Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 3.4.21.61 - Kexin and Organism(s) Saccharomyces cerevisiae and UniProt Accession P13134

for references in articles please use BRENDA:EC3.4.21.61
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
     3 Hydrolases
         3.4 Acting on peptide bonds (peptidases)
             3.4.21 Serine endopeptidases
                3.4.21.61 Kexin
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Saccharomyces cerevisiae
UNIPROT: P13134 not found.
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Saccharomyces cerevisiae
The expected taxonomic range for this enzyme is: Bacteria, Eukaryota, Archaea
Synonyms
pcsk9, proprotein convertase subtilisin/kexin type 9, proprotein convertase, pc1/3, kexin, kex2p, pcsk6, prohormone convertase 1, proprotein convertase subtilisin kexin type 9, prohormone convertase 2, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
adrenorphin-Gly-generating enzyme
-
-
-
-
endoproteinase Kex2p
-
-
-
-
Gene KEX2 dibasic proteinase
-
-
-
-
Kex 2p proteinase
-
-
-
-
Kex2 endopeptidase
-
-
-
-
Kex2 endoprotease
-
-
-
-
Kex2 endoproteinase
-
-
-
-
Kex2 protease
-
-
-
-
Kex2 proteinase
-
-
-
-
Kex2-like endoproteinase
-
-
-
-
Kex2-like precursor protein processing endoprotease
-
-
-
-
Paired-basic endopeptidase
-
-
-
-
prohormone processing protease
-
-
Prohormone-processing endoprotease
-
-
-
-
Prohormone-processing KEX2 proteinase
-
-
-
-
Prohormone-processing proteinase
-
-
-
-
Proprotein convertase
-
-
-
-
proprotein convertase Kex2
-
-
proprotein processing protease
-
-
Protease KEX2
-
-
-
-
Proteinase Kex2p
-
-
-
-
Proteinase yscF
-
-
-
-
Proteinase, prohormone-processing
-
-
-
-
Yeast KEX2 protease
-
-
-
-
additional information
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
Cleavage of -Lys-Arg-/- and -Arg-Arg-/- bonds to process yeast alpha-factor pheromone and killer toxin precursors
show the reaction diagram
catalytic residues are D175, H213, S385
-
REACTION TYPE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
hydrolysis of peptide bond
-
-
-
-
CAS REGISTRY NUMBER
COMMENTARY hide
99676-46-7
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
Ac-(beta-cyclohexyl)alanineYKK 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-(beta-cyclohexyl)alanineYKK
show the reaction diagram
-
-
-
?
Ac-Ala-Tyr-Lys-Arg 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + ?
show the reaction diagram
-
-
-
?
Ac-Ala-Tyr-Lys-Lys 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + ?
show the reaction diagram
-
-
-
?
Ac-alpha-aminobutyric acid-YKK 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-alpha-aminobutyric acid-YKK
show the reaction diagram
-
-
-
?
Ac-Arg-Tyr-Lys-Lys 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-Arg-Tyr-Lys-Lys
show the reaction diagram
-
-
-
?
Ac-AYKK 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-AYKK
show the reaction diagram
-
-
-
?
Ac-AYKR 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-AYKR
show the reaction diagram
-
-
-
?
Ac-Cit-Tyr-Lys-Lys 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-Cit-Tyr-Lys-Lys 4-methylcoumarin
show the reaction diagram
-
this substrate is cleaved poorly
-
?
Ac-CYKK 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-CYKK
show the reaction diagram
-
-
-
?
Ac-FYKK 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-FYKK
show the reaction diagram
-
-
-
?
Ac-Leu-Lys-Arg-p-nitroanilide + H2O
?
show the reaction diagram
-
-
-
?
Ac-Nle-Tyr-Lys-Arg 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-Nle-Tyr-Lys-Arg-COOH
show the reaction diagram
Ac-Nle-Tyr-Lys-Lys 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + ?
show the reaction diagram
-
-
-
?
Ac-Nle-YKK 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-Nle-YKK
show the reaction diagram
-
-
-
?
Ac-Nle-YKR 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + ?
show the reaction diagram
-
-
-
?
Ac-Nle-YKR 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-Nle-YKR
show the reaction diagram
-
-
-
?
Ac-norvaline-YKK 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-norvaline-YKK
show the reaction diagram
-
-
-
?
Ac-Pro-Met-Tyr-Lys-Arg 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + ?
show the reaction diagram
-
-
-
?
Ac-Pro-Met-Tyr-Lys-Arg 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-Pro-Met-Tyr-Lys-Arg
show the reaction diagram
-
-
-
?
Ac-RYKK 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-RYKK
show the reaction diagram
-
-
-
?
Ac-VYKK 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Ac-VYKK
show the reaction diagram
-
-
-
?
alpha-mating factor + H2O
?
show the reaction diagram
-
cleavage of dibasic sites
-
-
?
Arg-Lys(DABCYL)-Nle-Tyr-Lys-Arg-Glu-Ala-Glu-Ala-Glu(EDANS)-Arg + H2O
Arg-Lys(DABCYL)-Nle-Tyr-Lys-Arg + Glu-Ala-Glu-Ala-Glu(EDANS)-Arg
show the reaction diagram
-
-
-
?
Arg-Lys(DABCYL)-Nle-Tyr-Lys-Lys-Glu-Ala-Glu-Ala-Glu(EDANS)-Arg + H2O
Arg-Lys(DABCYL)-Nle-Tyr-Lys-Lys + Glu-Ala-Glu-Ala-Glu(EDANS)-Arg
show the reaction diagram
-
-
-
?
benzyloxycarbonyl-Ala-Tyr-Lys-Lys 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + benzyloxycarbonyl-Ala-Tyr-Lys-Lys
show the reaction diagram
-
-
-
?
benzyloxycarbonyl-Nle-Tyr-Lys-Arg 4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
-
-
?
benzyloxycarbonyl-Nle-Tyr-Lys-Lys 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + Cbz-Nle-Tyr-Lys-Lys
show the reaction diagram
-
-
-
?
benzyloxycarbonyl-Nle-YKR 4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
-
-
?
Benzyloxycarbonyl-Tyr-Lys-Arg 4-nitroanilide + H2O
?
show the reaction diagram
-
-
-
-
?
CLC chloride channel + H2O
proteolytically processed CLC chloride channel
show the reaction diagram
-
cleavage in first intracellular loop at residues K136/R137
-
-
?
D-Ac-Nle-Tyr-Lys-Arg 4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
-
-
?
Killer toxin precursors + H2O
?
show the reaction diagram
-
cleavage of dibasic sites
-
-
?
N-tert-butyloxycarbonyl-Gly-Lys-Arg 4-methylcoumarin 7-amide + H2O
N-tert-butyloxycarbonyl-Gly-Lys-Arg + 7-amino-4-methylcoumarin
show the reaction diagram
-
59.2% of the activity with tert-butyloxycarbonyl-Gln-Arg-Arg 4-methylcoumarin 7-amide
-
-
?
Precursor protein of the mating hormone alpha-factor of Saccharomyces cerevisiae + H2O
?
show the reaction diagram
-
processing
-
-
?
pro-alpha-mating factor + H2O
alpha-mating factor + ?
show the reaction diagram
Proinsulin + H2O
Insulin + ?
show the reaction diagram
-
cleaves human proinsulin at the peptide bond between Arg32 and Glu33
-
?
Protein + H2O
?
show the reaction diagram
t-butyloxycarbonyl-EKK 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + t-butyloxycarbonyl-EKK
show the reaction diagram
-
-
-
?
t-butyloxycarbonyl-QGR 4-methylcoumarin 7-amide + H2O
7-amino-4-methylcoumarin + t-butyloxycarbonyl-QGR
show the reaction diagram
-
-
-
?
tert-Butyloxycarbonyl-Ala-Pro-Arg 4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
17% of the activity with tert-butyloxycarbonyl-Gln-Arg-Arg 4-methylcoumarin 7-amide
-
-
?
tert-butyloxycarbonyl-Gln-Arg-Arg 4-methylcoumarin 7-amide + H2O
tert-butyloxycarbonyl-Gln-Arg-Arg + 7-amino-4-methylcoumarin
show the reaction diagram
-
-
-
-
?
tert-Butyloxycarbonyl-Leu-Arg-Arg 4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
116% of the activity with tert-butyloxycarbonyl-Gln-Arg-Arg 4-methylcoumarin 7-amide
-
-
?
tert-Butyloxycarbonyl-Leu-Lys-Arg 4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
92.8% of the activity with tert-butyloxycarbonyl-Gln-Arg-Arg 4-methylcoumarin 7-amide
-
-
?
tert-Butyloxycarbonyl-Val-Pro-Arg 4-methylcoumarin 7-amide + H2O
?
show the reaction diagram
-
38% of the activity with tert-butyloxycarbonyl-Gln-Arg-Arg 4-methylcoumarin 7-amide
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
alpha-mating factor + H2O
?
show the reaction diagram
-
cleavage of dibasic sites
-
-
?
CLC chloride channel + H2O
proteolytically processed CLC chloride channel
show the reaction diagram
-
cleavage in first intracellular loop at residues K136/R137
-
-
?
Killer toxin precursors + H2O
?
show the reaction diagram
-
cleavage of dibasic sites
-
-
?
Precursor protein of the mating hormone alpha-factor of Saccharomyces cerevisiae + H2O
?
show the reaction diagram
-
processing
-
-
?
pro-alpha-mating factor + H2O
alpha-mating factor + ?
show the reaction diagram
additional information
?
-
METALS and IONS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
no effect with Mg2+, Mn2+, Co3+, and Fe3+
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
Ala-Lys-Arg boronic acid
-
Ac-R-E-R-K-chloromethylketone
-
alternate binding site and resultant displacement of the scissile bond in the active site results in a decrease in the acylation rate
Ala-Lys-Arg chloromethyl ketone
-
-
D-Tyr-Ala-Lys-Arg-CH2Cl
-
-
D-Tyr-Pro-Gly-Lys-Arg-CH2Cl
-
-
Decanoyl-Arg-Ala-Lys-Arg-CH2Cl
-
-
Decanoyl-Arg-Glu(OMe)-Lys-Arg-CH2Cl
-
-
Decanoyl-Phe-Ala-Lys-Arg-CH2Cl
-
-
decanoyl-R-V-K-R-chloromethylketone
-
-
decanoyl-R-V-R-K-chloromethylketone
-
-
diisopropyl fluorophosphate
-
-
eglin c mutant D42R
-
-
-
eglin c mutant L45R
-
-
-
eglin c mutant Tyr replaced with Glu at P4
-
-
-
eglin variant M1 RVTR
-
-
-
eglin variant M2 RVKR
-
-
-
eglin variant M3 RVTRDERY
-
-
-
eglin variant M4 RVTRDRRY
-
-
-
eglin variant M5 RVTRDLDY
-
-
-
eglin variant M6 RVTRDLRR
-
-
-
eglin variant M7 RVTRDLRE
-
-
-
eglin variant M8 RVTRDARY
-
-
-
human urine trypsin inhibitor
-
most potent inhibitor
-
Mercurials
-
-
-
p-chloromercuribenzoate
-
-
Peptidyl chloromethanes
-
-
Phe-Ala-Lys-Arg-CH2Cl
-
-
phenylmethylsulfonyl fluoride
Pro-norvaline-Tyr-Lys-Arg-CH2Cl
-
-
Tyr-Ala-Arg-Ala-Lys-Arg-CH2Cl
-
-
additional information
-
ACTIVATING COMPOUND
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
K+
-
mechanism of activation
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.35
Ac-AYKK 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
0.001
Ac-Nle-Tyr-Lys-Arg 4-methylcoumarin 7-amide
-
pH 7.0, 37°C, in natural abundance H2O
0.038
Ac-Nle-YKK 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
0.001
Ac-Nle-YKR 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
0.023
benzyloxycarbonyl-Ala-Tyr-Lys-Lys 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
0.001
D-Ac-Nle-Tyr-Lys-Arg 4-methylcoumarin 7-amide
-
pH 7.0, 37°C, in natural abundance H2O
0.32
t-butyloxycarbonyl-QGR 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
21.6
Ac-AYKK 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
2700
Ac-Nle-Tyr-Lys-Arg 4-methylcoumarin 7-amide
-
pH 7.0, 37°C
300
Ac-Nle-YKK 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
3000
Ac-Nle-YKR 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
2640
benzyloxycarbonyl-Ala-Tyr-Lys-Lys 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
2940
D-Ac-Nle-Tyr-Lys-Arg 4-methylcoumarin 7-amide
-
pH 7.0, 37°C
11.4
t-butyloxycarbonyl-EKK 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
366
t-butyloxycarbonyl-QGR 4-methylcoumarin 7-amide
-
pH 7.0, 21°C
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.00019
decanoyl-R-V-K-R-chloromethylketone
-
-
0.00845
decanoyl-R-V-R-K-chloromethylketone
-
-
0.00000013
eglin c mutant D42R, eglin c mutant L45R
-
pH 7.5, 37°C
-
0.00000003
eglin c mutant Tyr replaced with Glu at P4
-
pH 7.5, 37°C
-
0.000000128
eglin variant M1 RVTR
-
pH 7.5, 37°C
-
0.000000038
eglin variant M2 RVKR
-
pH 7.5, 37°C
-
0.000000316
eglin variant M3 RVTRDERY
-
pH 7.5, 37°C
-
0.000089
eglin variant M4 RVTRDRRY
-
pH 7.5, 37°C
-
0.0000043
eglin variant M5 RVTRDLDY
-
pH 7.5, 37°C
-
0.0000267
eglin variant M6 RVTRDLRR
-
pH 7.5, 37°C
-
0.000039
eglin variant M7 RVTRDLRE
-
pH 7.5, 37°C
-
0.000000136
eglin variant M8 RVTRDARY
-
pH 7.5, 37°C
-
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5.5
-
tert-butyloxycarbonyl-Gln-Arg-Arg 4-methylcoumarin 7-amide
7.2
-
benzyloxycarbonyl-Tyr-Lys-Arg 4-nitroanilide
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
yeast
Uniprot
Manually annotated by BRENDA team
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
transmembrane serine proteinase
Manually annotated by BRENDA team
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
crystallized by hanging drop method, in complex with an Ala-Lys-Arg boronic acid inhibitor, space group P6(5)22, a = b = 113.8 A, c = 370.2 A
in complex with Ac-Arg-Glu-Lys-Arg-peptidyl boronic acid inhibitor
-
Kex2 in complex with the Ac-R-E-R-K-chloromethylketone, containing a noncognate lysine at the P1 position. Secondary subsite in the S1 pocket is present, which recognizes and binds the P1 lysine in a more shallow fashion than arginine. Kex2 contains well defined subsites that have optimally arranged electrostatic charge that positions correct substrates for hydrolysis. Chemical nature of the peptidyl inhibitor has little effect on ligand positioning at the active site in the alkylated enzyme forms
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
D176G/D210A/D211S
-
no preference for positively charged residues at P2 position, and S2 pocket is more solvent accessible, leading to preference for MR- over LR- or FR-containing substrates
E255I
-
significantly decreased recognition of P4Arg residue in a tetrapeptide substrate
T252D
-
increased recognition of Arg in P4 position, 14fold higher kcat/KM ratio for Arg than for Ala at position P6
T252D/Q283E
-
increased recognition of Arg in P4 position, 15fold higher kcat/KM ratio for Arg than for Ala at position P6
additional information
-
deficiency of Kex2p endopeptidase completely removes K2 killing ability. Deficiency in Kex2p protease compromises the protein-dependent immunity function, and Deltakex2 transformants fail to display full resistance. They are sensitive to K2 toxins produced by wild-type K2 killer strains and only resistant to their own toxin
pH STABILITY
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
5
-
37°C, t1/2: 36 min in sodium acetate buffer
29424
5.5
-
37°C, t1/2: 5 min in Na-MES buffer
29424
6
-
37°C, 18 min in Na-MES buffer
29424
6.5
-
37°C, t1/2: 17 min in Na-MES buffer
29424
7
-
37°C, t1/2: 250 min in Bis-Tris-HCl buffer, 6 min in Na-HEPES buffer
29424
7.5
-
37°C, t1/2: 22 min in Na-HEPES buffer
29424
8
-
37°C, t1/2: 5 min in Na-HEPES buffer
29424
8.5
-
37°C, t1/2: 44 min in Na-Bicine buffer
29424
9
-
37°C, 17 min in Na-Bicine buffer
29424
9.5
-
37°C, t1/2: 2 min
29424
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
recombinant enzyme
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
cloned and expressed in Pichia pastoris
-
cloned KEX2 gene introduced into the kex2 mutant cells and the KEX2 gene product expressed in these cells
-
isolation of the structural gene
-
transformation of the single-gene deletion strain Deltakex2 with pYEX12 plasmid
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
additional information
-
requirement of both Kex1p and Kex2p peptidases for functional K2 toxin production
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Steiner, D.F.; Smeekens, S.P.; Ohagi, S.; Chan, S.J.
The new enzymology of precursor processing endoproteases
J. Biol. Chem.
267
23435-23438
1992
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Fuller, R.S.; Brake, A.; Thorner, J.
Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease
Proc. Natl. Acad. Sci. USA
86
1434-1438
1989
Saccharomyces cerevisiae, Saccharomyces cerevisiae overproducing
Manually annotated by BRENDA team
Achstetter, T.; Wolf, D.H.
Hormone processing and membrane-bound proteinases in yeast
EMBO J.
4
173-177
1985
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Julius, D.; Brake, A.; Blair, L.; Kunisawa, R.; Thorner, J.
Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-alpha-factor
Cell
37
1075-1089
1984
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Mizuno, K.; Nakamura, T.; Oshima, T.; Tanaka, S.; Matsuo, H.
Characterization of KEX2-encoded endopeptidase from yeast Saccharomyces cerevisiae
Biochem. Biophys. Res. Commun.
159
305-311
1989
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Mizuno, K.; Nakamura, T.; Ohshima, T.; Tanaka, S.; Matsuo, H.
Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases
Biochem. Biophys. Res. Commun.
156
246-254
1988
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Angliker, H.; Wikstrom, P.; Shaw, E.; Brenner, C.; Fuller, R.S.
The synthesis of inhibitors for processing proteinases and their action on the Kex2 proteinase of yeast
Biochem. J.
293
75-81
1993
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Brenner, C.; Bevan, A.; Fuller, R.S.
Biochemical and genetic methods for analyzing specificity and activity of a precursor-processing enzyme: yeast Kex2 protease, kexin
Methods Enzymol.
244
152-167
1994
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Rockwell, N.C.; Krysan, D.J.; Fuller, R.S.
Synthesis of Peptidyl Methylcoumarin Esters as Substrates and Active-Site Titrants for the Prohormone Processing Proteases Kex2 and PC2
Anal. Biochem.
280
201-208
2000
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Rockwell, N.C.; Fuller, R.S.
Interplay between S1 and S4 subsites in Kex2 protease: Kex2 exhibits dual specificity for the P4 side chain
Biochemistry
37
3386-3391
1998
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Rockwell, N.C.; Fuller, R.S.
Direct measurement of acylenzyme hydrolysis demonstrates rate-limiting deacylation in cleavage of physiological sequences by the processing protease Kex2
Biochemistry
40
3657-3665
2001
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Holyoak, T.; Wilson, M.A.; Fenn, T.D.; Kettner, C.A.; Petsko, G.A.; Fuller, R.S.; Ringe, D.
2.4 A resolution crystal structure of the prototypical hormone-processing protease Kex2 in complex with an Ala-Lys-Arg boronic acid inhibitor
Biochemistry
42
6709-6718
2003
Saccharomyces cerevisiae (P13134)
Manually annotated by BRENDA team
Bessmertnaya, L.; Loiko, II; Goncharova, T.I.; Ivanov, N.V.; Rumsh, L.D.; Antonov, V.K.
Specific cleavage of hybrid proteins by proteinase encoded by the KEX2 gene
Biochemistry
62
850-857
1997
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Suzuki, Y.; Ikeda, N.; Kataoka, E.; Ohsuye, K.
Effect of amino acid substitution at the P3 and P4 subsites of fusion proteins on Kex2 protease activity
Biotechnol. Appl. Biochem.
32
53-60
2000
Saccharomyces cerevisiae
-
Manually annotated by BRENDA team
Liu, Z.X.; Fei, H.; Chi, C.W.
Two engineered eglin c mutants potently and selectively inhibiting kexin or furin
FEBS Lett.
556
116-120
2004
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Rockwell, N.C.; Fuller, R.S.
Differential utilization of enzyme-substrate interactions for acylation but not deacylation during the catalytic cycle of Kex2 protease
J. Biol. Chem.
276
38394-38399
2001
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Han, H.E.; Rho, S.H.; Lee, Y.J.; Park, W.J.
Engineering of Kex2 variants exhibiting altered substrate specificity
Biochem. Biophys. Res. Commun.
337
1102-1106
2005
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Holyoak, T.; Kettner, C.A.; Petsko, G.A.; Fuller, R.S.; Ringe, D.
Structural basis for differences in substrate selectivity in Kex2 and furin protein convertases
Biochemistry
43
2412-2421
2004
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Waechter, A.; Schwappach, B.
The yeast CLC chloride channel is proteolytically processed by the furin-like protease Kex2p in the first extracellular loop
FEBS Lett.
579
1149-1153
2005
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Rozan, L.; Krysan, D.J.; Rockwell, N.C.; Fuller, R.S.
Plasticity of extended subsites facilitates divergent substrate recognition by Kex2 and furin
J. Biol. Chem.
279
35656-35663
2004
Saccharomyces cerevisiae
Manually annotated by BRENDA team
Serviene, E.; Cepononyte, S.; Lebionka, A.; Melvydas, V.
Influence of Kex1p and Kex2p proteases on the function of Saccharomyces cerevisiae K2 preprotoxin
Biologija (Vilnius)
53
35-38
2007
Saccharomyces cerevisiae
-
Manually annotated by BRENDA team
Wheatley, J.L.; Holyoak, T.
Differential P1 arginine and lysine recognition in the prototypical proprotein convertase Kex2
Proc. Natl. Acad. Sci. USA
104
6626-6631
2007
Saccharomyces cerevisiae
Manually annotated by BRENDA team