Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
evolution

-
substrate recognition of bacterial and eukaryotic enzyme, involving a dynamic Arg, conserved steric interactions, and enzyme-substrate noncovalent interactions, overview. Domain 1 is important for positioning Galp for nucleophilic attack, domain 2 provides most of the interactions with the uridine group, and domain 3 figures prominently in binding the diphosphate
evolution
-
substrate recognition of bacterial and eukaryotic enzyme, involving a dynamic Arg, conserved steric interactions, and enzyme-substrate noncovalent interactions, overview. Domain 1 is important for positioning Galp for nucleophilic attack, domain 2 provides most of the interactions with the uridine group, and domain 3 figures prominently in binding the diphosphate
evolution
-
substrate recognition of bacterial and eukaryotic enzyme, involving a dynamic Arg, conserved steric interactions, and enzyme-substrate noncovalent interactions, overview. Domain 1 is important for positioning Galp for nucleophilic attack, domain 2 provides most of the interactions with the uridine group, and domain 3 figures prominently in binding the diphosphate
evolution
-
substrate recognition of bacterial and eukaryotic enzyme, involving a dynamic Arg, conserved steric interactions, and enzyme-substrate noncovalent interactions, overview. Domain 1 is important for positioning Galp for nucleophilic attack, domain 2 provides most of the interactions with the uridine group, and domain 3 figures prominently in binding the pyrophosphate
evolution
-
substrate recognition of bacterial and eukaryotic enzyme, involving a dynamic Arg, conserved steric interactions, and enzyme-substrate noncovalent interactions, overview. Domain 1 is important for positioning Galp for nucleophilic attack, domain 2 provides most of the interactions with the uridine group, and domain 3 figures prominently in binding the diphosphate
evolution
-
substrate recognition of bacterial and eukaryotic enzyme, involving a dynamic Arg, conserved steric interactions, and enzyme-substrate noncovalent interactions, overview. Domain 1 is important for positioning Galp for nucleophilic attack, domain 2 provides most of the interactions with the uridine group, and domain 3 figures prominently in binding the diphosphate
evolution
-
substrate recognition of bacterial and eukaryotic enzyme, involving a dynamic Arg, conserved steric interactions, and enzyme-substrate noncovalent interactions, overview. Domain 1 is important for positioning Galp for nucleophilic attack, domain 2 provides most of the interactions with the uridine group, and domain 3 figures prominently in binding the diphosphate
evolution
-
substrate recognition of bacterial and eukaryotic enzyme, involving a dynamic Arg, conserved steric interactions, and enzyme-substrate noncovalent interactions, overview. Domain 1 is important for positioning Galp for nucleophilic attack, domain 2 provides most of the interactions with the uridine group, and domain 3 figures prominently in binding the diphosphate
evolution
-
substrate recognition of bacterial and eukaryotic enzyme, involving a dynamic Arg, conserved steric interactions, and enzyme-substrate noncovalent interactions, overview. Domain 1 is important for positioning Galp for nucleophilic attack, domain 2 provides most of the interactions with the uridine group, and domain 3 figures prominently in binding the diphosphate
evolution
-
the enzyme is a member of the UGM family
evolution
-
conserved active site residues in Aspegillus fumigatus UGM compared to prokaryotic UGMs, overview
evolution
-
the enzyme is a member of the UGM family
-
evolution
-
substrate recognition of bacterial and eukaryotic enzyme, involving a dynamic Arg, conserved steric interactions, and enzyme-substrate noncovalent interactions, overview. Domain 1 is important for positioning Galp for nucleophilic attack, domain 2 provides most of the interactions with the uridine group, and domain 3 figures prominently in binding the diphosphate
-
malfunction

-
glf-1 mutants display significant late embryonic and larval lethality, and other phenotypes indicative of defective surface coat synthesis, the glycan-rich outermost layer of the nematode cuticle
malfunction
-
Aspergillus nidulans strains deleted for UgmA lack immunolocalizable UDP-D-galactofuranose, have growth and sporulation defects, abnormal wall architecture, and significantly larger hyphal surface subunits and lower cell wall viscoelastic moduli
malfunction
-
glf-1 mutants display significant late embryonic and larval lethality, and other phenotypes indicative of defective surface coat synthesis, the glycan-rich outermost layer of the nematode cuticle
-
physiological function

-
glf-1 is required for normal post-embryonic development
physiological function
-
UDP-galactopyranose mutase is a virulence factor in Leishmania major
physiological function
-
UgmA is important for cell wall surface subunit organization and wall viscoelasticity
physiological function
-
the enzyme is involved in the synthesis of the cell wall
physiological function
-
the enzyme is involved in the biosynthesis of capsular polysaccharides in Campylobacter jejuni 11168. These capsular polysaccharides are known virulence factors that are required for adhesion and invasion of human epithelial cells. Production of suitable quantities of the sugar nucleotide substrate required for the assembly of a capsular polysaccharide containing N-acetyl-alpha-D-galactofuranose, which is essential for viability
physiological function
-
UDP-galactopyranose mutase catalyzes the isomerization of UDP-galactopyranose to UDP-galactofuranose, the biosynthetic precursor of galactofuranose residues, which are essential components of the cell wall and play an important role in Aspergillus fumigatus virulence
physiological function
-
the flavoenzyme UDP-galactopyranose mutase catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, a precursor of the cell surface beta-galactofuranose that is involved in the virulence of the pathogen
physiological function
-
glf-1 is required for normal post-embryonic development
-
physiological function
-
the enzyme is involved in the biosynthesis of capsular polysaccharides in Campylobacter jejuni 11168. These capsular polysaccharides are known virulence factors that are required for adhesion and invasion of human epithelial cells. Production of suitable quantities of the sugar nucleotide substrate required for the assembly of a capsular polysaccharide containing N-acetyl-alpha-D-galactofuranose, which is essential for viability
-
additional information

-
substrate recognition mechanism, overview. Molecular dynamics studies of active site flexibility, overview
additional information
-
substrate recognition mechanism, overview. Molecular dynamics studies of active site flexibility, overview
additional information
-
molecular dynamics studies of active site flexibility, overview
additional information
-
molecular dynamics studies of active site flexibility, overview
additional information
-
molecular dynamics studies of active site flexibility, overview
additional information
-
molecular dynamics studies of active site flexibility, overview
additional information
-
molecular dynamics studies of active site flexibility, overview
additional information
-
molecular dynamics studies of active site flexibility, overview
additional information
-
molecular dynamics studies of active site flexibility, overview
additional information
-
enzyme-substrate binding analysis by combination of UV/visible spectroscopy, X-ray crystallography, saturation transfer difference NMR spectroscopy, molecular dynamics, and CORCEMA-ST calculations. Two arginines in the enzyme, Arg59 and Arg168, play critical roles in the catalytic mechanism of the enzyme and in controlling its specificity to ultimately lead to an N-acetyl-alpha-D-galactofuranose-containing capsular polysaccharides. Substrate-recognition patterns compared to the Eschericia coli enzyme, overview
additional information
-
Arg182 and Arg327 play important roles in stabilizing the position of the diphosphates of the nucleotide sugar and help to facilitate the positioning of the galactose moiety for catalysis. Substrate recognition and structural changes observed upon substrate binding involving the mobile loops and the critical arginine residues Arg182 and Arg327, overview. The Aspergillus fumigatus enzyme contains a third flexible loop (loop III) above the si-face of the isoalloxazine ring that changes position depending on the redox state of the flavin cofactor
additional information
-
molecular details of the mechanism that controls the uptake and retention of the substrate in the presence or absence of an active site ligand, overview. Interactions with the substrate diphosphate moiety are especially important for stabilizing the closed active site. Protein dynamics play a key role in substrate recognition by UDP-galactopyranose mutases. Residues Arg176, Asn201, and Tyr317, Tyr34, Tyr429, and Arg327 are involved in the active site
additional information
-
enzyme-substrate binding analysis by combination of UV/visible spectroscopy, X-ray crystallography, saturation transfer difference NMR spectroscopy, molecular dynamics, and CORCEMA-ST calculations. Two arginines in the enzyme, Arg59 and Arg168, play critical roles in the catalytic mechanism of the enzyme and in controlling its specificity to ultimately lead to an N-acetyl-alpha-D-galactofuranose-containing capsular polysaccharides. Substrate-recognition patterns compared to the Eschericia coli enzyme, overview
-
additional information
-
substrate recognition mechanism, overview. Molecular dynamics studies of active site flexibility, overview
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2-fluoro-deoxy-UDP-galactopyranose
2-fluoro-deoxy-UDP-galactofuranose
-
-
-
?
UDP-(6-deoxy-6-fluoro)-D-galactofuranose
?
-
-
-
-
?
UDP-(6-deoxy-6-fluoro)-D-galactofuranose
UDP-(6-deoxy-6-fluoro)-D-galactopyranose
-
-
-
-
r
UDP-2-amino-2-deoxy-D-galactopyranose
?
-
-
-
-
?
UDP-2-deoxy-2-fluoro-D-galactofuranose
?
-
-
-
-
?
UDP-2-deoxy-2-fluoro-D-galactopyranose
?
-
-
-
-
?
UDP-2-fluoro-galactofuranose
?
-
-
-
-
?
UDP-3''-deoxy-3''-fluoro-D-galactopyranose
UDP-3''-deoxy-3''-fluoro-D-galactofuranose
-
-
-
-
r
UDP-3-deoxy-3-fluoro-D-galactofuranose
?
UDP-3-deoxy-3-fluoro-D-galactopyranose
?
-
-
-
-
?
UDP-6-deoxy-6-fluoro-D-galactopyranose
?
-
-
-
-
?
UDP-6-deoxy-D-galactopyranose
?
-
-
-
-
?
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
UDP-beta-L-arabinofuranose
?
-
-
-
-
?
UDP-D-galactofuranose
UDP-D-galactopyranose
UDP-D-galactopyranose
UDP-D-galactofuranose
UDP-galactofuranose
UDP-galactopyranose
UDP-galactopyranose
UDP-galactofuranose
UDP-L-arabinofuranose
?
-
-
-
-
?
UDP-N-acetyl-2-deoxy-2-amino-alpha-D-galactopyranose
UDP-N-acetyl-2-deoxy-2-amino-alpha-D-galactofuranose
Uridine 5'-(trihydrogen diphosphate) P'-alpha-D-galactopyranosyl ester
Uridine 5'-(trihydrogen diphosphate) P'-alpha-D-galactofuranosyl ester
-
-
-
-
additional information
?
-
UDP-3-deoxy-3-fluoro-D-galactofuranose

?
-
-
-
-
?
UDP-3-deoxy-3-fluoro-D-galactofuranose
?
-
-
-
-
?
UDP-alpha-D-galactopyranose

UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
the equilibrium of the UGM-catalyzed reaction favors UDP-Galp by the ratio of 11:1
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
the equilibrium of the UGM-catalyzed reaction favors UDP-Galp by the ratio of 11:1
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
the equilibrium of the UGM-catalyzed reaction favors UDP-Galp by the ratio of 11:1
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
the equilibrium of the UGM-catalyzed reaction favors UDP-Galp by the ratio of 11:1
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
the equilibrium of the UGM-catalyzed reaction favors UDP-Galp by the ratio of 11:1
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
the equilibrium of the UGM-catalyzed reaction favors UDP-Galp by the ratio of 11:1
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
the equilibrium of the UGM-catalyzed reaction favors UDP-Galp by the ratio of 11:1
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
the equilibrium of the UGM-catalyzed reaction favors UDP-Galp by the ratio of 11:1
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
the equilibrium of the UGM-catalyzed reaction favors UDP-Galp by the ratio of 11:1
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
-
-
-
r
UDP-alpha-D-galactopyranose
UDP-alpha-D-galactofuranose
-
the equilibrium of the UGM-catalyzed reaction favors UDP-Galp by the ratio of 11:1
-
-
r
UDP-D-galactofuranose

UDP-D-galactopyranose
-
-
-
-
r
UDP-D-galactofuranose
UDP-D-galactopyranose
-
-
-
-
r
UDP-D-galactofuranose
UDP-D-galactopyranose
-
-
-
-
r
UDP-D-galactopyranose

UDP-D-galactofuranose
-
-
-
-
r
UDP-D-galactopyranose
UDP-D-galactofuranose
-
-
-
-
r
UDP-D-galactopyranose
UDP-D-galactofuranose
-
-
-
r
UDP-D-galactopyranose
UDP-D-galactofuranose
-
-
-
?
UDP-D-galactopyranose
UDP-D-galactofuranose
-
-
-
?
UDP-D-galactopyranose
UDP-D-galactofuranose
-
-
-
-
?
UDP-D-galactopyranose
UDP-D-galactofuranose
-
-
-
-
r
UDP-D-galactopyranose
UDP-D-galactofuranose
-
-
-
-
r
UDP-D-galactopyranose
UDP-D-galactofuranose
-
-
-
-
?
UDP-D-galactopyranose
UDP-D-galactofuranose
-
-
-
-
r
UDP-D-galactopyranose
UDP-D-galactofuranose
-
-
-
-
?
UDP-galactofuranose

UDP-galactopyranose
-
-
8-5% product yield, 92-95% product yield
-
r
UDP-galactofuranose
UDP-galactopyranose
-
-
8-5% product yield, 92-95% product yield
-
r
UDP-galactopyranose

UDP-galactofuranose
-
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
pH 7.1, 30°C
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
pH 7.1, 30°C
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
UDP-galactopyranose
UDP-galactofuranose
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
pH 7.1, 30°C
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
?
UDP-galactopyranose
UDP-galactofuranose
-
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
essential step of mycobacterial cell wall biosynthesis
-
-
r
UDP-galactopyranose
UDP-galactofuranose
-
-
-
r
UDP-galactopyranose
UDP-galactofuranose
pH 7.1, 30°C
-
-
r
UDP-N-acetyl-2-deoxy-2-amino-alpha-D-galactopyranose

UDP-N-acetyl-2-deoxy-2-amino-alpha-D-galactofuranose
-
-
-
-
r
UDP-N-acetyl-2-deoxy-2-amino-alpha-D-galactopyranose
UDP-N-acetyl-2-deoxy-2-amino-alpha-D-galactofuranose
-
-
-
-
r
additional information

?
-
-
the enzyme is active in the oxidized state, being 2-3fold less active than in the reduced state. In the oxidized state, UGM does not bind UDP-galactopyranose
-
-
-
additional information
?
-
-
development of a fluorescence polarization binding assay for the Aspergillus fumigatus enzyme, evaluation, overview
-
-
-
additional information
?
-
-
UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis
-
-
-
additional information
?
-
-
UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis
-
-
-
additional information
?
-
-
UGM does not interconvert UDP-GalpNAc and UDP-GalfNAc
-
-
-
additional information
?
-
-
the bifunctional pyranose-furanose mutase recognizes both UDP-Gal and UDP-GalNAc
-
-
-
additional information
?
-
-
the bifunctional pyranose-furanose mutase recognizes both UDP-Gal and UDP-GalNAc
-
-
-
additional information
?
-
-
UGM does not interconvert UDP-GalpNAc and UDP-GalfNAc
-
-
-
additional information
?
-
-
no activity with UDP-6-deoxy-Dgalactopyranose, UDP-2-azido-2-deoxy-D-galactopyranose, and UDP-2-acetamido-2-deoxy-D-galactopyranose
-
-
-
additional information
?
-
-
UDP-D-glucose is not a substrate for UGM
-
-
-
additional information
?
-
-
the enzyme is active only in the reduced state
-
-
-
additional information
?
-
-
1,4-anhydrogalactopyranose does not react with UGM and UDP to form UDP-galactopyranose or UDP-galactofuranose
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(1R,3S,4R,7R,8S)-3-hydroxymethyl-2,6-dioxa-bicyclo-[2.2.2]-octane-7,8-diol
-
17% inhibition at 4 mM
(2R,3S,4S,5S,2'R,3'S,4'S,5'S)-2,2'-butane-1,4-diylbis[5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxypyrrolidinium] dichloride
-
-
(2S,3S,4S,5R)-2-[(1S)-1,2-dihydroxyethyl]-5-propylpyrrolidine-3,4-diol
-
-
(2S,3S,4S,5R)-2-[(1S)-1,2-dihydroxyethyl]-5-[(1E)-prop-1-en-1-yl]pyrrolidine-3,4-diol
-
-
(2Z)-2-(2-chloro-4-hydroxy-5-nitrobenzylidene)[1,3]thiazolo[3,2-a]benzimidazol-3(2H)-one
-
comparison with inhibition of Mycobacterium tuberculosis enzyme; dissociation constant 0.0053 mM, comparison with inhibition of Klebsiella pneumoniae enzyme
(4-chlorophenyl)-[1-(4-chlorophenyl)-3-hydroxy-5-methyl-1H-pyrazol-4-yl]-methanone
(4E)-4-(4-chloro-3-nitrobenzylidene)-1-(3,4-dichlorophenyl)pyrazolidine-3,5-dione
-
comparison with inhibition of Mycobacterium tuberculosis enzyme; dissociation constant 0.0049 mM, comparison with inhibition of Klebsiella pneumoniae enzyme
(Z)-N-((E)-5-(5-nitro-2-oxoindolin-3-ylidene)-4-oxothiazolidin-2-ylidene) benzenesulfonamide
-
-
1(R)-1,4-dideoxy-1-C-3-[(ethyl)(uridin-5'-yl)phosphono]-2-propen-1-yl-1,4-imino-D-galactitol
-
25 mM, 52% residual activity
1(R)-1,4-dideoxy-1-C-3-[(uridin-5'-yl)phosphono]-2-propen-1-yl-1,4-imino-D-galactitol
-
2.5 mM, 43% residual activity
1(R)-1-C-allyl-1,4-dideoxy-1,4-imino-D-galactitol
-
25 mM, 61% residual activity
1,4-anhydro-beta-D-galactopyranose (1,5-anhydro-alpha-D-galactofuranose)
-
15% inhibition at 4 mM
1,4-bis-[1(R)-1,4-dideoxy-1,4-imino-D-galactit-1-yl]-2-butene
-
2.5 mM, 50% residual activity
2-(([2-(4-bromophenyl)-1,3-dioxo-2,3-dihydro-1H-isoindol-5-yl]carbonyl)amino)benzoic acid
-
comparison with inhibition of Mycobacterium tuberculosis enzyme
2-(2-(4-bromophenyI)-1, 3-dioxoisoindolin-5-carboxamido) benzoic acid
-
-
2-[(5E)-5-(3-bromobenzylidene)-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]-3-phenylpropanoic acid
-
comparison with inhibition of Mycobacterium tuberculosis enzyme; dissociation constant 0.0094 mM, comparison with inhibition of Klebsiella pneumoniae enzyme
2-[(5E)-5-(4-bromobenzylidene)-2-thioxo-1,3-thiazolidin-3-yl]-3-phenylpropanoic acid
-
dissociation constant 0.0093 mM, comparison with inhibition of Klebsiella pneumoniae enzyme
2-[(5Z)-5-[(3-chlorophenyl)methylidene]-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]-3-phenylpropanoic acid
-
-
2-[5-(3-bromo-benzylidene)-4-oxo-2-thioxo-thiazolidin-3-yl]-3-phenyl-propionic acid
-
-
2-[[2-(4-bromo-phenyl)-1,3-dioxo-2,3-dihydro-1H-isoindole-5-carbonyl]-amino]-benzoic acid
-
-
2-[[4-(3,4-dichlorophenyl)-1,3-thiazol-2-yl]amino]-3-(3-iodophenyl)propanoic acid
-
-
3-(4-iodophenyl)-2-[4-(3,4-dichlorophenyl)-thiazol-2-ylamino]-propionic acid
N-(4-[4-[8-([[3-carboxy-4-(6-hydroxy-3-oxo-3H-xanthen-9-yl)phenyl]carbamothioyl]amino)octyl]phenyl]-2,3-dihydro-1,3-thiazol-2-yl)-4-chlorophenylalanine
-
-
N-[4-oxo-5-(2-oxo-1,2-dihydro-indol-3-ylidene)-thiazolidin-2-ylidene]-benzenesulfonamide
-
-
Sodium cyanoborohydride
-
-
UDP-(1(1')E)-1_-fluoro-exo-glycal-D-galactofuranose
-
less than 10% inhibition at 1 mM. Time-dependent inactivation proceeds via two-electron processes
UDP-(1(1')Z)-1'-fluoro-exo-glycal-D-galactofuranose
-
less than 10% inhibition at 1 mM. Time-dependent inactivation proceeds via two-electron processes
UDP-C-alpha-D-galactofuranose
-
91% inhibition at 1 mM
UDP-C-alpha-D-galactopyranose
-
36% inhibition at 1 mM
UDP-C-beta-D-galactopyranose
-
8% inhibition at 1 mM
UDP-D-glucose
-
poor inhibitor of UGM
UDP-[1(1')Z]-exo-glycal-D-galactopyranose
-
42% inhibition at 1 mM
uridine-5'-diphospho-(N-fluoresceinisothiocyano)hexanolamine
-
-
additional information
-
fluorinated substrate analogues under non-reducing conditions
-
(4-chlorophenyl)-[1-(4-chlorophenyl)-3-hydroxy-5-methyl-1H-pyrazol-4-yl]-methanone

-
-
(4-chlorophenyl)-[1-(4-chlorophenyl)-3-hydroxy-5-methyl-1H-pyrazol-4-yl]-methanone
-
-
3-(4-iodophenyl)-2-[4-(3,4-dichlorophenyl)-thiazol-2-ylamino]-propionic acid

-
-
3-(4-iodophenyl)-2-[4-(3,4-dichlorophenyl)-thiazol-2-ylamino]-propionic acid
-
-
ethambutol

-
-
Quinine

-
-
UDP

-
competitive
UDP-CH2-Galp

moderate inhibition of UGM
UDP-CH2-Galp
-
moderate inhibition of UGM
UDP-CH2-Galp
-
moderate inhibition of UGM
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
24
UDP-(6-deoxy-6-fluoro)-D-galactofuranose
1.14
UDP-2-amino-2-deoxy-D-galactopyranose
-
in 50 mM MOPS, 10 mM sodium dithionite, 2 mM MgCl2 pH 7.4, at 37°C
0.065
UDP-2-deoxy-2-fluoro-D-galactofuranose
-
-
0.203
UDP-2-deoxy-2-fluoro-D-galactopyranose
-
in 50 mM MOPS, 10 mM sodium dithionite, 2 mM MgCl2 pH 7.4, at 37°C
0.065
UDP-2-fluoro-galactofuranose
-
-
0.861
UDP-3-deoxy-3-fluoro-D-galactofuranose
0.28
UDP-3-deoxy-3-fluoro-D-galactopyranose
-
in 50 mM MOPS, 10 mM sodium dithionite, 2 mM MgCl2 pH 7.4, at 37°C
0.2
UDP-6-deoxy-6-fluoro-D-galactopyranose
-
in 50 mM MOPS, 10 mM sodium dithionite, 2 mM MgCl2 pH 7.4, at 37°C
3.15
UDP-6-deoxy-D-galactopyranose
-
in 50 mM MOPS, 10 mM sodium dithionite, 2 mM MgCl2 pH 7.4, at 37°C
0.022 - 0.607
UDP-alpha-D-galactopyranose
0.016 - 0.194
UDP-D-galactofuranose
0.043 - 1.002
UDP-D-galactopyranose
0.02 - 0.19
UDP-galactofuranose
0.022 - 0.055
UDP-galactopyranose
0.6
UDP-L-arabinofuranose
-
-
additional information
additional information
-
24
UDP-(6-deoxy-6-fluoro)-D-galactofuranose

-
-
24
UDP-(6-deoxy-6-fluoro)-D-galactofuranose
-
-
0.861
UDP-3-deoxy-3-fluoro-D-galactofuranose

-
-
0.861
UDP-3-deoxy-3-fluoro-D-galactofuranose
-
-
0.022
UDP-alpha-D-galactopyranose

-
pH 7.0, 37°C, mutant R182K
0.0334
UDP-alpha-D-galactopyranose
-
mutant Y317F, pH 7.5, 37°C
0.0425
UDP-alpha-D-galactopyranose
-
pH 7.0, 37°C, wild-type enzyme
0.0429
UDP-alpha-D-galactopyranose
-
pH 7.0, 37°C, mutant R327K
0.09
UDP-alpha-D-galactopyranose
-
mutant R327A, pH 7.5, 37°C
0.091
UDP-alpha-D-galactopyranose
-
mutant Y395F, pH 7.5, 37°C
0.1
UDP-alpha-D-galactopyranose
-
mutant Y429F, pH 7.5, 37°C
0.134
UDP-alpha-D-galactopyranose
-
mutant R176A, pH 7.5, 37°C
0.14
UDP-alpha-D-galactopyranose
-
wild-type enzyme, pH 7.5, 37°C
0.607
UDP-alpha-D-galactopyranose
-
pH 7.0, 37°C, mutant R182A
0.016
UDP-D-galactofuranose

-
in 50 mM MOPS, 10 mM sodium dithionite, 2 mM MgCl2 pH 7.4, at 37°C
0.022
UDP-D-galactofuranose
-
37°C, pH 7.5, in presence of 20 mM sodium dithionite
0.087
UDP-D-galactofuranose
-
in 25 mM HEPES, 125 mM NaCl, 20 mM dithionite, pH 7.5, at 37°C
0.11
UDP-D-galactofuranose
-
in 25 mM HEPES, 125 mM NaCl, 20 mM dithionite, pH 7.5, at 37°C
0.194
UDP-D-galactofuranose
-
37°C, pH 7.5
0.043
UDP-D-galactopyranose

-
wild-type, pH 8.0
0.205
UDP-D-galactopyranose
-
mutant E301A, pH 8.0
0.386
UDP-D-galactopyranose
-
mutant Y185F, pH 8.0
0.619
UDP-D-galactopyranose
-
mutant Y155F, pH 8.0
0.739
UDP-D-galactopyranose
-
mutant Y349F, pH 8.0
0.805
UDP-D-galactopyranose
-
in 50 mM MOPS, 10 mM sodium dithionite, 2 mM MgCl2 pH 7.4, at 37°C
0.819
UDP-D-galactopyranose
-
mutant Y314F, pH 8.0
1.002
UDP-D-galactopyranose
-
mutant D351A, pH 8.0
0.02
UDP-galactofuranose

-
under reducing conditions
0.022
UDP-galactofuranose
-
-
0.19
UDP-galactofuranose
-
under non-reducing (native) conditions
0.022
UDP-galactopyranose

-
-
0.055
UDP-galactopyranose
-
wild type enzyme, in 50 mM sodium phosphate buffer pH 7.0
additional information
additional information

-
high-affinity binding to the enzyme is only obtained with the chromophore 5-carboxytetramethylrhodamine, i.e. TAMRA, linked to UDP by either 2 or 6 carbons, 6times less when UDP is linked to fluorescein, kinetics, overview
-
additional information
additional information
-
steady-state kinetics of wild-type and mutant enzymes, overview
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Lee, R.; Monsey, D.; Weston, A.; Duncan, K.; Rithner, C.; McNeil, M.
Enzymic synthesis of UDP-galactofuranose and an assay for UDP-galactopyranose mutase based on high-performance liquid chromatography
Anal. Biochem.
242
1-7
1996
Escherichia coli
brenda
Köplin, R.; Brisson, J.R.; Whitfield, C.
UDP-galactofuranose precursor required for formation of the lipopolysaccharide O antigen of Klebsiella pneumoniae serotype O1 is synthesized by the product of the rfbDKPO1 gene
J. Biol. Chem.
272
4121-4128
1997
Klebsiella pneumoniae
brenda
McMahon, S.A.; Leonard, G.A.; Buchanan, L.V.; Giraud, M.F.; Naismith, J.H.
Initiating a crystallographic study of UDP-galactopyranose mutase from Escherichia coli
Acta Crystallogr. Sect. D
55
399-402
1999
Escherichia coli
-
brenda
Fullerton, S.W.; Daff, S.; Sanders, D.A.; Ingledew, W.J.; Whitfield, C.; Chapman, S.K.; Naismith, J.H.
Potentiometric analysis of UDP-galactopyranose mutase: stabilization of the flavosemiquinone by substrate
Biochemistry
42
2104-2109
2003
Klebsiella pneumoniae
brenda
Zhang, Q.; Liu, H.w.
Studies of UDP-galactopyranose mutase from Escherichia coli: An unusual role of reduced FAD in its catalysis
J. Am. Chem. Soc.
122
9065-9070
2000
Escherichia coli
-
brenda
Sanders, D.A.; Staines, A.G.; McMahon, S.A.; McNeil, M.R.; Whitfield, C.; Naismith, J.H.
UDP-galactopyranose mutase has a novel structure and mechanism
Nat. Struct. Biol.
8
858-863
2001
Escherichia coli, Escherichia coli (P37747), Klebsiella pneumoniae
brenda
Bakker, H.; Kleczka, B.; Gerardy-Schahn, R.; Routier, F.H.
Identification and partial characterization of two eukaryotic UDP-galactopyranose mutases
Biol. Chem.
386
657-661
2005
Aspergillus fumigatus, Aspergillus fumigatus (Q4W1X2), Leishmania major, Leishmania major (Q5EEK0)
brenda
Caravano, A.; Sinay, P.; Vincent, S.P.
1,4-Anhydrogalactopyranose is not an intermediate of the mutase catalyzed UDP-galactopyranose/furanose interconversion
Bioorg. Med. Chem. Lett.
16
1123-1125
2006
Mycobacterium tuberculosis
brenda
Beverley, S.M.; Owens, K.L.; Showalter, M.; Griffith, C.L.; Doering, T.L.; Jones, V.C.; McNeil, M.R.
Eukaryotic UDP-galactopyranose mutase (GLF gene) in microbial and metazoal pathogens
Eukaryot. Cell
4
1147-1154
2005
Caenorhabditis elegans, Cryptococcus neoformans (Q5KEL8), Leishmania major (Q5EEK0), Trypanosoma cruzi (Q5EEK1)
brenda
Soltero-Higgin, M.; Carlson, E.E.; Phillips, J.H.; Kiessling, L.L.
Identification of inhibitors for UDP-galactopyranose mutase
J. Am. Chem. Soc.
126
10532-10533
2004
Klebsiella pneumoniae
brenda
Beis, K.; Srikannathasan, V.; Liu, H.; Fullerton, S.W.; Bamford, V.A.; Sanders, D.A.; Whitfield, C.; McNeil, M.R.; Naismith, J.H.
Crystal structures of Mycobacteria tuberculosis and Klebsiella pneumoniae UDP-galactopyranose mutase in the oxidised state and Klebsiella pneumoniae UDP-galactopyranose mutase in the (active) reduced state
J. Mol. Biol.
348
971-982
2005
Klebsiella pneumoniae, Mycobacterium tuberculosis
brenda
Soltero-Higgin, M.; Carlson, E.E.; Gruber, T.D.; Kiessling, L.L.
A unique catalytic mechanism for UDP-galactopyranose mutase
Nat. Struct. Mol. Biol.
11
539-543
2004
Klebsiella pneumoniae
brenda
Chad, J.M.; Sarathy, K.P.; Gruber, T.D.; Addala, E.; Kiessling, L.L.; Sanders, D.A.
Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues
Biochemistry
46
6723-6732
2007
Klebsiella pneumoniae, Klebsiella pneumoniae (Q48485)
brenda
Carlson, E.E.; May, J.F.; Kiessling, L.L.
Chemical probes of UDP-galactopyranose mutase
Chem. Biol.
13
825-837
2006
Klebsiella pneumoniae
brenda
Caravano, A.; Dohi, H.; Sinay, P.; Vincent, S.P.
A new methodology for the synthesis of fluorinated exo-glycals and their time-dependent inhibition of UDP-galactopyranose mutase
Chemistry
12
3114-3123
2006
Escherichia coli
brenda
Kleczka, B.; Lamerz, A.C.; van Zandbergen, G.; Wenzel, A.; Gerardy-Schahn, R.; Wiese, M.; Routier, F.H.
Targeted gene deletion of Leishmania major UDP-galactopyranose mutase leads to attenuated virulence
J. Biol. Chem.
282
10498-10505
2007
Leishmania major
brenda
Eppe, G.; Peltier, P.; Daniellou, R.; Nugier-Chauvin, C.; Ferrieres, V.; Vincent, S.P.
Probing UDP-galactopyranose mutase binding pocket: A dramatic effect on substitution of the 6-position of UDP-galactofuranose
Bioorg. Med. Chem. Lett.
19
814-816
2008
Escherichia coli, Mycobacterium tuberculosis
brenda
Schmalhorst, P.S.; Krappmann, S.; Vervecken, W.; Rohde, M.; Mueller, M.; Braus, G.H.; Contreras, R.; Braun, A.; Bakker, H.; Routier, F.H.
Contribution of galactofuranose to the virulence of the opportunistic pathogen Aspergillus fumigatus
Eukaryot. Cell
7
1268-1277
2008
Aspergillus fumigatus, Aspergillus fumigatus (Q4W1X2)
brenda
El-Ganiny, A.M.; Sanders, D.A.; Kaminskyj, S.G.
Aspergillus nidulans UDP-galactopyranose mutase, encoded by ugmA plays key roles in colony growth, hyphal morphogenesis, and conidiation
Fungal Genet. Biol.
45
1533-1542
2008
Aspergillus nidulans
brenda
Damveld, R.A.; Franken, A.; Arentshorst, M.; Punt, P.J.; Klis, F.M.; van den Hondel, C.A.; Ram, A.F.
A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis
Genetics
178
873-881
2008
Aspergillus niger, Aspergillus niger RD6.13
brenda
Yuan, Y.; Bleile, D.W.; Wen, X.; Sanders, D.A.; Itoh, K.; Liu, H.W.; Pinto, B.M.
Investigation of binding of UDP-Galf and UDP-[3-F]Galf to UDP-galactopyranose mutase by STD-NMR spectroscopy, molecular dynamics, and CORCEMA-ST calculations
J. Am. Chem. Soc.
130
3157-3168
2008
Klebsiella pneumoniae, Klebsiella pneumoniae (Q48485)
brenda
Dykhuizen, E.C.; May, J.F.; Tongpenyai, A.; Kiessling, L.L.
Inhibitors of UDP-galactopyranose mutase thwart mycobacterial growth
J. Am. Chem. Soc.
130
6706-6707
2008
Klebsiella pneumoniae, Mycobacterium smegmatis, Mycobacterium tuberculosis
brenda
Liautard, V.; Desvergnes, V.; Itoh, K.; Liu, H.W.; Martin, O.R.
Convergent and stereoselective synthesis of iminosugar-containing Galf and UDP-Galf mimicks: evaluation as inhibitors of UDP-Gal mutase
J. Org. Chem.
73
3103-3115
2008
Escherichia coli
brenda
Dykhuizen, E.C.; Kiessling, L.L.
Potent ligands for prokaryotic UDP-galactopyranose mutase that exploit an enzyme subsite
Org. Lett.
11
193-196
2009
Klebsiella pneumoniae, Mycobacterium tuberculosis
brenda
Yao, X.; Bleile, D.W.; Yuan, Y.; Chao, J.; Sarathy, K.P.; Sanders, D.A.; Pinto, B.M.; ONeill, M.A.
Substrate directs enzyme dynamics by bridging distal sites: UDP-galactopyranose mutase
Proteins
74
972-979
2008
Klebsiella pneumoniae
brenda
Karunan Partha, S.; Bonderoff, S.A.; van Straaten, K.E.; Sanders, D.A.
Expression, purification and preliminary X-ray crystallographic analysis of UDP-galactopyranose mutase from Deinococcus radiodurans
Acta Crystallogr. Sect. F
65
843-845
2009
Deinococcus radiodurans
brenda
Gruber, T.D.; Westler, W.M.; Kiessling, L.L.; Forest, K.T.
X-ray crystallography reveals a reduced substrate complex of UDP-galactopyranose mutase poised for covalent catalysis by flavin
Biochemistry
48
9171-9173
2009
Mycobacterium tuberculosis, Mycobacterium tuberculosis (P9WIQ1)
brenda
Novelli, J.F.; Chaudhary, K.; Canovas, J.; Benner, J.S.; Madinger, C.L.; Kelly, P.; Hodgkin, J.; Carlow, C.K.
Characterization of the Caenorhabditis elegans UDP-galactopyranose mutase homolog glf-1 reveals an essential role for galactofuranose metabolism in nematode surface coat synthesis
Dev. Biol.
335
340-355
2009
Caenorhabditis elegans, Caenorhabditis elegans N2
brenda
Caravano, A.; Vincent, S.
Synthesis of three C-glycoside analogues of UDP-galactopyranose as conformational probes for the mutase-catalyzed furanose/pyranose interconversion
Eur. J. Org. Chem.
2009
1771-1780
2009
Escherichia coli
-
brenda
Poulin, M.B.; Nothaft, H.; Hug, I.; Feldman, M.F.; Szymanski, C.M.; Lowary, T.L.
Characterization of a bifunctional pyranose-furanose mutase from Campylobacter jejuni 11168
J. Biol. Chem.
285
493-501
2010
Campylobacter jejuni 11168, Campylobacter jejuni
brenda
Gruber, T.D.; Borrok, M.J.; Westler, W.M.; Forest, K.T.; Kiessling, L.L.
Ligand binding and substrate discrimination by UDP-galactopyranose mutase
J. Mol. Biol.
391
327-340
2009
Klebsiella pneumoniae, Klebsiella pneumoniae (Q48485)
brenda
Partha, S.K.; van Straaten, K.E.; Sanders, D.A.
Structural basis of substrate binding to UDP-galactopyranose mutase: crystal structures in the reduced and oxidized state complexed with UDP-galactopyranose and UDP
J. Mol. Biol.
394
864-877
2009
Deinococcus radiodurans
brenda
Errey, J.C.; Mann, M.C.; Fairhurst, S.A.; Hill, L.; McNeil, M.R.; Naismith, J.H.; Percy, J.M.; Whitfield, C.; Field, R.A.
Sugar nucleotide recognition by Klebsiella pneumoniae UDP-D-galactopyranose mutase: Fluorinated substrates, kinetics and equilibria
Org. Biomol. Chem.
7
1009-1016
2009
Klebsiella pneumoniae
brenda
Sadeghi-Khomami, A.; Forcada, T.J.; Wilson, C.; Sanders, D.A.; Thomas, N.R.
The UDP-Galp mutase catalyzed isomerization: synthesis and evaluation of 1,4-anhydro-beta-D-galactopyranose and its [2.2.2] methylene homologue
Org. Biomol. Chem.
8
1596-1602
2010
Klebsiella pneumoniae
brenda
Yao, X.; Bleile, D.; Yuan, Y.; Chao, J.; Sarathy, K.; Sanders, D.; Pinto, B.; O’Neill, M.
Substrate directs enzyme dynamics by bridging distal sites: UDP-galactopyranose mutase
Proteins Struct. Funct. Bioinform.
74
972-979
2009
Klebsiella pneumoniae
brenda
Oppenheimer, M.; Poulin, M.B.; Lowary, T.L.; Helm, R.F.; Sobrado, P.
Characterization of recombinant UDP-galactopyranose mutase from Aspergillus fumigatus
Arch. Biochem. Biophys.
502
31-38
2010
Aspergillus fumigatus
brenda
Oppenheimer, M.; Valenciano, A.L.; Sobrado, P.
Isolation and characterization of functional Leishmania major virulence factor UDP-galactopyranose mutase
Biochem. Biophys. Res. Commun.
407
552-556
2011
Leishmania major
brenda
Paul, B.C.; El-Ganiny, A.M.; Abbas, M.; Kaminskyj, S.G.; Dahms, T.E.
Quantifying the importance of galactofuranose in Aspergillus nidulans hyphal wall surface organization by atomic force microscopy
Eukaryot. Cell
10
646-653
2011
Aspergillus nidulans
brenda
Borrelli, S.; Zandberg, W.F.; Mohan, S.; Ko, M.; Martinez-Gutierrez, F.; Partha, S.K.; Sanders, D.A.; Av-Gay, Y.; Pinto, B.M.
Antimycobacterial activity of UDP-galactopyranose mutase inhibitors
Int. J. Antimicrob. Agents
36
364-368
2010
Klebsiella pneumoniae, Mycobacterium tuberculosis, Mycobacterium tuberculosis H37Rv
brenda
Partha, S.K.; Sadeghi-Khomami, A.; Slowski, K.; Kotake, T.; Thomas, N.R.; Jakeman, D.L.; Sanders, D.A.
Chemoenzymatic synthesis, inhibition studies, and X-ray crystallographic analysis of the phosphono analog of UDP-Galp as an inhibitor and mechanistic probe for UDP-galactopyranose mutase
J. Mol. Biol.
403
578-590
2010
Deinococcus radiodurans, Deinococcus radiodurans (Q9RYF1), Klebsiella pneumoniae, Mycobacterium tuberculosis
brenda
Penman, G.A.; Lockhart, D.E.; Ferenbach, A.; van Aalten, D.M.
Purification, crystallization and preliminary X-ray diffraction data of UDP-galactopyranose mutase from Aspergillus fumigatus
Acta Crystallogr. Sect. F
68
705-708
2012
Aspergillus fumigatus, Aspergillus fumigatus (Q4W1X2)
brenda
Tanner, J.J.; Boechi, L.; Andrew McCammon, J.; Sobrado, P.
Structure, mechanism, and dynamics of UDP-galactopyranose mutase
Arch. Biochem. Biophys.
544
128-141
2014
Aspergillus fumigatus, Deinococcus radiodurans, Deinococcus radiodurans R1 / ATCC 13939 / DSM 20539, Escherichia coli, Klebsiella pneumoniae, Leishmania infantum, Leishmania major, Leishmania mexicana, Mycobacterium tuberculosis, Trypanosoma cruzi
brenda
Poulin, M.B.; Shi, Y.; Protsko, C.; Dalrymple, S.A.; Sanders, D.A.; Pinto, B.M.; Lowary, T.L.
Specificity of a UDP-GalNAc pyranose-furanose mutase: a potential therapeutic target for Campylobacter jejuni infections
ChemBioChem
15
47-56
2014
Campylobacter jejuni 11168, Campylobacter jejuni
brenda
Qi, J.; Oppenheimer, M.; Sobrado, P.
Fluorescence polarization binding assay for Aspergillus fumigatus virulence factor UDP-galactopyranose mutase
Enzyme Res.
2011
513905
2011
Aspergillus fumigatus
brenda
van Straaten, K.E.; Routier, F.H.; Sanders, D.A.
Structural insight into the unique substrate binding mechanism and flavin redox state of UDP-galactopyranose mutase from Aspergillus fumigatus
J. Biol. Chem.
287
10780-10790
2012
Aspergillus fumigatus, Aspergillus fumigatus (Q4W1X2)
brenda
Sun, H.G.; Ruszczycky, M.W.; Chang, W.C.; Thibodeaux, C.J.; Liu, H.W.
Nucleophilic participation of reduced flavin coenzyme in mechanism of UDP-galactopyranose mutase
J. Biol. Chem.
287
4602-4608
2012
Mycobacterium tuberculosis
brenda
Boechi, L.; de Oliveira, C.A.; Da Fonseca, I.; Kizjakina, K.; Sobrado, P.; Tanner, J.J.; McCammon, J.A.
Substrate-dependent dynamics of UDP-galactopyranose mutase: implications for drug design
Protein Sci.
22
1490-1501
2013
no activity in Homo sapiens, Trypanosoma cruzi
brenda