/E287M
0.0062
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
0.0064
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M
0.0081
KPILF(NO2)RL
-
pH 3.5, 25°C, wild-type enzyme
0.0082
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F
0.0093
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M
0.015
KPIQF(NO2)RL

-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M
0.02
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V
0.034
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F; pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
0.036
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V/E287M
0.046
KPIQF(NO2)RL
-
pH 3.5, 25°C, wild-type enzyme
0.05
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M
0.013
KPPEF(NO2)RL

-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M
0.024
KPPEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F; pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
0.027
KPPEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V/E287M
0.042
KPPEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V
0.053
KPPEF(NO2)RL
-
pH 3.5, 25°C, wild-type enzyme
0.074
KPPEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M
0.048
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu

-
unglycosylated mutant T77N, pH 2.0
0.049
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
unglycosylated mutant S281N, pH 2.0
0.052
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
glycosylated mutant T77N, pH 2.0
0.055
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
unglycosylated mutant E244N/V246T, pH 2.0
0.062
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
wild-type, pH 2.0
0.064
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
unglycosylated mutant S110N/L112T, pH 2.0
0.068
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
glycosylated mutant E244N/V246T, pH 2.0
0.069
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
glycosylated mutant S281N, pH 2.0
0.075
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
glycosylated mutant S110N/L112T, pH 2.0
0.011
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu

-
pH 3.95, 37°C, wild-type enzyme
0.04
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu
-
pH 3.95, 37°C, mutant enzyme G76A
0.041
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu
-
pH 3.95, 37°C, mutant enzyme G76S
0.044
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu
-
pH 3.95, 37°C, mutant enzyme G76V
0.015
LSF(NO2)-Nle-AL

-
pH 3.95, 37°C, mutant enzyme DELTA240-246/+GD
0.018
LSF(NO2)-Nle-AL
-
pH 3.95, 37°C, mutant enzyme G2C/L167C
0.019
LSF(NO2)-Nle-AL
-
pH 3.95, 37°C, wild-type enzyme
0.028
LSF(NO2)-Nle-AL
-
pH 3.95, 37°C, mutant enzyme G2S/D3Y; pH 3.95, 37°C, mutant enzyme G2S/D3Y/L10M/T12A/E13S
0.031
LSF(NO2)-Nle-AL
-
pH 3.95, 37°C, mutant enzyme S46K/D52N/N54K/Q55R/D60K/S196R/D200G/E202K
0.041
LSF(NO2)-Nle-AL
-
pH 3.95, 37°C, mutant enzyme L10M/T12A/E13S
0.043
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu

-
pH 2.1, 37°C, wild-type enzyme
0.071
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu
-
pH 2.1, 37°C, mutant enzyme G76V
0.085
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu
-
pH 2.1, 37°C, mutant enzyme G76S
0.098
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu
-
pH 2.1, 37°C, mutant enzyme G76A
0.022
POMC (165-174)

-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
0.029
POMC (165-174)
-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
0.15
Pro-Thr-Glu-Lys-Phe(4-NO2)-Arg-Leu-NH2

-
T77D/G78(S)S79 double mutant
0.18
Pro-Thr-Glu-Lys-Phe(4-NO2)-Arg-Leu-NH2
-
T77D mutant
0.025
Pro-Thr-Glu-Phe-(p-nitro-Phe)-Arg-Leu-OH

37°C, acidic pH
0.074
Pro-Thr-Glu-Phe-(p-nitro-Phe)-Arg-Leu-OH
37°C, acidic pH
0.04
Pro-Thr-Glu-Phe-Phe(4-NO2)-Arg-Leu

-
wild-type
0.06
Pro-Thr-Glu-Phe-Phe(4-NO2)-Arg-Leu
-
T77D/G78(S)S79 double mutant
0.17
Pro-Thr-Glu-Phe-Phe(4-NO2)-Arg-Leu
-
G78(S)S79 mutant
0.2
Pro-Thr-Glu-Phe-Phe(4-NO2)-Arg-Leu
-
T77D mutant
additional information
additional information

dogfish
-
-
-
additional information
additional information
-
-
-
additional information
additional information
salmon
-
-
-
additional information
additional information
-
-
-
additional information
additional information
shark
-
-
-
additional information
additional information
-
-
-
additional information
additional information
-
-
-
additional information
additional information
-
pH-dependence of Km-value of N-trifluoroacetyl aromatic amino acids
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
0.21
benzyloxycarbonyl-His-Phe-Phe-NH2
-
-
0.31
benzyloxycarbonyl-His-Phe-Phe-O-ethyl ester
-
-
0.15
benzyloxycarbonyl-His-Phe-Phe-O-methyl ester
-
-
0.013
benzyloxycarbonyl-His-Trp-Phe-O-methyl ester
-
-
0.013
benzyloxycarbonyl-His-Tyr-Phe-O-methyl ester
-
-
16 - 162
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
1.2 - 88.7
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu
56
Lys-Pro-Ala-Glu-Phe-Phe(NO2)-Ala-Leu
-
pH 5.3, 25°C
2.5 - 181
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu
0.03
Mca-KKPAEFFALK-Dnp
at pH 4.0 and 37°C
7
N,N-dimethylcasein
-
-
-
18.3
N,N-dimethylhemoglobin
-
-
-
0.54 - 3.32
Pro-Thr-Glu-Phe-(p-nitro-Phe)-Arg-Leu-OH
additional information
additional information
-
8.9
AFPLEFEREL

-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
45
AFPLEFEREL
-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
85
AFPLEFFREL

-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
472
AFPLEFFREL
-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
56
AFPLEFIREL

-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
203
AFPLEFIREL
-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
7.34
hemoglobin

isoform pepsin 1, in 250 mM sodium acetate buffer (pH 3.0), at 37°C
-
23.2
hemoglobin
-
isoform pepsin 1, in 250 mM sodium acetate buffer (pH 3.0), at 37°C
-
50
hemoglobin
-
pH 3.0, 37°C
-
5
KPAEFF(NO2)AL

-
mutant enzyme D32E/D215E
6
KPAEFF(NO2)AL
-
mutant enzyme D32E
25
KPAEFF(NO2)AL
-
mutant enzyme D215E
96
KPAEFF(NO2)AL
-
wild-type enzyme
0.24
KPIEF(NO2)RL

-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
41.5
KPIEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V
52.3
KPIEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M
56.8
KPIEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V/E287M
60.7
KPIEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M
68.9
KPIEF(NO2)RL
-
pH 3.5, 25°C, wild-type enzyme
72.5
KPIEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F
97.8
KPIEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
0.63
KPIKF(NO2)RL

-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
32.3
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M
38.8
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F
38.9
KPIKF(NO2)RL
-
pH 3.5, 25°C, wild-type enzyme
40.5
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V
41.4
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
44.2
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M
55.5
KPIKF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V/E287M
0.8
KPILF(NO2)RL

-
pH 3.5, 25°C, mutant enzyme T222V/E287M
8
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
14
KPILF(NO2)RL
-
pH 3.5, 25°C, wild-type enzyme
22.1
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V
34.4
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M
35.6
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V/E287M
36.3
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M
53.1
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F
60.4
KPILF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
0.1
KPIQF(NO2)RL

-
pH 3.5, 25°C, wild-type enzyme
0.19
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V
0.24
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
0.53
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F
2 - 3.7
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M
2.8
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V/E287M
47.9
KPIQF(NO2)RL
-
pH 3.5, 25°C, wild-type enzyme
49.7
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V
68.9
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M
77.4
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V/E287M
82.2
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F
85.2
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M
97.7
KPIQF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
0.21
KPPEF(NO2)RL

-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
7
KPPEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M
47.3
KPPEF(NO2)RL
-
pH 3.5, 25°C, wild-type enzyme
58.9
KPPEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/T222V/E287M
62.3
KPPEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme E287M; pH 3.5, 25°C, mutant enzyme F111T/L112F
70
KPPEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V/E287M
71.4
KPPEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme T222V
79.8
KPPEF(NO2)RL
-
pH 3.5, 25°C, mutant enzyme F111T/L112F/E287M
16
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu

-
unglycosylated mutant S110N/L112T, pH 2.0
53
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
glycosylated mutant T77N, pH 2.0
54
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
glycosylated mutant S110N/L112T, pH 2.0
68.7
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
glycosylated mutant S281N, pH 2.0
70.6
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
glycosylated mutant E244N/V246T, pH 2.0
121
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
unglycosylated mutant E244N/V246T, pH 2.0
127
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
unglycosylated mutant S281N, pH 2.0
150.3
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
unglycosylated mutant S110N/L112T, pH 2.0
154
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
unglycosylated mutant T77N, pH 2.0
162
L-Lys-L-Pro-L-Ala-L-Glu-L-Phe-L-Phe(NO2)-L-Ala-L-Leu
-
wild-type, pH 2.0
1.2
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu

-
pH 3.95, 37°C, mutant enzyme G76V
2.9
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu
-
pH 3.95, 37°C, mutant enzyme G76S
23.8
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu
-
pH 3.95, 37°C, wild-type enzyme
43.4
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu
-
pH 3.95, 37°C, mutant enzyme G76A
88.7
Leu-Ser-Phe(p-NO2)-Nle-Ala-Leu
-
pH 3.95, 37°C, wild-type enzyme
2.5
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu

-
pH 2.1, 37°C, mutant enzyme G76S
11.1
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu
-
pH 2.1, 37°C, mutant enzyme G76V
47
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu
-
pH 2.1, 37°C, mutant enzyme G76A
180.5
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu
-
pH 2.1, 37°C, wild-type enzyme
181
Lys-Pro-Ala-Glu-Phe-Phe(p-NO2)-Ala-Leu
-
pH 2.1, 37°C, wild-type enzyme
2.7
POMC (165-174)

-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
3.7
POMC (165-174)
-
in 0.2 M sodium formate buffer, pH 4.0, at 37°C
0.54
Pro-Thr-Glu-Phe-(p-nitro-Phe)-Arg-Leu-OH

37°C, acidic pH
3.32
Pro-Thr-Glu-Phe-(p-nitro-Phe)-Arg-Leu-OH
37°C, acidic pH
additional information
additional information

dogfish
-
-
-
additional information
additional information
salmon
-
-
-
additional information
additional information
-
-
-
additional information
additional information
shark
-
-
-
additional information
additional information
-
-
-
additional information
additional information
-
-
-
additional information
additional information
-
-
-
additional information
additional information
-
pH-dependence of turnover number of N-trifluoroacetyl aromatic amino acids
-
additional information
additional information
-
turnover numbers for loop mutant enzyme S238-M234 and Y274-T283
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
L291S
-
replacement of a pepsin A-specific residue by a chymosin-specific one. Decrease in hydrolysis of peptides with hydrophobic/aromatic residues at Pā1 site, increase in hydrolysis of peptides with charged residues at Pā1
L291S/L298Q
-
replacement of a pepsin A-specific residue by a chymosin-specific one. Decrease in hydrolysis of peptides with hydrophobic/aromatic residues at Pā1 site, increase in hydrolysis of peptides with charged residues at Pā1
L298Q
-
replacement of a pepsin A-specific residue by a chymosin-specific one. Decrease in hydrolysis of peptides with hydrophobic/aromatic residues at Pā1 site, increase in hydrolysis of peptides with charged residues at Pā1
M289D
-
replacement of a pepsin A-specific residue by a chymosin-specific one. Decrease in hydrolysis of peptides with hydrophobic/aromatic residues at Pā1 site, increase in hydrolysis of peptides with charged residues at Pā1
D37A
the mutant is completely inactive towards the fluorogenic substrate Mca-KKPAEFFALK-Dnp at pH 4.0
D215E
-
unlike wild-type, the mutant fusion protein is incapable of autocatalytic activation upon acidification of the medium, as determined by Western blot analysis. Mature mutant pepsin is obtained by processing fusion protein samples through an immobilized pepsin column. Tm-value of mutant enzyme is 65°C compared to 71°C for wild-type enzyme. The pH activity profiles of wild-type and mutant pepsin is similar. Mutant enzyme has a stronger affinity for the synthetic substrate KPAEFF(NO2)AL. Turnover number for mutant enzyme is significantly lower than that of the wild-type. kcat/Km is 1.9fold lower than wild-type value
D32E
-
unlike wild-type, the mutant fusion protein is incapable of autocatalytic activation upon acidification of the medium, as determined by Western blot analysis. Mature mutant pepsin is obtained by processing fusion protein samples through an immobilized pepsin column. Tm-value of mutant enzyme is 63°C compared to 71°C for wild-type enzyme. Pronounced decrease in activity below pH 2.5. Mutant enzyme has a stronger affinity for the synthetic substrate KPAEFF(NO2)AL. Turnover number for mutant enzyme is significantly lower than that of the wild-type. kcat/Km is 8.7fold lower than wild-type value
D32E/D215E
-
unlike wild-type, the mutant fusion protein is incapable of autocatalytic activation upon acidification of the medium, as determined by Western blot analysis. Mature mutant pepsin is obtained by processing fusion protein samples through an immobilized pepsin column. Tm-value of mutant enzyme is 63°C compared to 71°C for wild-type enzyme. The pH activity profiles of wild-type and mutant pepsin is similar. KM-value for KPAEFF(NO2)AL is not significantly different relative to wild-type. Turnover number for mutant enzyme is significantly lower than that of the wild-type. kcat/Km is fold lower than wild-type value. kcat/Km is 13.3fold lower than wild-type value
DELTA240-246/+GD
-
inactivation rate at pH 7.0 is 86% of that of the wild-type value. The Km-value for KPAEFF(NO2)AL is 2fold higher than that of the wild-type enzyme. The KM-value for LSF(NO2)-Nle-AL as substrate is 79% of the wild-type value
E244N/V246T
-
introduction of N-glycosylation site. Glycosylated mutant shows similar KM-value and substrate specificity as wild-type, but reduced catalytic efficiency
E287M
-
the ratio of turnover number to KM-value for KPILF(NO2)RL is 2.2fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIEF(NO2)RL is 1.3fold higher than that of the wild-type enzyme,the ratio of turnover number to KM-value for KPIQF(NO2)RL is 1.6fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIKF(NO2)RL is 60% of that of the wild-type enzyme, the ratio of turnover number to KM-value for KPPEF(NO2)RL is 90% of that of the wild-type enzyme
F111T/L112F
-
the ratio of turnover number to KM-value for KPILF(NO2)RL is 3.8fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIEF(NO2)RL is 1.9fold higher than that of the wild-type enzyme,the ratio of turnover number to KM-value for KPIQF(NO2)RL is 2.3fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIKF(NO2)RL is 1.7fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPPEF(NO2)RL is 2.9fold higher than that of the wild-type enzyme. Mutant enzyme cleaves SGGYDLSFLPQPPQE at one site Leu-Ser, compared to three sites cleaved by the wild-type enzyme, and at a rate 23fold higher than that of the wild-type enzyme
F111T/L112F/E287M
-
the ratio of turnover number to KM-value for KPILF(NO2)RL is 5.8fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIEF(NO2)RL is 2.8fold higher than that of the wild-type enzyme,the ratio of turnover number to KM-value for KPIQF(NO2)RL is 2.8fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIKF(NO2)RL is 1.1fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPPEF(NO2)RL is 3.7fold higher than that of the wild-type enzyme
F111T/L112F/T222V/E287M
-
the ratio of turnover number to KM-value for KPILF(NO2)RL is 3.5fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIEF(NO2)RL is 2.4fold higher than that of the wild-type enzyme,the ratio of turnover number to KM-value for KPIQF(NO2)RL is 4.4fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIKF(NO2)RL is 2.2fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPPEF(NO2)RL is 5.1fold higher than that of the wild-type enzyme
G2C/L167C
-
the mutation reduces the inactivation rate at pH 7.0 by 1.8times compared to wild-type value. The Km-value for KPAEFF(NO2)AL is 2.35fold higher than that of the wild-type enzyme. The KM-value for LSF(NO2)-Nle-AL as substrate is 95% of the wild-type value
G2S/D3Y
-
the mutation reduces the inactivation rate at pH 7.0 by 1.4times compared to wild-type value. The Km-value for KPAEFF(NO2)AL is 2.2fold higher than that of the wild-type enzyme. The KM-value for LSF(NO2)-Nle-AL as substrate is 1.5fold higher than that of the wild-type enzyme
G2S/D3Y/L10M/T12A/E13S
-
the mutation reduces the inactivation rate at pH 7.0 by 5.8times. In presence of glycerol and sucrose, this mutant shows a very low rate of inactivation, the residual activity after 240 min is 50% of the initial activity compared to the wild-type which loses most of its activity in 60 min. The Km-value for KPAEFF(NO2)AL is 2.4fold higher than that of the wild-type enzyme. The KM-value for LSF(NO2)-Nle-AL as substrate is 1.5fold higher than that of the wild-type enzyme
G76A
-
mutant enzyme with lower catalytic efficiency and is activated more slowly than the wild-type enzyme. The slower activation process is associated directly with altered proteolytic activity
G76S
-
mutant enzyme with lower catalytic efficiency and is activated more slowly than the wild-type enzyme. The slower activation process is associated directly with altered proteolytic activity
G76V
-
mutant enzyme with lower catalytic efficiency and is activated more slowly than the wild-type enzyme. The slower activation process is associated directly with altered proteolytic activity
G78(S)S79
-
differences in substrate specificity and catalytic activity
L10M/T12A/E13S
-
the mutation reduces the inactivation rate at pH 7.0 by 1.5times compared to wild-type value. The Km-value for KPAEFF(NO2)AL is 1.9fold higher than that of the wild-type enzyme. The KM-value for LSF(NO2)-Nle-AL as substrate is 2.2fold higher than that of the wild-type enzyme
S110N/L112T
-
introduction of N-glycosylation site. Glycosylated mutant shows similar KM-value and substrate specificity as wild-type, but reduced catalytic efficiency
S196R/D200G/E202K
-
inactivation rate at pH 7.0 is 86% of that of the wild-type value
S281N
-
introduction of N-glycosylation site. Glycosylated mutant shows similar KM-value and substrate specificity as wild-type, but reduced catalytic efficiency
S46K/D52N/N54K/Q55R/D60K
-
inactivation rate at pH 7.0 is 91% of that of the wild-type value
S46K/D52N/N54K/Q55R/D60K/S196R/D200G/E202K
-
the mutation reduces the inactivation rate at pH 7.0 by 2.3times compared to wild-type value. Km-value for KPAEFF(NO2)AL is 1.7fold higher than that of the wild-type enzyme. The KM-value for LSF(NO2)-Nle-AL as substrate is 1.6fold higher than that of the wild-type enzyme
T222V
-
the ratio of turnover number to KM-value for KPILF(NO2)RL is 2.5fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIEF(NO2)RL is 1.1fold higher than that of the wild-type enzyme,the ratio of turnover number to KM-value for KPIQF(NO2)RL is 1.4fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIKF(NO2)RL is equal to that of the wild-type enzyme, the ratio of turnover number to KM-value for KPPEF(NO2)RL is 1.9fold higher than that of the wild-type enzyme
T222V/E287M
-
the ratio of turnover number to KM-value for KPILF(NO2)RL is 4.1fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIEF(NO2)RL is 2.6fold higher than that of the wild-type enzyme,the ratio of turnover number to KM-value for KPIQF(NO2)RL is 2.1fold higher than that of the wild-type enzyme, the ratio of turnover number to KM-value for KPIKF(NO2)RL is 80% of that of the wild-type enzyme, the ratio of turnover number to KM-value for KPPEF(NO2)RL is 2.9fold higher than that of the wild-type enzyme. Mutant enzyme cleaves site Ser-Phe in SGGYDLSFLPQPPQE at a rate 20fold higher than the wild-type enzyme
T77D
-
differences in substrate specificity and catalytic activity
T77D/G78(S)S79
-
double mutant, differences in substrate specificity and catalytic activity
T77N
-
introduction of N-glycosylation site. Glycosylated mutant shows similar KM-value and substrate specificity as wild-type, but reduced catalytic efficiency
additional information
-
two chain mutant
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Lin, X.; Tang, J.
Rearranging pepsinogen and pepsin by protein engineering
Adv. Exp. Med. Biol.
362
33-40
1995
Sus scrofa
brenda
Fruton, J.S.
Pepsin
The Enzymes, 3rd Ed. (Boyer, P. D. , ed. )
3
119-164
1971
dogfish, Gallus gallus, salmon, Scombridae gen. sp., shark, Sus scrofa
-
brenda
Ryle, A.P.
Pepsins, gastricsins and their zymogens
Methods Enzym. Anal. , 3rd Ed. (Bergmeyer, H. U. , ed. )
5
228-238
1984
Homo sapiens, Sus scrofa
-
brenda
Pichova, I.; Kostka, V.
Molecular characteristics of pepsinogen and pepsin from duck glandular stomach
Comp. Biochem. Physiol. B
97
89-94
1990
Anas platyrhynchos
brenda
Cooper, J.B.; Khan, G.; Taylor, G.; Tickle, I.J.; Blundell, T.L.
X-ray analyses of aspartic proteinases. II. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution
J. Mol. Biol.
214
199-222
1990
Sus scrofa
brenda
Dunn, B.M.; Fink, A.L.
Cryoenzymology of porcine pepsin
Biochemistry
23
5241-5247
1984
Sus scrofa
brenda
Kageyama, T.; Takahashi, K.
Rabbit pepsinogens. Purification, characterization, analysis of the conversion process to pepsin and determination of the NH2-terminal amino-acid sequences
Eur. J. Biochem.
141
261-269
1984
Oryctolagus cuniculus
brenda
Donta, S.T.; van Vunakis, H.
Chicken pepsinogens and pepsins. Their isolation and properties
Biochemistry
9
2791-2797
1970
Gallus gallus
brenda
Norris, E.R.; Mathies, J.C.
Preparation, properties, and crystallization of tuna pepsin
J. Biol. Chem.
204
673-680
1953
Scombridae gen. sp.
brenda
Rajagopalan, T.G.; Moore, S.; Stein, W.H.
Pepsin from pepsinogen. Preparation and properties
J. Biol. Chem.
241
4940-4950
1966
Sus scrofa
brenda
Merrett, T.G.; Bar-Eli, E.; van Vunakis, H.
Pepsinogens A, C, and D from the smooth dogfish
Biochemistry
8
3696-3702
1969
dogfish
brenda
Seijffers, M.J.; Miller, L.L.; Segal, H.L.
Partial characterization of human pepsin I, pepsin IIA, pepsin IIB, and pepsin III
Biochemistry
3
1203-1209
1964
Homo sapiens
brenda
Lee, D.; Ryle, A.P.
Pepsin D. A minor component of commercial pepsin preparations
Biochem. J.
104
742-748
1967
Sus scrofa
brenda
Inouye, K.; Fruton, J.S.
Studies on the specificity of pepsin
Biochemistry
6
1765-1777
1967
Sus scrofa
brenda
Bohak, Z.
Purification and characterization of chicken pepsinogen and chicken pepsin
J. Biol. Chem.
244
4638-4648
1969
Gallus gallus, Sus scrofa
brenda
Nevaldine, B.; Kassell, B.
Bovine pepsinogen and pepsin. IV. A new method of purification of the pepsin
Biochim. Biophys. Acta
250
207-209
1971
Bos taurus
brenda
Bannister, D.W.; Burns, A.B.
Pepsin treatment of avian skin collagen. Effects on solubility, subunit composition and aggregation properties
Biochem. J.
129
677-681
1972
Gallus gallus
brenda
Hunkapiller, M.W.; Richards, J.H.
Studies on the catalytic mechanism of pepsin using a new synthetic substrate
Biochemistry
11
2829-2839
1972
Sus scrofa
brenda
Moravek, L.; Kostka, V.
Isolation and characterization of cyanogen bromide fragments of hog pepsin
Collect. Czech. Chem. Commun.
38
304-316
1973
Sus scrofa
-
brenda
Green, M.L.; Llewellin, J.M.
The purification and properties of a single chicken pepsinogen fraction and the pepsin derived from it
Biochem. J.
133
105-115
1973
Gallus gallus
brenda
Abu-Erreish, G.M.; Peanasky, R.J.
Pepsin inhibitors from Ascaris lumbricoides. Isolation, purification, and some properties
J. Biol. Chem.
249
1558-1565
1974
Sus scrofa
brenda
Kageyama, T.; Takahashi, K.
Pepsinogens and pepsins from gastric mucosa of Japanese Monkey. Purification and characterization
J. Biochem.
79
455-468
1976
Macaca fuscata fuscata
brenda
Roberts, N.B.; Taylor, W.H.
The preparation and purification of individual human pepsins by using diethylaminoethyl-cellulose
Biochem. J.
169
607-615
1978
Homo sapiens
brenda
Muto, N.; Tani, S.
Purification and characterization of rat pepsinogens whose contents increase with developmental progress
J. Biochem.
85
1143-1149
1979
Rattus norvegicus
brenda
Kageyama, T.; Takahashi, K.
Monkey pepsinogens and pepsins. Monkey pepsinogens and pepsins. V. Purification, Characterization, and amino-terminal sequence determination of crab-eating monkey pepsinogens and pepsins
J. Biochem.
88
635-645
1980
Macaca fascicularis
brenda
Kageyama, T.; Moriyama, A.; Takahashi, K.
Purification and characterization of pepsinogens and pepsins from Asiatic black bear, and amino acid sequence determination of the NH2-terminal 60 residues of the major pepsinogen
J. Biochem.
94
1557-1567
1983
Ursus thibetanus
brenda
Pohl, J.; Zaoral, M.; Jindra, A.; Kostka, V.
Purification of pepsins and cathepsin D by affinity chromatography on Sepharose 4B with an immobilized synthetic inhibitor
Anal. Biochem.
139
265-271
1984
Gallus gallus, Homo sapiens, Sus scrofa
brenda
Sielecki, A.R.; Fedorov, A.A.; Boodhoo, A.; Andreeva, N.S.; James, M.N.
Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution
J. Mol. Biol.
214
143-170
1990
Sus scrofa
brenda
Lin, X.l.; Wong, R.N.S.; Tang, J.
Synthesis, purification, and active site mutagenesis of recombinant porcine pepsinogen
J. Biol. Chem.
264
4482-4489
1989
Sus scrofa
brenda
Athauda, S.B.P.; Tanji, M.; Kageyama, T.; Takahashi, K.
A comparative study on the NH2-terminal amino acid sequences and some other properties of six isozymic forms of human pepsinogens and pepsins
J. Biochem.
106
920-927
1989
Homo sapiens
brenda
Esumi, H.; Yasugi, S.; Mizuno, T.; Fujiki, H.
Purificaton and characterization of a pepsinogen and its pepsin from proventriculus of the Japanese quail
Biochim. Biophys. Acta
611
363-370
1980
Coturnix japonica
brenda
Shintani, T.; NOmura, K.; Ichishima, E.
Engineering of porcine pepsin. Alteration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis
J. Biol. Chem.
272
18855-18861
1997
Sus scrofa
brenda
Fujinaga, M.; Chernaia, M.M.; Tarasova, N.I.; Mosimann, S.C.; James, M.N.G.
Crystal structure of human pepsin and its complex with pepstatin
Protein Sci.
4
960-972
1995
Homo sapiens
brenda
Fox, P.F.; Whitaker, J.R.; O'Leary, P.A.
Isolation and characterization of sheep pepsin
Biochem. J.
161
389-398
1977
Ovis aries
brenda
Kassell, B.; Wright, C.L.; Ward, P.H.
Canine pepsinogen and pepsin
Methods Enzymol.
45
452-458
1976
Canis lupus familiaris
brenda
Chen, K.C.S.; Tao, N.; Tang, J.
Primary structure of porcine pepsin. I. Purification and placement of cyanogen bromide fragments and the amino acid sequence of fragment CB5
J. Biol. Chem.
250
5068-5075
1975
Sus scrofa
brenda
Marciniszyn, J.; Sepulveda, P.; Huang, W.Y.; Lanier, J.P.
Primary structure of porcine pepsin. II. Amino acid sequence of two cyanogen bromide fragments, CB3 and CB4
J. Biol. Chem.
250
5076-5081
1975
Sus scrofa
brenda
Tanji, M.; Kageyama, T.; Takahashi, K.
Tuna pepsinogens and pepsins. Purification, characterization and amino-terminal sequences
Eur. J. Biochem.
177
251-259
1988
Scombridae gen. sp.
brenda
Ruenwongsa, P.; Chulavatnatol, M.
Acidic protease from human seminal plasma. Purification and some properties of active enzyme and of proenzyme
J. Biol. Chem.
250
7574-7578
1975
Homo sapiens
brenda
Tanaka, T.; Teo, K.S.L.; Lamb, K.M.; Harris, L.J.; Yada, R.Y.
Effect of replacement of the conserved Tyr75 on the catalytic properties of porcine pepsin A
Protein Pept. Lett.
5
19-26
1998
Sus scrofa
-
brenda
Hirasawa, A.; Athauda, S.B.P.; Takahashi, K.
Purification and characterization of turtle pepsinogen and pepsin
J. Biochem.
120
407-414
1996
Pelodiscus sinensis
brenda
Pavlisko, A.; Tial, A.; Vecchi, S.; Coppes, Z.
Properties of pepsin and trypsin isolated from the digestive tract of Parona signata 'palometa'
J. Food Biochem.
21
289-308
1997
Parona signata
brenda
El-Shamei, Z.A.; Gouda, A.
Studies on chicken pepsin I-isolation and purification
Egypt. J. Food Sci.
18
245-252
1990
Gallus gallus
-
brenda
Gouda, A.; El-Shamei, Z.
Studies on chicken pepsin III-Parameters affecting activities and properties of two chicken pepsins
Egypt. J. Food Sci.
18
201-210
1990
Gallus gallus
-
brenda
James, M.N.G.; Sielecki, A.R.
Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 A resolution
Nature
319
33-38
1986
Sus scrofa
brenda
Petersen, J.F.W.; Chernaia, M.M.; Rao-Naik, C.; Zalatoris, J.L.; Dunn, B.M.; James, M.N.G.
X-ray crystallographic studies of the complex between porcine pepsin and the aspartic proteinase inhibitor PI-3 from the nematode Ascaris suum
Adv. Exp. Med. Biol.
436
391-395
1998
Sus scrofa
brenda
Okoniewska, M.; Tanaka, T.; Yada, R.Y.
The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis
Biochem. J.
349
169-177
2000
Sus scrofa
brenda
Campos, L.A.; Sancho, J.
The active site of pepsin is formed in the intermediate conformation dominant at mildly acidic pH
FEBS Lett.
538
89-95
2003
Sus scrofa
brenda
Frydlova, J.; Kucerova, Z.; Ticha, M.
Affinity chromatography of porcine pepsin and pepsinogen using immobilized ligands derived from the specific substrate for this enzyme
J. Chromatogr. B
800
109-114
2004
Sus scrofa
brenda
Athauda, S.B.; Nishigai, M.; Arakawa, H.; Ikai, A.; Ukai, M.; Takahashi, K.
Inhibition of human pepsin and gastricsin by alpha2-macroglobulin
J. Enzyme Inhib. Med. Chem.
18
219-224
2003
Homo sapiens
brenda
Ng, K.K.S.; Petersen, J.F.W.; Cherney, M.M.; Garen, C.; Zalatoris, J.J.; Rao-Naik, C.; Dunn, B.M.; Martzen, M.R.; Peanasky, R.J.; James, M.N.G.
Structural basis for the inhibition of porcine pepsin by Ascaris pepsin inhibitor-3
Nat. Struct. Biol.
7
653-657
2000
Sus scrofa
brenda
Tanaka, T.; Yada, R.Y.
N-terminal portion acts as an initiator of the inactivation of pepsin at neutral pH
Protein Eng.
14
669-674
2001
Sus scrofa
brenda
Galea, C.A.; Dalrymple, B.P.; Kuypers, R.; Blakeley, R.
Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin
Protein Sci.
9
1947-1959
2000
Sus scrofa
brenda
Simo, C.; Gonzalez, R.; Barbas, C.; Cifuentes, A.
Combining peptide modeling and capillary electrophoresis-mass spectrometry for characterization of enzymes cleavage patterns: recombinant versus natural bovine pepsin A
Anal. Chem.
77
7709-7716
2005
Bos taurus
brenda
Kesavulu, M.M.; Ramasubramanian, S.; Suguna, K.
Effect of dimethyl sulphoxide on the crystal structure of porcine pepsin
Biochem. Biophys. Res. Commun.
331
1510-1514
2005
Sus scrofa
brenda
Kageyama, T.
Role of S1 loop residues in the substrate specificities of pepsin A and chymosin
Biochemistry
43
15122-15130
2004
Homo sapiens
brenda
Ticu, E.L.; Vercaigne-Marko, D.; Huma, A.; Artenie, V.; Toma, O.; Guillochon, D.
A kinetic study of bovine haemoglobin hydrolysis by pepsin immobilized on a functionalized alumina to prepare hydrolysates containing bioactive peptides
Biotechnol. Appl. Biochem.
39
199-208
2004
Sus scrofa
brenda
Carginale, V.; Trinchella, F.; Capasso, C.; Scudiero, R.; Parisi, E.
Gene amplification and cold adaptation of pepsin in Antarctic fish. A possible strategy for food digestion at low temperature
Gene
336
195-205
2004
Trematomus bernacchii (Q6HA03), Trematomus bernacchii (Q6HA04), Trematomus bernacchii (Q6HA05), Trematomus bernacchii
brenda
Yoshimasu, M.A.; Tanaka, T.; Ahn, J.; Yada, R.Y.
Effect of N-linked glycosylation on the aspartic proteinase porcine pepsin expressed from Pichia pastoris
Glycobiology
14
417-429
2004
Sus scrofa
brenda
Takagi, K.; Teshima, R.; Okunuki, H.; Itoh, S.; Kawasaki, N.; Kawanishi, T.; Hayakawa, T.; Kohno, Y.; Urisu, A.; Sawada, J.
Kinetic analysis of pepsin digestion of chicken egg white ovomucoid and allergenic potential of pepsin fragments
Int. Arch. Allergy Immunol.
136
23-32
2005
Sus scrofa
brenda
Carlsen, C.U.; Skibsted, L.H.
Myoglobin species with enhanced prooxidative activity is formed during mild proteolysis by pepsin
J. Agric. Food Chem.
52
1675-1681
2004
Sus scrofa
brenda
Kopper, R.A.; Odum, N.J.; Sen, M.; Helm, R.M.; Steve Stanley, J.; Wesley Burks, A.
Peanut protein allergens: gastric digestion is carried out exclusively by pepsin
J. Allergy Clin. Immunol.
114
614-618
2004
Sus scrofa
brenda
Moschopoulou, E.E.; Kandarakis, I.G.; Alichanidis, E.; Anifantakis, E.M.
Purification and characterization of chymosin and pepsin from kid
J. Dairy Res.
73
49-57
2006
Capra hircus
brenda
Zhu, H.; Hart, C.A.; Sales, D.; Roberts, N.B.
Bacterial killing in gastric juice - effect of pH and pepsin on Escherichia coli and Helicobacter pylori
J. Med. Microbiol.
55
1265-1270
2006
Sus scrofa
brenda
Dee, D.; Pencer, J.; Nieh, M.P.; Krueger, S.; Katsaras, J.; Yada, R.Y.
Comparison of solution structures and stabilities of native, partially unfolded and partially refolded pepsin
Biochemistry
45
13982-13992
2006
Sus scrofa
brenda
Klomklao, S.; Kishimura, H.; Yabe, M.; Benjakul, S.
Purification and characterization of two pepsins from the stomach of pectoral rattail (Coryphaenoides pectoralis)
Comp. Biochem. Physiol. B
147B
682-689
2007
Albatrossia pectoralis
brenda
Sinkovits, A.F.; Bryksa, B.C.; Tanaka, T.; Yada, R.Y.
Understanding the structure-function role of specific catalytic residues in a model food related enzyme: Pepsin
Enzyme Microb. Technol.
40
1175-1180
2007
Sus scrofa
-
brenda
Brier, S.; Maria, G.; Carginale, V.; Capasso, A.; Wu, Y.; Taylor, R.M.; Borotto, N.B.; Capasso, C.; Engen, J.R.
Purification and characterization of pepsins A1 and A2 from the Antarctic rock cod Trematomus bernacchii
FEBS J.
274
6152-6166
2007
Trematomus bernacchii (Q6HA04), Trematomus bernacchii (Q6HA05), Trematomus bernacchii
brenda
Zavros, Y.; Waghray, M.; Tessier, A.; Bai, L.; Todisco, A.; L. Gumucio, D.; Samuelson, L.C.; Dlugosz, A.; Merchant, J.L.
Reduced pepsin A processing of sonic hedgehog in parietal cells precedes gastric atrophy and transformation
J. Biol. Chem.
282
33265-33274
2007
Mus musculus
brenda
Frydlova, J.; Kucerova, Z.; Ticha, M.
Interaction of pepsin with aromatic amino acids and their derivatives immobilized to sepharose
J. Chromatogr. B
863
135-140
2008
Sus scrofa
brenda
Simon, L.M.; Kotorman, M.; Szabo, A.; Nemcsok, J.; Laczko, I.
The effects of organic solvent/water mixtures on the structure and catalytic activity of porcine pepsin
Proc. Biochem.
42
909-912
2007
Sus scrofa
-
brenda
Kageyama, H.; Ueda, H.; Tezuka, T.; Ogasawara, A.; Narita, Y.; Kageyama, T.; Ichinose, M.
Differences in the P1' substrate specificities of pepsin A and chymosin
J. Biochem.
147
167-174
2010
Homo sapiens, Sus scrofa
brenda
Filuszova, M.; Kucerova, Z.; Ticha, M.
Peptide inhibitor modified magnetic particles for pepsin separation
J. Sep. Sci.
32
2017-2021
2009
Homo sapiens, Sus scrofa
brenda
Dee, D.R.; Yada, R.Y.
The prosegment catalyzes pepsin folding to a kinetically trapped native state
Biochemistry
49
365-371
2010
Sus scrofa
brenda
Dee, D.R.; Filonowicz, S.; Horimoto, Y.; Yada, R.Y.
Recombinant prosegment peptide acts as a folding catalyst and inhibitor of native pepsin
Biochim. Biophys. Acta
1794
1795-1801
2009
Sus scrofa
brenda
Emmambux, M.N.; Taylor, J.R.
Properties of heat-treated sorghum and maize meal and their prolamin proteins
J. Agric. Food Chem.
57
1045-1050
2009
Sus scrofa
brenda
de Luis, R.; Lavilla, M.; Sanchez, L.; Calvo, M.; Perez, M.D.
Pepsin degradation of Cry1A(b) protein purified from genetically modified maize (Zea mays)
J. Agric. Food Chem.
58
2548-2553
2010
Sus scrofa
brenda
Benjakul, S.; Thiansilakul, Y.; Visessanguan, W.; Roytrakul, S.; Kishimura, H.; Prodpran, T.; Meesane, J.
Extraction and characterisation of pepsin-solubilised collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus)
J. Sci. Food Agric.
90
132-138
2010
Sus scrofa, Thunnus tonggol
brenda
Dee, D.R.; Myers, B.; Yada, R.Y.
Dynamics of thermodynamically stable, kinetically trapped, and inhibitor-bound states of pepsin
Biophys. J.
101
1699-1709
2011
Sus scrofa
brenda
Kubota, K.; Metoki, Y.; Athauda, S.B.; Shibata, C.; Takahashi, K.
Stability profiles of nepenthesin in urea and guanidine hydrochloride: comparison with porcine pepsin A
Biosci. Biotechnol. Biochem.
74
2323-2326
2010
Sus scrofa
brenda
Cao, M.J.; Chen, W.Q.; Du, C.H.; Yoshida, A.; Lan, W.G.; Liu, G.M.; Su, W.J.
Pepsinogens and pepsins from Japanese seabass (Lateolabrax japonicus)
Comp. Biochem. Physiol. B
158
259-265
2011
Lateolabrax japonicus (E2IKQ9)
brenda
Simoes, I.; Faro, R.; Bur, D.; Kay, J.; Faro, C.
Shewasin A, an active pepsin homolog from the bacterium Shewanella amazonensis
FEBS J.
278
3177-3186
2011
Shewanella amazonensis (A1S3N8), Shewanella amazonensis
brenda
Weng, W.Y.; Wu, T.; Chen, W.Q.; Liu, G.M.; Osatomi, K.; Su, W.J.; Cao, M.J.
Purification and characterization of pepsinogens and pepsins from the stomach of rice field eel (Monopterus albus Zuiew)
Fish Physiol. Biochem.
37
543-552
2011
Monopterus albus
brenda