Information on EC 1.1.1.14 - L-iditol 2-dehydrogenase

Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Specify your search results
Mark a special word or phrase in this record:
Select one or more organisms in this record:
Show additional data
Do not include text mining results
Include (text mining) results (more...)
Include results (AMENDA + additional results, but less precise; more...)


The expected taxonomic range for this enzyme is: Bacteria, Eukaryota

EC NUMBER
COMMENTARY
1.1.1.14
-
RECOMMENDED NAME
GeneOntology No.
L-iditol 2-dehydrogenase
REACTION
REACTION DIAGRAM
COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
L-iditol + NAD+ = L-sorbose + NADH + H+
show the reaction diagram
-
-
-
-
L-iditol + NAD+ = L-sorbose + NADH + H+
show the reaction diagram
ordered catalytic mechanism and substrate binding
-
L-iditol + NAD+ = L-sorbose + NADH + H+
show the reaction diagram
ordered catalytic mechanism and substrate binding, active site structure
-
L-iditol + NAD+ = L-sorbose + NADH + H+
show the reaction diagram
ordered catalytic mechanism and substrate binding
-
REACTION TYPE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
oxidation
-
-
-
-
redox reaction
-
-
-
-
reduction
-
-
-
-
PATHWAY
KEGG Link
MetaCyc Link
D-sorbitol degradation I
-
Fructose and mannose metabolism
-
galactose degradation IV
-
Metabolic pathways
-
SYSTEMATIC NAME
IUBMB Comments
L-iditol:NAD+ 2-oxidoreductase
This enzyme is widely distributed and has been described in archaea, bacteria, yeast, plants and animals. It acts on a number of sugar alcohols, including (but not limited to) L-iditol, D-glucitol, D-xylitol, and D-galactitol. Enzymes from different organisms or tissues display different substrate specificity. The enzyme is specific to NAD+ and can not use NADP+.
SYNONYMS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
D-sorbitol dehydrogenase
-
-
D-sorbitol dehydrogenase
Q8KIL1
-
D-sorbitol dehydrogenase
Q9KWR5
-
D-sorbitol dehydrogenase
Gluconobacter oxydans G624 (FERM BP-4415)
Q9KWR5
-
-
D-sorbitol dehydrogenase
Gluconobacter oxydans IFO, Gluconobacter oxydans IFO 3255
-
-
-
D-sorbitol dehydrogenase
Gluconobacter oxydans IFO 3255
Q8KIL1
-
-
dehydrogenase, L-iditol
-
-
-
-
glucitol dehydrogenase
-
-
-
-
L-iditol 2-dehydrogenase
-
-
-
-
L-iditol dehydrogenase (sorbitol)
-
-
-
-
L-iditol:NAD oxidoreductase
-
-
-
-
L-iditol:NAD+ 5-oxidoreductase
-
-
-
-
LeSDH
Q3C2L6
-
NAD+-dependent sorbitol dehydrogenase
-
-
-
-
NAD+-dependent sorbitol dehydrogenase
Q5I6M3, Q5I6M4
-
NAD-dependent polyol dehydrogenase
Gluconobacter sp.
-
-
NAD-dependent sorbitol dehydrogenase
-
-
-
-
NAD-SDH
Q5I6M3, Q5I6M4
-
NAD-sorbitol dehydrogenase
-
-
-
-
polyol dehydrogenase
-
-
-
-
polyol dehydrogenase
-
-
polyol dehydrogenase
Gluconobacter oxydans IFO 3255
-
-
-
Protein tms1
-
-
-
-
SDH
-
-
SDH
Q6EM45
-
SDH
-
-
SldA
Gluconobacter oxydans IFO 3255
-
-
-
SLDH
Gluconobacter oxydans G624 (FERM BP-4415)
Q9KWR5
-
-
SLDH
Gluconobacter oxydans IFO 3255
Q8KIL1
-
-
sorbitol dehydrogenase
-
-
-
-
sorbitol dehydrogenase
Gluconobacter sp.
-
-
sorbitol dehydrogenase
-
-
sorbitol dehydrogenase
Q6EM45
-
sorbitol dehydrogenase
-
-
sorbitol dehydrogenase
-
-
sorbitol dehydrogenase
-
-
SORD
-
-
MdSDH5
Q5I6M3, Q5I6M4
gene name
additional information
-
enzyme belongs to the family of medium-chain dehydrogenase/reductase proteins
CAS REGISTRY NUMBER
COMMENTARY
9028-21-1
-
ORGANISM
COMMENTARY
LITERATURE
SEQUENCE CODE
SEQUENCE DB
SOURCE
(Kloeckera sp.) No. 2201
-
-
Manually annotated by BRENDA team
guinea pig
-
-
Manually annotated by BRENDA team
precursor; strain IFO 3255, gene sldA
SwissProt
Manually annotated by BRENDA team
strain G624 (FERM BP-4415)
UniProt
Manually annotated by BRENDA team
strain IFO 3255
-
-
Manually annotated by BRENDA team
strain IFO 3255, gene sldA
-
-
Manually annotated by BRENDA team
strain IFO3257
-
-
Manually annotated by BRENDA team
Gluconobacter oxydans G624 (FERM BP-4415)
strain G624 (FERM BP-4415)
UniProt
Manually annotated by BRENDA team
Gluconobacter oxydans IFO
strain IFO 3255
-
-
Manually annotated by BRENDA team
Gluconobacter oxydans IFO 3255
precursor; strain IFO 3255, gene sldA
SwissProt
Manually annotated by BRENDA team
Gluconobacter oxydans IFO 3255
strain IFO 3255, gene sldA
-
-
Manually annotated by BRENDA team
Gluconobacter oxydans IFO3257
strain IFO3257
-
-
Manually annotated by BRENDA team
Gluconobacter sp.
-
-
-
Manually annotated by BRENDA team
apple; cv Granny Smith
-
-
Manually annotated by BRENDA team
apple; cv. Ourin
-
-
Manually annotated by BRENDA team
isozyme SDH1; enzyme is encoded by 9 different genes encoding isozymes SDH1-SDH9
SwissProt
Manually annotated by BRENDA team
isozyme SDH2; enzyme is encoded by 9 different genes encoding isozymes SDH1-SDH9
SwissProt
Manually annotated by BRENDA team
isozyme SDH9; enzyme is encoded by 9 different genes encoding isozymes SDH1-SDH9
SwissProt
Manually annotated by BRENDA team
MdSDH5; cv. Starkrimson, gene MdSDH5
UniProt
Manually annotated by BRENDA team
MdSDH6; cv. Starkrimson, gene MdSDH6
UniProt
Manually annotated by BRENDA team
C57/B6 mice
-
-
Manually annotated by BRENDA team
CD1 mice
-
-
Manually annotated by BRENDA team
commercial preparation
-
-
Manually annotated by BRENDA team
ram
-
-
Manually annotated by BRENDA team
japanese pear
-
-
Manually annotated by BRENDA team
strain Si4 (DSM8371)
-
-
Manually annotated by BRENDA team
Rhodobacter sphaeroides Si4
strain Si4 (DSM8371)
-
-
Manually annotated by BRENDA team
MIll. cv. Momotaro
SwissProt
Manually annotated by BRENDA team
expression of isoform Sdh1 is elevated in high-sugar mutants, after sugar injections, and more pronounced when transfected tissues are incubated at low oxygen concentrations
-
-
Manually annotated by BRENDA team
GENERAL INFORMATION
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
metabolism
-
the zinc-finger protein ZAC1 is up-regulated under hypertonic stress and negatively regulates expression of SDH, allowing for accumulation of sorbitol as a compatible organic osmolyte
metabolism
Q5I6M3, Q5I6M4
NAD-SDH is a key enzyme in sorbitol metabolism and plays an important role in regulating sink strength and determining the quality of apple fruit; NAD-SDH is a key enzyme in sorbitol metabolism and plays an important role in regulating sink strength and determining the quality of apple fruit
physiological function
-
sorbitol dehydrogenase can convert sorbitol to fructose, which can then be metabolized via the glycolytic pathway in sperm to make ATP. Sorbitol can serve as an alternative energy source for sperm motility and protein tyrosine phosphorylation
SUBSTRATE
PRODUCT                      
REACTION DIAGRAM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
3-deoxy-D-sorbitol + NAD+
? + NADH
show the reaction diagram
-
-
-
-
?
6-deoxy-D-sorbitol + NAD+
? + NADH
show the reaction diagram
-
nearly 2fold higher activity compared to D-sorbitol
-
-
?
6-fluoro-D-sorbitol + NAD+
? + NADH
show the reaction diagram
-
over 2fold higher activity compared to D-sorbitol, best substrate
-
-
?
D-adonitol + NAD+
D-ribulose + NADH
show the reaction diagram
-
-
-
-
?
D-arabinose + NADH
?
show the reaction diagram
-
not
-
-
-
D-arabinose + NADH
?
show the reaction diagram
-
not
-
-
-
D-arabinose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-arabinose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-arabitol + NAD(P)+
D-xylulose + NAD(P)H + H+
show the reaction diagram
-, Q9KWR5
-
-
-
?
D-arabitol + NAD(P)+
D-xylulose + NAD(P)H + H+
show the reaction diagram
Gluconobacter oxydans G624 (FERM BP-4415)
Q9KWR5
-
-
-
?
D-arabitol + NAD+
?
show the reaction diagram
-
not
-
-
-
D-arabitol + NAD+
?
show the reaction diagram
-
not
-
-
-
D-arabitol + NAD+
?
show the reaction diagram
-
not
-
-
-
D-arabitol + NAD+
?
show the reaction diagram
-
not
-
-
-
D-arabitol + NAD+
?
show the reaction diagram
-
not
-
-
-
D-arabitol + NAD+
?
show the reaction diagram
-
not
-
-
-
D-arabitol + NAD+
?
show the reaction diagram
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
show the reaction diagram
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
show the reaction diagram
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
show the reaction diagram
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
show the reaction diagram
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
show the reaction diagram
Rhodobacter sphaeroides Si4
-
D-arabinitol is identical, low activity
-
-
?
D-arabitol + NAD+
?
show the reaction diagram
Gluconobacter oxydans IFO3257
-
not
-
-
-
D-arabitol + NAD+
D-xylulose + NADH + H+
show the reaction diagram
Gluconobacter oxydans, Gluconobacter oxydans IFO
-
best substrate
-
-
?
D-fructose + NAD+
D-sorbitol + NADH
show the reaction diagram
-
-
-
-
r
D-fructose + NADH
?
show the reaction diagram
Gluconobacter sp.
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-fructose + NADH + H+
D-sorbitol + NAD+
show the reaction diagram
-
-
-
-
?
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
-
-
-
?
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
-
-
-
?
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
-
-
r
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
-
-
r
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
not
-
-
-
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
not
-
-
-
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
not
-
-
-
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
not
-
-
-
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
not
-
-
-
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
not
-
-
-
D-galactitol + NAD+
D-tagatose + NADH
show the reaction diagram
-
low activity
-
-
?
D-gluconate + NAD+
?
show the reaction diagram
-
low activity
-
-
?
D-glucose + NADH
?
show the reaction diagram
-
not
-
-
-
D-glucose + NADH
?
show the reaction diagram
-
not
-
-
-
D-glucose + NADH
?
show the reaction diagram
-
not
-
-
-
D-glucose + NADH
?
show the reaction diagram
-
not
-
-
-
D-glucose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-glycero-D-gluco-heptitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-mannitol + NAD(P)+
D-fructose + NAD(P)H + H+
show the reaction diagram
-, Q9KWR5
-
-
-
?
D-mannitol + NAD(P)+
D-fructose + NAD(P)H + H+
show the reaction diagram
Gluconobacter oxydans G624 (FERM BP-4415)
Q9KWR5
-
-
-
?
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Gluconobacter oxydans, Gluconobacter oxydans IFO 3255
Q8KIL1
-
-
-
?
D-mannitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Gluconobacter oxydans IFO
-
-
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
not
-
-
-
D-mannitol + NAD+
?
show the reaction diagram
-
not
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
not
-
-
-
D-mannitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
Q3C2L6, -
6% of the activity with D-sorbitol
-
-
?
D-mannitol + NAD+
?
show the reaction diagram
Gluconobacter oxydans IFO3257
-
low activity
-
-
?
D-mannose + NADH
?
show the reaction diagram
-
not
-
-
-
D-mannose + NADH
?
show the reaction diagram
-
not
-
-
-
D-mannose + NADH
?
show the reaction diagram
-
not
-
-
-
D-mannose + NADH
?
show the reaction diagram
-
not
-
-
-
D-mannose + NADH
?
show the reaction diagram
-
not
-
-
-
D-mannose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-psicose + NADH
?
show the reaction diagram
-
-
-
-
?
D-psicose + NADH
?
show the reaction diagram
-
not
-
-
-
D-raffinose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-ribitol + NAD+
?
show the reaction diagram
-
not
-
-
-
D-ribitol + NAD+
?
show the reaction diagram
-
not
-
-
-
D-ribitol + NAD+
?
show the reaction diagram
Gluconobacter oxydans, Gluconobacter oxydans IFO3257
-
not
-
-
-
D-ribose + NADH
?
show the reaction diagram
-
not
-
-
-
D-ribose + NADH
?
show the reaction diagram
-
not
-
-
-
D-ribose + NADH
?
show the reaction diagram
-
not
-
-
-
D-ribose + NADH
?
show the reaction diagram
-
not
-
-
-
D-ribose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-ribulose + NADH
?
show the reaction diagram
-
-
-
-
?
D-ribulose + NADH
?
show the reaction diagram
-
-
-
-
?
D-ribulose + NADH
?
show the reaction diagram
-
-
-
-
?
D-ribulose + NADH
?
show the reaction diagram
-
-
-
-
?
D-ribulose + NADH
?
show the reaction diagram
-
-
-
-
?
D-ribulose + NADH
?
show the reaction diagram
-
not
-
-
-
D-ribulose + NADH
?
show the reaction diagram
-
not
-
-
-
D-sorbitol + 2,6-dichlorophenolindophenol
L-sorbose + ?
show the reaction diagram
-
electron acceptor: i.e. DCIP
-
-
?
D-sorbitol + NAD(P)+
L-sorbose + NAD(P)H + H+
show the reaction diagram
-, Q9KWR5
-
-
-
?
D-sorbitol + NAD(P)+
L-sorbose + NAD(P)H + H+
show the reaction diagram
Gluconobacter oxydans G624 (FERM BP-4415)
Q9KWR5
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
-
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Q3C2L6, -
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
second step of the polyol pathway of glucose metabolism
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
second step of the polyol pathway of glucose metabolism, important in diabetic disease and hyperglycaemia
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
i.e. D-glucitol, dissociation of the enzyme-coenzyme binary complex is the rate-limiting step
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
i.e. D-glucitol, dissociation of the enzyme-coenzyme binary complex is the rate-limiting step, 2- and 4-hydroxy groups of D-sorbitol are important for substrate bindig
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
i.e. D-glucitol, dissociation of the enzyme-coenzyme binary complex is the rate-limiting step, interaction of Zn2+ with Ser46 and the oxygen atom of the 2-hydroxy and the 4-hydroxy groups is important for substrate binding
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Rhodobacter sphaeroides Si4
-
-
-
r
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
Gluconobacter oxydans IFO3257
-
-
-
r
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Q00796
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Gluconobacter sp.
-
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Q8KIL1
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Q6EM42, Q6EM45, Q6EM46
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
-
enzyme is the main L-sorbose producing activity in the cell
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Q00796
part of the polyol pathway that interconverts glucose and fructose
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Q6EM42, Q6EM45, Q6EM46
the primary enzyme responsible for metabolism of the major phloem-transported carbohydrate sorbitol, present and active during apple fruit set and early development
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Gluconobacter oxydans IFO 3255
-
-, enzyme is the main L-sorbose producing activity in the cell
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Gluconobacter oxydans IFO 3255
Q8KIL1
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Gluconobacter oxydans IFO
-
-
-
-
?
D-sorbitol + NAD+
? + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-tagatose + NADH
D-galactitol + NAD+
show the reaction diagram
-
-
-
-
?
D-tagatose + NADH
D-galactitol + NAD+
show the reaction diagram
-
-
-
-
r
D-tagatose + NADH
D-galactitol + NAD+
show the reaction diagram
-
-
-
-
r
D-tagatose + NADH
D-galactitol + NAD+
show the reaction diagram
-
not
-
-
-
D-tagatose + NADH
D-galactitol + NAD+
show the reaction diagram
-
not
-
-
-
D-tagatose + NADH
D-galactitol + NAD+
show the reaction diagram
-
not
-
-
-
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
-
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
D-xylitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
D-xylose + NADH
?
show the reaction diagram
-
not
-
-
-
D-xylose + NADH
?
show the reaction diagram
-
not
-
-
-
D-xylose + NADH
?
show the reaction diagram
-
not
-
-
-
D-xylose + NADH
?
show the reaction diagram
-
not
-
-
-
D-xylose + NADH
?
show the reaction diagram
-
not
-
-
-
D-xylose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-xylose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-xylulose + NADH
?
show the reaction diagram
-
-
-
-
?
D-xylulose + NADH
?
show the reaction diagram
-
-
-
-
?
D-xylulose + NADH
?
show the reaction diagram
-
-
-
-
?
D-xylulose + NADH
?
show the reaction diagram
-
-
-
-
?
D-xylulose + NADH
?
show the reaction diagram
-
-
-
-
?
D-xylulose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-xylulose + NADH
?
show the reaction diagram
-
low activity
-
-
?
D-xylulose + NADH
?
show the reaction diagram
Rhodobacter sphaeroides Si4
-
low activity
-
-
?
D-xylulose + NADH
?
show the reaction diagram
Gluconobacter oxydans IFO3257
-
-
-
-
?
erythritol + NAD+
?
show the reaction diagram
-
-
-
-
?
erythritol + NAD+
?
show the reaction diagram
-
not
-
-
-
erythritol + NAD+
?
show the reaction diagram
-
not
-
-
-
erythritol + NAD+
?
show the reaction diagram
-
not
-
-
-
erythritol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
erythritol + NAD+
?
show the reaction diagram
Q3C2L6, -
13% of the activity with D-sorbitol
-
-
?
ethanol + NAD+
acetaldehyde + NADH
show the reaction diagram
-
-
-
-
?
ethanol + NAD+
acetaldehyde + NADH
show the reaction diagram
-
-
-
-
?
ethanol + NAD+
acetaldehyde + NADH
show the reaction diagram
-
not
-
-
-
ethanol + NAD+
acetaldehyde + NADH
show the reaction diagram
-
not
-
-
-
ethanol + NAD+
acetaldehyde + NADH
show the reaction diagram
-
not
-
-
-
ethanol + NAD+
acetaldehyde + NADH
show the reaction diagram
-
low activity
-
-
?
glycerol + NAD+
?
show the reaction diagram
-
not
-
-
-
glycerol + NAD+
?
show the reaction diagram
-
not
-
-
-
glycerol + NAD+
?
show the reaction diagram
-
not
-
-
-
glycerol + NAD+
?
show the reaction diagram
-
not
-
-
-
glycerol + NAD+
?
show the reaction diagram
-
not
-
-
-
glycerol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
glycerol + NAD+
dihydroxyacetone + NADH
show the reaction diagram
-
-
-
-
?
glycerol + NAD+
dihydroxyacetone + NADH
show the reaction diagram
Gluconobacter oxydans, Gluconobacter oxydans IFO 3255
Q8KIL1
-
-
-
?
glycerol + NAD+
dihydroxyacetone + NADH
show the reaction diagram
Gluconobacter oxydans IFO
-
-
-
-
?
L-arabitol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-arabitol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-arabitol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-arabitol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-arabitol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-arabitol + NAD+
?
show the reaction diagram
-
not
-
-
-
L-arabitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
L-arabitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
L-arabitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
L-arabitol + NAD+
?
show the reaction diagram
Q3C2L6, -
13% of the activity with D-sorbitol
-
-
?
L-arabitol + NAD+
?
show the reaction diagram
Rhodobacter sphaeroides Si4
-
-
-
-
?
L-erythrulose + NADH
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-iditol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
L-iditol + NAD+
?
show the reaction diagram
Q3C2L6, -
79% of the activity with D-sorbitol
-
-
?
L-iditol + NAD+
?
show the reaction diagram
Rhodobacter sphaeroides Si4
-
-
-
-
?
L-rhamnose + NADH
?
show the reaction diagram
-
low activity
-
-
?
L-sorbose + NADH
?
show the reaction diagram
-
-
-
-
?
L-sorbose + NADH
?
show the reaction diagram
-
-
-
-
?
L-sorbose + NADH
?
show the reaction diagram
-
-
-
-
?
L-sorbose + NADH
?
show the reaction diagram
-
-
-
-
?
L-sorbose + NADH
?
show the reaction diagram
-
-
-
-
?
L-sorbose + NADH
?
show the reaction diagram
-
-
-
-
?
L-sorbose + NADH
?
show the reaction diagram
-
low activity
-
-
?
L-sorbose + NADH
?
show the reaction diagram
-
low activity
-
-
?
L-sorbose + NADH
?
show the reaction diagram
-
low activity
-
-
?
L-threitol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-threitol + NAD+
?
show the reaction diagram
-
-
-
-
?
L-threitol + NAD+
?
show the reaction diagram
-
low activity
-
-
?
ribitol + NAD+
?
show the reaction diagram
Q3C2L6, -
60% of the activity with D-sorbitol
-
-
?
sorbitol + NAD+
D-fructose + NADH
show the reaction diagram
-
-
-
r
sorbitol + NAD+
D-fructose + NADH
show the reaction diagram
-
-
-
-
-
Xylitol + NAD+
?
show the reaction diagram
Q3C2L6, -
29% of the activity with D-sorbitol
-
-
?
xylitol + NAD+
D-xylulose + NADH + H+
show the reaction diagram
-
-
-
r
meso-erythritol + NAD+
erythrulose + NADH
show the reaction diagram
-
high activity
-
-
?
additional information
?
-
-
no activity with 2-deoxy-D-sorbitol and 2-fluoro-D-sorbitol, 3-fluoro-D-sorbitol and 4-fluoro-D-sorbitol are poor substrates
-
-
-
additional information
?
-
-
no activity with D-glucose, D-fructose, L-sorbose, methanol, ethanol, and sucrose
-
-
-
additional information
?
-
-, Q9KWR5
no activity against D-xylitol, D-ribitol, D-inositol or glycerol
-
-
-
additional information
?
-
Gluconobacter oxydans G624 (FERM BP-4415)
Q9KWR5
no activity against D-xylitol, D-ribitol, D-inositol or glycerol
-
-
-
additional information
?
-
Gluconobacter oxydans IFO
-
no activity with D-glucose, D-fructose, L-sorbose, methanol, ethanol, and sucrose
-
-
-
NATURAL SUBSTRATES
NATURAL PRODUCTS
REACTION DIAGRAM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
(Substrate)
LITERATURE
(Substrate)
COMMENTARY
(Product)
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
-
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
second step of the polyol pathway of glucose metabolism
-
-
?
D-sorbitol + NAD+
D-fructose + NADH + H+
show the reaction diagram
-
second step of the polyol pathway of glucose metabolism, important in diabetic disease and hyperglycaemia
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Q8KIL1
-
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
-
enzyme is the main L-sorbose producing activity in the cell
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Q00796
part of the polyol pathway that interconverts glucose and fructose
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Q6EM42, Q6EM45, Q6EM46
the primary enzyme responsible for metabolism of the major phloem-transported carbohydrate sorbitol, present and active during apple fruit set and early development
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Gluconobacter oxydans IFO 3255
-
enzyme is the main L-sorbose producing activity in the cell
-
-
?
D-sorbitol + NAD+
L-sorbose + NADH + H+
show the reaction diagram
Gluconobacter oxydans IFO 3255
Q8KIL1
-
-
-
?
sorbitol + NAD+
D-fructose + NADH
show the reaction diagram
-
-
-
r
sorbitol + NAD+
D-fructose + NADH
show the reaction diagram
-
-
-
-
-
xylitol + NAD+
D-xylulose + NADH + H+
show the reaction diagram
-
-
-
r
COFACTOR
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
NAD+
-
specific for
NAD+
-
specific for
NAD+
-
specific for
NAD+
-
preferred
NAD+
-
Lys294 is important in cofactor binding
NAD+
Gluconobacter sp.
-
optimal at 0.5 mM, specific for
NAD+
Q3C2L6, -
no activity with NADP+
NAD+
-
sequence contains a NAD+-binding site
NADH
-
specific for
NADH
-
specific for
NADH
-
preferred
NADH
Gluconobacter sp.
-
-
NADP+
-
less effective than NAD+
NADP+
-
cannot replace NAD+
NADP+
-
cannot replace NAD+
NADP+
-
cannot replace NAD+
NADP+
Q9KWR5
exhibits 15 times higher activity in the presence of NADP+ than that of NAD+
NADPH
-
less effective than NADH
METALS and IONS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
Co2+
-
slightly activating
Fe3+
-
10 mM FeCl3 stimulates activity 2 fold
Zn
-
1 mol zinc per subunit
Zn
-
0.83 mol per subunit
Zn2+
-
1 catalytic zinc atom per subunit, interaction with Ser46 and the oxygen atom of the 2-hydroxy and the 4-hydroxy groups is important for substrate binding
Zn2+
-
1 catalytic zinc atom per subunit
Zn2+
-
1 catalytic zinc atom per subunit, coordination in the active site
Zn2+
Q00796
the catalytic zinc is coordinated with residues His69, Cys44, Glu70, and a water molecule
Zn2+
-
mutant E154C conatins 0.1-0.4 atoms per subunit
Zn2+
-
-
Zn2+
-
apparent stability constant of 1600000000000 per M for Zn(II)SDH. Under physiological conditions, enzyme is saturated with Zn2+
Zn2+
-
sequence contains a Zn2+-binding site
INHIBITORS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
(2S)-1-(3-thio-2-methylpropionyl)-L-proline
-
-
1,10-phenanthroline
-
-
1,10-phenanthroline
-
-
1,2,3,4,5,6-cyclohexanehexolphosphoric acid
-
at pH 9.9
-
1,2-dithioethane
-
-
-
1,7-phenanthroline
-
-
1-thiobutane
-
-
1-thioglycol
-
-
1-thiosorbitol
-
-
2,2'-dipyridyl
-
-
2,3-Dimercaptopropanol
-
-
2,3-Dithiopropanol
-
-
2-hydroxybenzoic acid
-
at pH 9.9
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
-
i.e. SDI-158
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
-
i.e. SDI-158, inhibition mechanism, dissociation constants of enzyme-inhibitor complex at various pH values
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
-
i.e. SDI-158
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
Q00796
i.e. SDI-158 or CP-166,572
2-mercaptoethanol
-
-
2-methyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
Q00796
i.e. SDI-157
2-methypropanoic acid amide
-
at pH 9.9
2-propylpentanoic acid
-
at pH 9.9
2-thiobutane
-
-
3,4-dihydroxyphenyl-1-hydroxyacetic acid
-
at pH 7.4
3,4-dihydroxyphenyl-1-hydroxyacetic acid
-
weak inhibition
3,4-dihydroxyphenyl-ethanediol
-
at pH 7.4
3-hydroxy-4-methoxy-phenyl-1-hydroxy-acetic acid
-
at pH 7.4
4,4'-dipyridyl
-
-
4-hydroxy-3-methoxy-phenyl-1-hydroxy-acetic acid
-
at pH 7.4
4-hydroxy-3-methoxy-phenylacetic acid
-
at pH 7.4
4-hydroxy-3-methoxy-phenylethanediol
-
at pH 7.4
4-hydroxy-3-methoxy-phenylethyl alcohol
-
at pH 7.4
4-hydroxy-3-methoxy-phenylethyl alcohol
-
-
8-hydroxyquinoline
-
-
acetic acid amide
-
at pH 9.9
ADP
-
2 mM, 72% activity
Alrestatin
-
-
AMP
-
2 mM, 83% activity
ATP
-
2 mM, 54% activity
Ba(CH3COO)2
-
1 mM reduces activity to about 20%
Berberine
-
-
-
bis-diethylthiocarbamoyldisulfide
-
-
butanedioic acid
-
at pH 9.9
Cibacron Blue 3G-A
-
-
CP-642,931
-
a potent and specific sorbitol dehydrogenase inhibitor, rmacokinetics, biomarker pharmacodynamics, and safety analysis, overview. The inhibitor is rapidly absorbed through the oral route and effectively inhibits SDH. However, the drug is not well tolerated due to adverse neuromuscular effects. The inhibitor alters the red blood cell sorbitol dehydrogenase activity after oral administration
-
Cu2+
-
complete inhibition at 0.91 mM
cyanamide
-
at pH 9.9
cyanamide
-
weak inhibition
cyanide
-
-
cysteamine
-
significant only at pH 9.9
cysteine
-
strong effect on sorbitol oxidation, slight effect on fructose reduction, ZnSO4 reverses inhibition
cysteine
-
at alkaline pH
cysteine
-
4 mM does not inhibit sorbitol oxidation
cysteine
-
-
cysteine
-
inhibits fructose reduction at pH 9.0, stimulates at pH 7.4
D-fructose
-
above 250 mM, substrate inhibition
D-fructose
-
at high concentration, product inhibition
D-Sorbitol
-
above 49 mM, substrate inhibition
Decanoic acid
-
at pH 9.9
diethyldicarbonate
-
-
Diethylthiocarbamate
-
at pH 9.9
Diethylthiocarbamate
-
weak inhibition
Disulfiram
-
-
dithioerythritol
-
protection at low concentration, inhibition at high concentration, 100 mM
dithiothreitol
-
protection at low concentration, inhibition at high concentration, 100 mM
dithiothreitol
-
-
dithiothreitol
-
-
DL-2-bromosuccinate
-
1 mM
DL-2-thiovaline
-
-
DTT
-
competitive and noncompetitive with respect to D-sorbitol and NAD+, respectively
EDTA
-
at pH 7.4, not at pH 9.0, fructose reduction
Eriochrome Black T
-
-
ethanedioic acid
-
at pH 9.9
Fe2+
-
complete inhibition at 0.91 mM
-
glutathione
-
-
ICI 171071
-
-
ICI 222155
-
-
imidazole
-
-
iodoacetamide
-
NADH 0.4 mM protects
iodoacetate
-
strong effect on sorbitol oxidation, weaker effect on fructose reduction
Isonicotinic acid hydrazide
-
-
KCl
-
0.1 M, inactivation
Mg2+
-
slightly inhibitory
Mn2+
-
slightly inhibitory
N-bromosuccinimide
-
-
N-ethylmaleimide
-
1 mM
NAD+
-
above 7 mM, substrate inhibition
NAD+
-
above 7 mM, substrate inhibition
NAD+
-
above 1 mM, substrate inhibition
NADH
-
above 0.4 mM, substrate inhibition
NADH
-
at high concentration, product inhibition
NiCl2
-
1 mM reduces activity to about 20%
o-phenanthroline
-
-
p-chloromercuribenzoate
-
-
p-chloromercuribenzoate
-
-
p-chloromercuribenzoate
-
1 mM
p-chloromercuribenzoate
-
-
p-hydroxymercuribenzoate
-
-
Pb(CH3COO)2
-
-
Penicillamine
-
weak inhibition
Ponalrestat
-
-
propanedioic acid
-
at pH 9.9
pyrazole
-
-
pyrazole
-
weak inhibition
quercetin
-
at pH 7.4
quercetin
-
-
quercetin
-
-
quinine x HCl
-
slightly inhibitory, 25% inhibition at 1.79 mM
Semicarbazide
-
10 mM
thioacetate
-
at pH 9.9
Thiocyanate
-
at pH 9.9
Thiocyanate
-
weak inhibition
Thiourea
-
at pH 9.9
Tolrestat
-
-
Urea
-
at pH 9.9
Valproic acid
-
weak inhibition
monoiodoacetate
-
75% inhibition at 1.79 mM
additional information
-
drug design, inhibitory compounds
-
additional information
-
inhibition mechanism, poor inhibitors are 3,4-dihydroxyphenyl-ethandiol, imidazole, isobutyramide, and urea
-
additional information
-
drug design, inhibitory compounds
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
(R)-(-)-2-octanol
-
at pH 9.9
(S)-(+)-2-octanol
-
at pH 9.9
1-Hexanol
-
-
1-Octanol
-
-
2,2,2-tribromoethanol
-
-
2,2,2-trichloroethanol
-
-
2,2,2-Trifluoroethanol
-
-
2-monobromoethanol
-
-
2-monochloroethanol
-
-
2-monofluoroethanol
-
-
cysteine
-
fructose reduction at pH 7.4, inhibits at pH 9.0
D-Sorbitol
-
at high concentration
dithiothreitol
-
1 mM 24% stimulation
Semicarbazide
-
1 mM
Sodium azide
-
10 mM stimulates 2fold
sodium taurodeoxycholate
-
-
ZnSO4
-
reverses cysteine inhibition
ZnSO4
-
3.5 mM reverses EDTA inhibition
ZnSO4
-
reverses cysteine inhibition
haloalcohols
-
at high concentration
-
additional information
-
enzyme needs product, i.e. SldB, of upstream gene sldB, encoding a hydrophobic polypeptide, for activity, the polypeptide might be a chaperone-like component that signals processing and folding of the enzyme to give the active enzyme form
-
KM VALUE [mM]
KM VALUE [mM] Maximum
SUBSTRATE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
15.5
-
2-deoxy-D-sorbitol
-
-
15.5
-
2-fluoro-D-sorbitol
-
-
1.9
-
3-deoxy-D-sorbitol
-
-
15.5
-
3-fluoro-D-sorbitol
-
-
26.4
-
4-deoxy-D-sorbitol
-
-
11.7
-
4-fluoro-D-sorbitol
-
-
0.48
-
6-deoxy-D-sorbitol
-
-
0.74
-
6-fluoro-D-sorbitol
-
-
1
-
D-fructose
-
-
20
-
D-fructose
-
-
77
-
D-fructose
-
-
99.5
-
D-fructose
Q3C2L6, -
37C, pH 7.5
110
-
D-fructose
-
-
136
-
D-fructose
-
-
140
-
D-fructose
-
-
160
-
D-fructose
-
-
176
-
D-fructose
-
-
180
-
D-fructose
-
-
215
-
D-fructose
-
-
330
-
D-fructose
-
-
1500
-
D-fructose
-
-
1.5
-
D-galactitol
-
-
3.1
-
D-galactitol
-
-
16.7
-
D-galactitol
-
-
500
-
D-galactitol
-
-
6.2
-
D-Glucitol
-
-
9.1
-
D-Glucitol
-
-
16
-
D-Mannitol
-
-
381
-
D-Mannitol
-
-
555
-
D-Mannitol
-
-
1.3
-
D-ribitol
-
-
1.8
-
D-ribitol
-
-
67
-
D-ribitol
-
-
125
-
D-ribitol
-
-
34
-
D-ribulose
-
-
54
-
D-ribulose
-
-
260
-
D-ribulose
-
-
0.0032
-
D-Sorbitol
-
-
0.24
-
D-Sorbitol
-
-
0.28
-
D-Sorbitol
-
-
0.33
-
D-Sorbitol
-
wild-type, pH 10.0
0.35
-
D-Sorbitol
-
-
0.38
-
D-Sorbitol
-
-
1.1
-
D-Sorbitol
-
-
1.5
-
D-Sorbitol
-
-
2.39
-
D-Sorbitol
Q3C2L6, -
37C, pH 10.5
3
-
D-Sorbitol
-
pH 9.0, 25C
9.8
-
D-Sorbitol
-
-
11
-
D-Sorbitol
-
-
11
-
D-Sorbitol
-
-
18
-
D-Sorbitol
-
-
18
-
D-Sorbitol
-
pH 6.0, 25C, with 2,6-dichlorophenolindophenol as electron acceptor
21
-
D-Sorbitol
-
wild-type, pH 9.0, 25C
40.3
-
D-Sorbitol
-
-
86
-
D-Sorbitol
-
-
132
-
D-Sorbitol
Q9KWR5
in the presence of NADP+ (pH 10.1)
785
-
D-Sorbitol
-
mutant E154C, pH 9.0, 25C
10
-
D-tagatose
-
-
0.17
-
D-xylitol
-
wild-type, pH 10.0
0.18
-
D-xylitol
-
-
0.4
-
D-xylitol
-
-
3.2
-
D-xylitol
-
-
14
-
D-xylitol
-
-
37
-
D-xylitol
-
-
1
-
D-xylulose
-
-
20
-
L-Arabitol
-
-
25
-
L-Erythrulose
-
-
9
-
L-Iditol
-
-
18
-
L-Iditol
-
-
20
-
L-Iditol
-
-
110
-
L-sorbose
-
-
670
-
L-sorbose
-
-
800
-
L-sorbose
-
-
0.041
-
NAD+
-
-
0.082
-
NAD+
-
-
0.089
-
NAD+
-
-
0.21
-
NAD+
-
-
0.24
-
NAD+
-
-
0.29
-
NAD+
-
mutant E154C, pH 9.0, 25C
0.43
-
NAD+
-
wild-type, pH 9.0, 25C
0.5
-
NAD+
-
pH 9.0, 25C
0.6
-
NAD+
-
-
0.007
-
NADH
-
-
0.052
-
NADH
-
-
0.067
-
NADH
-
-
0.09
-
NADH
-
-
0.24
-
NADH
-
-
268
-
L-Threitol
-
-
additional information
-
additional information
-
kinetic mechanism
-
TURNOVER NUMBER [1/s]
TURNOVER NUMBER MAXIMUM[1/s]
SUBSTRATE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
441
-
3-deoxy-D-sorbitol
-
-
350
-
3-fluoro-D-sorbitol
-
-
129
-
4-deoxy-D-sorbitol
-
-
354
-
4-fluoro-D-sorbitol
-
-
274
-
6-deoxy-D-sorbitol
-
-
559
-
6-fluoro-D-sorbitol
-
-
0.71
-
D-Sorbitol
-
wild-type, pH 10.0
1.19
-
D-Sorbitol
-
mutant E154C, pH 9.0, 25C
2
8
D-Sorbitol
-
pH 9.0, 25C
161
-
D-Sorbitol
-
wild-type, pH 9.0, 25C
506
-
D-Sorbitol
-
-
0.63
-
D-xylitol
-
wild-type, pH 10.0
Ki VALUE [mM]
Ki VALUE [mM] Maximum
INHIBITOR
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
IMAGE
0.026
-
1,2-dithioethane
-
pH 9.9
-
0.34
-
1-thiosorbitol
-
pH 9.9
0.007
-
2,3-Dithiopropanol
-
pH 9.9
0.00023
-
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
-
-
0.00025
-
2-hydroxymethyl-4-(4-N,N-dimethylaminosulfonyl-1-piperazino)pyrimidine
-
-
35
-
3,4-dihydroxyphenyl-1-hydroxyacetic acid
-
pH 9.9
1.7
-
4-hydroxy-3-methoxy-phenylethyl alcohol
-
pH 9.9
0.025
-
Berberine
-
pH 9.9
-
0.022
-
Cibacron Blue 3G-A
-
pH 9.9
10
-
cyanamide
-
pH 9.9
11
-
Diethylthiocarbamate
-
pH 9.9
0.0075
-
Disulfiram
-
pH 9.9
0.22
-
NAD+
-
-
0.01
-
NADH
-
-
13
-
Penicillamine
-
pH 9.9
28
-
pyrazole
-
pH 9.9
0.072
-
quercetin
-
pH 9.9
22
-
Thiocyanate
-
pH 9.9
4.5
-
Valproic acid
-
pH 9.9
0.029
-
Eriochrome Black T
-
pH 9.9
additional information
-
additional information
-
inhibition kinetics at different pH
-
SPECIFIC ACTIVITY [µmol/min/mg]
SPECIFIC ACTIVITY MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
7.62
-
-
purified recombinant enzyme
14.4
-
-
-
30.94
-
-
partially purified
45.3
-
-
purified enzyme
52
-
-
-
89.5
-
-
-
additional information
-
-
activity at growth in media with different pH values
pH OPTIMUM
pH MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
4.5
-
Q9KWR5
native enzyme
5.6
-
-
D-fructose reduction
5.7
7
-
D-fructose reduction
5.9
-
-
D-fructose reduction
6
7.2
-
D-fructose reduction
6
-
-
D-fructose reduction
6
-
-
D-fructose reduction
6
-
-
assay at
6.1
-
-
D-fructose reduction
6.7
-
-
D-fructose reduction
7
-
-
D-fructose reduction
7
-
-
D-fructose reduction
7
-
Q6EM42, Q6EM45, Q6EM46
assay at
7.4
8
-
D-fructose reduction
7.4
-
-
D-fructose reduction
7.4
-
-
D-fructose reduction
7.5
-
Q3C2L6, -
fructose reduction
8.1
8.5
-
sorbitol oxidation
8.8
-
-
D-fructose reduction
9
10
-
sorbitol oxidation
9
10
-
sorbitol oxidation
9
10.5
-
sorbitol oxidation
9
-
-
sorbitol oxidation
9
-
-
sorbitol oxidation
9.5
10.5
Gluconobacter sp.
-
assay at
9.5
-
-
sorbitol oxidation
9.5
-
-
assay at
9.6
-
-
sorbitol oxidation
9.6
-
-
sorbitol oxidation
9.9
-
-
sorbitol oxidation
9.9
-
-
assay at
10
-
-
sorbitol oxidation
10.1
-
Q9KWR5
recombinant enzyme
10.5
-
Q3C2L6, -
sorbitol oxidation
11
-
-
sorbitol oxidation
11
-
-
sorbitol oxidation
pH RANGE
pH RANGE MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
4.7
8
-
at pH 4.7 and 8 about 50% of activity maximum, D-fructose reduction
5
7
-
at pH 5.0 and pH 7.0 about 60% of maximal activity, fructose reduction
5
7
-
30% of maximal activity at pH 5.0 and 60% of maximal activity at pH 7.0, fructose reduction
5
7.5
-
less than 20% of maximal activity below pH 5, less than 80% above pH 7.5, fructose reduction
6
7.2
-
less than 50% of maximal activity above and below, sugar reduction
6
9
-
at pH 6 about 70% of maximal activity, at pH 9 about 40%, fructose reduction
7
10
-
40% of maximal activity at 7 and 70% of maximal activity at 10, sorbitol oxidation
7.5
10
-
at pH 7.5 about 70% of maximal activity, at pH 10 about 100%, sorbitol oxidation
7.5
9
-
less than 20% of maximal activity below pH 7.5, 100% at pH 9.0, sorbitol oxidation
7.5
9.5
-
at pH 7.5 and pH 9.5 about 70% of maximal activity, sorbitol oxidation
8
11
-
at pH 8 and 11 about 50% of activity maximum, sorbitol oxidation
9
10.5
-
less than 70% of maximal activity above and below, sorbitol oxidation
9.2
11.6
-
less than 50% of maximal activity above and below, sorbitol oxidation
additional information
-
Q8KIL1
broad pH spectrum in vivo
additional information
-
-
-
TEMPERATURE OPTIMUM
TEMPERATURE OPTIMUM MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
20
-
-
assay at
25
-
-
assay at
37
-
-
assay at
40
-
Gluconobacter sp.
-
D-sorbitol oxidation
50
-
Gluconobacter sp.
-
D-fructose reduction
TEMPERATURE RANGE
TEMPERATURE MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
15
50
-
50% of maximal activity at 15C, 40% of maximal activity at 50C
30
50
-
maximal activity at 30C, 40% activity at 45C, 30% activity at 50C, no activity at 60C
35
65
-
35C: about 50% of activity maximum, 65C: about 95% of activity maximum
pI VALUE
pI VALUE MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
4.2
-
-
isoelectric focusing, pI value isoform present in seed
4.8
-
-
isoelectric focusing, pI value isoform present in seed
5.5
-
-
isoelectric focusing, pI value isoform present in seed and cortex
6.1
-
-
calculated
6.3
-
-
isoelectric focusing, pI value isoform present in seed and cortex
7.3
-
-
isoelectric focusing, pI value isoform present in cortex
8.3
-
-
isoelectric focusing, pI value isoform present in cortex
SOURCE TISSUE
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
SOURCE
-
isoform Sdh1, specific for kernel and endosperm
Manually annotated by BRENDA team
-
sorbitol dehydrogenase is active throughout development
Manually annotated by BRENDA team
-
expression is higher at the young and mature stage than at other stages
Manually annotated by BRENDA team
Q5I6M3, Q5I6M4
flesh and vascular tissue; flesh and vascular tissue
Manually annotated by BRENDA team
-
cell culture derived from the kidney inner medulla
Manually annotated by BRENDA team
-
isoform Sdh1, specific for kernel and endosperm. Maximaml expression at both mRNA and enzyme activity level during early kernel development
Manually annotated by BRENDA team
-
papilla, inner medulla, cortex
Manually annotated by BRENDA team
-
expression in mature leaf is higher than in young and folded leaf
Manually annotated by BRENDA team
Q5I6M3, Q5I6M4
vascular tissue and mesophyll tissue of young and old leaves; vascular tissue and mesophyll tissue of young and old leaves
Manually annotated by BRENDA team
-
commercial preparation
Manually annotated by BRENDA team
-
ventral and dorsal
Manually annotated by BRENDA team
-
activity is higher than in cortex per mg and fresh weight, and contributes significantly to whole fruit activity during weeks 2-5 after bloom. Isoforms SDH1 and SDH3 are expressed in both seed and cortex tissue. Isoforms SDH6 and SDH9 are expressed in seed tissues only
Manually annotated by BRENDA team
-
enzyme activity is higher in seed than in cortex per mg and fresh weight. Isoforms SDH1 and SDH3 are expressed in both seed and cortex tissue, isoform SDH2 expression is limited to cortex
Manually annotated by BRENDA team
-
SORD is present along the entire length of sperm flagellum, but does not show the same distribution pattern as alpha-tubulin. Sord mRNA and SORD protein expression is up-regulated during late spermiogenesis
Manually annotated by BRENDA team
-
tissue culture
Manually annotated by BRENDA team
additional information
Q6EM42, Q6EM45, Q6EM46
enzyme expression and activity during apple fruit set and early development, mRNA and activityis present during the first 5 wees after bloom, important for carbohydrate metabolism, overview; enzyme expression and activity during apple fruit set and early development, mRNA and activity is present during the first 5 wees after bloom, important for carbohydrate metabolism, overview
Manually annotated by BRENDA team
additional information
-
sorbitol can substitute for glucose or fructose in capacitating media
Manually annotated by BRENDA team
additional information
-
SDH expression analysis, overview
Manually annotated by BRENDA team
additional information
Q5I6M3, Q5I6M4
the enzyme is ubiquitously expressed in both sink and source organs; the enzyme is ubiquitously expressed in both sink and source organs, immunohistochemic analysis, overview
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
GeneOntology No.
LITERATURE
SOURCE
Q8KIL1
bound, 2 isozymes
Manually annotated by BRENDA team
Gluconobacter oxydans IFO
-
bound
-
Manually annotated by BRENDA team
Gluconobacter oxydans IFO 3255
-
bound; bound, 2 isozymes
-
Manually annotated by BRENDA team
additional information
-
SORD is associated with mitochondria and near the plasma membrane of the sperm flagellum, immunohistochemic analysis, overview
-
Manually annotated by BRENDA team
additional information
Q5I6M3, Q5I6M4
immunohistochemic analysis, overview
-
Manually annotated by BRENDA team
MOLECULAR WEIGHT
MOLECULAR WEIGHT MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
40000
-
-
plus 80000, 160000 and 300000, mutant Y110F
53640
-
Q9KWR5
calculated from amino acid sequence
61000
-
-
Stokes' radius, sedimentation coefficient
63000
-
-
gel filtration
65800
-
-
Stokes' radius, sedimentation coefficient
80000
-
-
plus 160000, 40000 and 300000, mutant Y110F
95000
-
-
gel filtration
97000
-
-
disc gel electrophoresis
106000
-
-
gel filtration
110000
-
-
gel filtration
115000
-
-
ultracentrifugal analysis
120000
-
-
gel filtration
140000
-
-
gel filtration
153000
-
-
gel filtration
156000
-
-
gel filtration
160000
-
-
plus 80000, 40000 and 300000, mutant Y110F
300000
-
-
above 300000, wild-type and part of mutant Y110F
800000
-
-
gel filtration
SUBUNITS
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
?
-
x * 26000, SDS-PAGE
?
Q6EM42, Q6EM45, Q6EM46
x * 37000, about, recombinant enzyme, SDS-PAGE
?
-
x * 38800, calculated
?
-
x * 39000, SDS-PAGE
decamer
-
10 x 80000, SDS-PAGE
decamer
Gluconobacter oxydans IFO
-
10 x 80000, SDS-PAGE
-
dimer
-
2 * 32000, SDS-PAGE
dimer
-
2 * 32300, SDS-PAGE
dimer
-
2 * 29000, SDS-PAGE
dimer
-
plus tetramer and monomer, mutant 110F
dimer
Rhodobacter sphaeroides Si4
-
2 * 29000, SDS-PAGE
-
monomer
Q8KIL1
1 * 80000, SDS-PAGE
monomer
-
plus tetramer and monomer, mutant 110F
tetramer
-
4 * 35000-40000, SDS-PAGE
tetramer
-
4 * 39000, SDS-PAGE
tetramer
-
4 * 39000, SDS-PAGE
tetramer
-
4 * 26000, SDS-PAGE
tetramer
-
4 * 37000, about
tetramer
Q00796
4 identical, catalytically active subunits, crystal structure
tetramer
-
MALDI-TOF, wild-type and part of mutant Y110F
tetramer
Gluconobacter oxydans IFO3257
-
4 * 26000, SDS-PAGE
-
trimer
Q8KIL1
3 * 80000
trimer
Gluconobacter oxydans IFO 3255
-
3 * 80000
-
monomer
Gluconobacter oxydans IFO 3255
-
1 * 80000, SDS-PAGE
-
additional information
-
structure model
additional information
-
3D-strcuture
additional information
-
network of coupled hydrogen bonds holds up the protein interface and tetramer stability
Crystallization/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
purified enzyme alone, and in complex with NAD+, or with NADH and inhibitor SDI-158, X-ray diffraction structure determination and analysis at 1.9-2.0 A resolution, modelling
Q00796
purified recombinant enyme, hanging drop vapour diffusion method, 22C, enzyme is complexed with cofactor NAD+ in a molar ratio 1:6, 0.0025 ml protein solution mixed with 0.002 ml well solution containing 0.1 M Tris, pH 8.6, 0.2 M sodium acetate, 10% PEG 3350, and with 0.0005 ml 30% v/v 2-methyl-2,4-pentanediol, 1 week, X-ray diffraction structure determination and analysis at 2.75 A resolution
-
sitting drop vapour-diffusion method. Sorbitol dehydrogenase is crystallized in the absence of the cofactor NAD(H) and its structure is determined to 2.4 A resolution using molecular replacement
-
pH STABILITY
pH STABILITY MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
4.5
11
-
several days at 4C
4.5
-
-
at lower pH denaturation occurs
5
9
-
30 min at 30C
6
-
-
loses zinc at lower pH
7
8
-
12 h at 4C
TEMPERATURE STABILITY
TEMPERATURE STABILITY MAXIMUM
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
4
-
-
50% loss of activity after 4 days
18
-
-
50% loss of activity after 40 min, alpha-crystallin protects fully against activity loss
20
-
-
30% loss of activity after 3 days, 70% loss of activity after 6 days, 100% loss of activity after 10 days
20
-
-
50% loss of activity after 32 hours
21
-
-
50% loss of activity after 2 days, non-purified enzyme in serum
22
-
-
5 h, stable
30
-
-
50% loss of activity after 6 hours
30
-
-
50% loss of activity after 8 days in presence of 30% sucrose
35
-
-
stable up to
40
-
-
50% loss of activity after 5 min
40
-
-
50% loss of activity after 18 hours in presence of 30% sucrose
40
-
-
30 min, stable
40
-
-
30 min, stable
40
-
-
loss of 20% activity
45
-
-
50% loss of activity after 20 min, alpha-crystallin protects fully against activity loss
50
-
-
50% loss of activity after 1 min
50
-
-
50% loss of activity after 2 min in presence of 30% sucrose
50
-
-
5% loss of activity after 30 min
50
-
-
denaturation after 5 min
50
-
-
loss of 70% activity
55
-
-
50% loss of activity after 10 min, alpha-crystallin protects fully against activity loss
60
-
-
10 min, 65% loss of activity
60
-
-
50% loss of activity after 5 min, alpha-crystallin reduces activity loss by 50%
60
-
-
loss of 90% activity
GENERAL STABILITY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
alpha-crystallin stabilizes
-
bovine serum albumin stabilizes
-
complete renaturation, alpha-crystallin has the ability to elicit protein refolding. This action of alpha-crystallin appears not to be dependent on ATP as energy donor, but essentially associated with intrinsic structural features of this chaperone molecule
-
freezing, loss of activity
-
Triton X-100, 1%, and D-sorbitol stabilize the enzyme during solubilization and purification, while n-octyl-beta-D-glucopyranoside does not
-
dithioerythritol protects at 1 mM, inhibits at 100 mM
-
dithiothreitol protects at 1 mM at 4C
-
freezing to -20C, loss of activity
-
30% sucrose stabilizes
-
0.1 mg/ml bovine serum albumin stabilizes at -20C
-
0.1 mg/ml bovine serum albumin stabilizes at 4C
-
0.1 mg/ml bovine serum albumin stabilizes at room temperature
-
278 mM maltose stabilizes at 4C
-
6.8 M glycerol stabilizes at 4C
-
bovine serum albumin stabilizes at 4C
-
1 mM dithiothreitol reduces stability
-
30% sucrose stabilizes
-
STORAGE STABILITY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
4C, 2 mM dithiothreitol, 0.1 mM NADH, 15 days
-
-20C, stable for 4 months
-
-20C, purified recombinant enzyme, 3d, almost complete loss of activity
Q9KWR5
4C several days
-
-18C, 2 days, non-purified enzyme in serum
-
immobilized enzyme loses 20% of activity after 10 days at room temperature
-
-20C, 70% loss of activity after 1 week, 0.1 mg/ml bovine serum albumin stabilizes
-
-85C, good preservation
-
4C, 20 mM potassium phosphate buffer, pH 7.0, 3 months
-
-60C, 5 mM 2-mercaptoethanol, several months
-
Purification/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
by solubilization with Triton X-100, DEAE-cellulose and -Sepharose, hydroxylapatite, and size exclusion chromatography, efficiency of different solubilization methods, overview
-
cobalt-based resin affinity chromatography
Q9KWR5
recombinant from Escherichia coli by ammonium sulfate precipitation, anion-exchange and dye affinity cromatography, 23fold
-
further purification from commercial preparation
-
Cloned/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
expression in Escherichia coli
-
DNA and amino acid sequence determination and analysis, co-expression with gene sldB in Escherichia coli strain JM109, sldB and PQQ are required for recombinant activity in Escherichia coli, co-expression of sldB is also required for enzyme activity in vivo
Q8KIL1
expressed in Pseudomonas putida strain IFO3738 fused to 6 x His-tag
Q9KWR5
expression of wild-type and mutant enzymes in Escherichia coli
-
expression in Escherichia coli strain BL21
-
gene MdSDH5, DNA and amino acid sequence determination and analysis, transient expression of MdSDH5-GFP and MdSDH6-GFP in the mesophyll protoplast of Arabidopsis thaliana; gene MdSDH6, DNA and amino acid sequence determination and analysis, phylogenetic tree, transient expression of MdSDH5-GFP and MdSDH6-GFP in the mesophyll protoplast of Arabidopsis thaliana
Q5I6M3, Q5I6M4
multiple genes, DNA sequence determination and analysis, a cDNA is expressed in Escherichia coli
Q6EM42, Q6EM45, Q6EM46
EXPRESSION
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
zinc-finger protein ZAC1 is up-regulated under hypertonic stress and negatively regulates expression of SDH
-
ENGINEERING
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
Y110F
-
mutation in hydrogen onding network, complete loss of activity and destabilization of protein into tetramers, dimers and monomers compared to only tetramers for wild-type
E154C
-
purified preparations of mutant contain 0.1-0.4 atoms of Zn2+ per subunit and exhibit a constant catalytic Zn2+ centre activity of 1.19 per s, mutant does not require exogenous Zn2+ for stability. Mutant retains less than 1% of wild-type catalytic efficiency and displays similar primary and solvent deuterium effects as wild-type
additional information
Q8KIL1
construction of gene disruption mutants of genes sldA and sldB, the mutants are inactive, the sldB mutation leads to a higher enzyme expression and accumulation of unprocessed SldA, co-expression of sldB is required for enzyme activity in vivo
additional information
-
construction of disruption mutants of genes sldA or sldB, the mutants are inactive, the sldB mutation leads to a higher enzyme expression and accumulation of unprocessed SldA
additional information
Gluconobacter oxydans IFO 3255
-
construction of disruption mutants of genes sldA or sldB, the mutants are inactive, the sldB mutation leads to a higher enzyme expression and accumulation of unprocessed SldA; construction of gene disruption mutants of genes sldA and sldB, the mutants are inactive, the sldB mutation leads to a higher enzyme expression and accumulation of unprocessed SldA, co-expression of sldB is required for enzyme activity in vivo
-
Renatured/COMMENTARY
ORGANISM
UNIPROT ACCESSION NO.
LITERATURE
APPLICATION
ORGANISM
UNIPROT ACCESSION NO.
COMMENTARY
LITERATURE
synthesis
Q8KIL1
L-sorbose is an important intermediate in the industrial vitamin C production process
synthesis
Gluconobacter oxydans IFO 3255
-
L-sorbose is an important intermediate in the industrial vitamin C production process
-
medicine
-
target for inhibitor design in hyperglycaemia and diabetes mellitus treatment
medicine
-
target for inhibitor design