Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(2-aminophenyl)alanine + 2-oxoglutarate
3-(4-aminophenyl)-2-oxopropanoate + L-glutamate
-
10% of the activity that with L-tyrosine
-
?
(3-fluorophenyl)alanine + 2-oxoglutarate
3-(3-fluorophenyl)-2-oxopropanoate + L-glutamate
-
4% of the activity that with L-tyrosine
-
?
(4-chlorophenyl)alanine + 2-oxoglutarate
3-(3-chlorophenyl)-2-oxopropanoate + L-glutamate
-
17% of the activity with L-tyrosine
-
?
(4-fluorophenyl)alanine + 2-oxoglutarate
3-(4-fluorophenyl)-2-oxopropanoate + L-glutamate
-
7.9% of the activity that with L-tyrosine
-
?
(R)-3-amino-5-methyl-hexanoic acid + 2-oxoglutarate
?
relative activity: 48%
-
-
?
(S)-beta-phenylalanine + 2-oxoglutarate
3-oxo-3-phenylpropionic acid + L-glutamate
relative activity: 100%
-
-
?
(S)-beta-phenylalanine + pyruvate
3-oxo-3-phenylpropionic acid + L-alanine
the activity of VpAT with pyruvate is 85% of that with alpha-ketoglutarate as the amino acceptor
-
-
?
2-oxoglutarate + L-phenylalanine
L-glutamate + phenylpyruvate
-
-
-
?
3,4-dihydroxyphenylalanine + 2-oxoglutarate
3-(3,4-dihydroxyphenyl)-2-oxopropanoate + L-glutamate
3-(4-hydroxyphenyl)-2-oxopropanoate + L-glutamate
L-tyrosine + 2-oxoglutarate
-
-
-
r
3-aminotyrosine + 2-oxoglutarate
3-(3-amino-4-hydroxyphenyl)-2-oxopropanoate + L-glutamate
-
16% of the activity than with L-tyrosine
-
?
3-iodotyrosine + 2-oxoglutarate
3-(4-hydroxy-3-iodophenyl)-2-oxopropanoate + L-glutamate
3-methoxytyrosine + 2-oxoglutarate
3-(3-methoxy-4-hydroxyphenyl)-2-oxopropanoate + L-glutamate
-
22% of the activity with L-tyrosine
-
?
4-hydroxyphenylpyruvate + L-aspartate
L-tyrosine + oxaloacetate
-
35% of the activity with L-glutamate
-
r
4-hydroxyphenylpyruvate + L-phenylalanine
L-glutamate + phenylpyruvate
-
-
-
?
L-alanine + 2-oxoglutarate
pyruvate + L-glutamate
-
-
-
?
L-alanine + 2-oxoisocaproate
pyruvate + 2-aminoisocaproate
-
-
-
?
L-asparagine + 2-oxoglutarate
2-oxosuccinamate + L-glutamate
-
15% of the activity with L-tyrosine
-
?
L-aspartate + 2-oxoglutarate
oxaloacetate + L-glutamate
L-cysteine + 2-oxoglutarate
3-mercapto-2-oxopropanoate + L-glutamate
-
higher activity than with L-tyrosine
-
?
L-ethionine + 2-oxoglutarate
4-ethylsulfanyl-2-oxobutanoate + L-glutamate
-
17% of the activity than with L-tyrosine
-
?
L-glutamate + 4-hydroxyphenylpyruvate
2-oxoglutarate + L-tyrosine
L-glutamate + 4-hydroxyphenylpyruvate
L-tyrosine + 2-oxoglutarate
-
-
-
-
?
L-glutamate + phenylpyruvate
2-oxoglutarate + L-phenylalanine
-
-
-
r
L-methionine + 2-oxoglutarate
4-methylsulfanyl-2-oxobutanoate + L-glutamate
L-phenylalanine + 2-oxoglutarate
2-oxo-3-phenylpropanoate + L-glutamate
L-phenylalanine + 2-oxoglutarate
phenylpyruvate + L-glutamate
L-tryptophan + 2-oxoglutarate
3-(1H-indol-3-yl)-2-oxopropanoate + L-glutamate
-
-
-
-
?
L-tryptophan + oxaloacetate
3-(1H-indol-3-yl)-2-oxopropanoate + L-glycine
-
-
-
-
?
L-tryptophan + pyruvate
3-(1H-indol-3-yl)-2-oxopropanoate + L-alanine
-
-
-
-
?
L-tyrosine + 2-oxoglutarate
3-(4-hydroxyphenyl)-2-oxopropanoate + L-glutamate
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
L-tyrosine + 2-oxohexanoate
3-(4-hydroxyphenyl)-2-oxopropanoate + (2S)-2-aminohexanoate
-
-
-
-
?
L-tyrosine + 2-oxopentanoate
3-(4-hydroxyphenyl)-2-oxopropanoate + (2S)-2-aminopentanoate
relative activity compared to 2-oxoglutarate: 3%
-
-
?
L-tyrosine + oxaloacetate
4-hydroxyphenylpyruvate + L-aspartate
L-tyrosine + oxaloacetate
?
relative activity compared to 2-oxoglutarate: 75%
-
-
?
L-tyrosine + phenylpyruvate
3-(4-hydroxyphenyl)-2-oxopropanoate + L-phenylalanine
-
-
-
-
?
L-tyrosine + phenylpyruvate
4-hydroxyphenylpyruvate + L-phenylalanine
-
-
-
r
L-tyrosine + prephenate
?
relative activity compared to 2-oxoglutarate: 23%
-
-
?
L-tyrosine + pyruvate
4-hydroxyphenylpyruvate + L-alanine
-
-
-
?
L-tyrosine + pyruvate
?
relative activity compared to 2-oxoglutarate: 40%
-
-
?
rac-2-fluoro-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 15%
-
-
?
rac-2-methyl-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 5%
-
-
?
rac-3-bromo-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 53%
-
-
?
rac-3-chloro-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 56%
-
-
?
rac-3-fluoro-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 48%
-
-
?
rac-3-methyl-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 54%
-
-
?
rac-4-bromo-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 62%
-
-
?
rac-4-ethyl-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 134%
-
-
?
rac-4-fluoro-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 87%
-
-
?
rac-4-iso-propyl-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 61%
-
-
?
rac-4-methyl-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 100%
-
-
?
rac-4-nitro-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 32%
-
-
?
rac-4-nitro-hydroxy-phenylalanine + 2-oxoglutarate
?
relative activity: 61%
-
-
?
rac-4-propyl-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 126%
-
-
?
rac-4-trifluoromethyl-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 73%
-
-
?
rac-beta-leucine + 2-oxoglutarate
?
relative activity: 38%
-
-
?
rac-beta-phenylalanine + 2-oxoglutarate
?
relative activity: 100%
-
-
?
tryptophan + 2-oxoglutarate
3-indole-2-oxopropanoate + L-glutamate
additional information
?
-
3,4-dihydroxyphenylalanine + 2-oxoglutarate

3-(3,4-dihydroxyphenyl)-2-oxopropanoate + L-glutamate
-
-
-
?
3,4-dihydroxyphenylalanine + 2-oxoglutarate
3-(3,4-dihydroxyphenyl)-2-oxopropanoate + L-glutamate
-
85% of the activity than with L-tyrosine
-
?
3-iodotyrosine + 2-oxoglutarate

3-(4-hydroxy-3-iodophenyl)-2-oxopropanoate + L-glutamate
-
as effective as L-tyrosine
-
?
3-iodotyrosine + 2-oxoglutarate
3-(4-hydroxy-3-iodophenyl)-2-oxopropanoate + L-glutamate
-
84% of the activity than with L-tyrosine
-
?
L-aspartate + 2-oxoglutarate

oxaloacetate + L-glutamate
-
isoenzymes TAT-2 and TAT-3, best substrate for isoenzyme TAT-3
-
?
L-aspartate + 2-oxoglutarate
oxaloacetate + L-glutamate
-
higher activity than with L-tyrosine
-
?
L-glutamate + 4-hydroxyphenylpyruvate

2-oxoglutarate + L-tyrosine
-
-
-
-
?
L-glutamate + 4-hydroxyphenylpyruvate
2-oxoglutarate + L-tyrosine
-
-
-
?
L-methionine + 2-oxoglutarate

4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
-
-
-
?
L-methionine + 2-oxoglutarate
4-methylsulfanyl-2-oxobutanoate + L-glutamate
-
20% of the activity than with L-tyrosine
-
?
L-phenylalanine + 2-oxoglutarate

2-oxo-3-phenylpropanoate + L-glutamate
-
-
-
r
L-phenylalanine + 2-oxoglutarate
2-oxo-3-phenylpropanoate + L-glutamate
-
-
-
-
?
L-phenylalanine + 2-oxoglutarate
2-oxo-3-phenylpropanoate + L-glutamate
-
-
-
-
?
L-phenylalanine + 2-oxoglutarate

phenylpyruvate + L-glutamate
-
-
-
?
L-phenylalanine + 2-oxoglutarate
phenylpyruvate + L-glutamate
-
-
-
?
L-phenylalanine + 2-oxoglutarate
phenylpyruvate + L-glutamate
-
-
-
?
L-phenylalanine + 2-oxoglutarate
phenylpyruvate + L-glutamate
-
lower activity than with L-tyrosine
-
?
L-phenylalanine + 2-oxoglutarate
phenylpyruvate + L-glutamate
-
higher rate than with L-tyrosine
-
?
L-phenylalanine + 2-oxoglutarate
phenylpyruvate + L-glutamate
-
no activity
-
?
L-tyrosine + 2-oxoglutarate

3-(4-hydroxyphenyl)-2-oxopropanoate + L-glutamate
best substrate
-
-
r
L-tyrosine + 2-oxoglutarate
3-(4-hydroxyphenyl)-2-oxopropanoate + L-glutamate
-
-
-
-
?
L-tyrosine + 2-oxoglutarate

4-hydroxyphenylpyruvate + L-glutamate
-
highly specific for: L-tyrosine
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
isoenzymes TAT-1, TAT-2 and TAT-3 show a pronounced preference for L-tyrosine over other aromatic amino acids
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
isoenzyme TAT-1: oxaloacetate and 2-oxoglutarate utilized equally well as amino acceptor, isoenzyme TAT-2: oxaloacetate is most effective, isoenzyme TAT-3: 2-oxoglutarate is most effective
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
first step in tyrosine pathway leading to the formation of rosmarinic acid (alpha-O-caffeoyl-3,4-dihydroxyphenyllactic acid)
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
specific for 2-oxoglutarate as the amino group acceptor
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
r
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
maximal activity with L-tyrosine
-
-
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
Q6GFC0;
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
highly specific for: L-tyrosine
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
?
L-tyrosine + 2-oxoglutarate
4-hydroxyphenylpyruvate + L-glutamate
-
-
-
?
L-tyrosine + oxaloacetate

4-hydroxyphenylpyruvate + L-aspartate
-
-
-
?
L-tyrosine + oxaloacetate
4-hydroxyphenylpyruvate + L-aspartate
-
-
-
?
L-tyrosine + oxaloacetate
4-hydroxyphenylpyruvate + L-aspartate
-
no activity
-
?
L-tyrosine + oxaloacetate
4-hydroxyphenylpyruvate + L-aspartate
-
-
-
r
L-tyrosine + oxaloacetate
4-hydroxyphenylpyruvate + L-aspartate
-
no activity
-
?
tryptophan + 2-oxoglutarate

3-indole-2-oxopropanoate + L-glutamate
-
-
-
?
tryptophan + 2-oxoglutarate
3-indole-2-oxopropanoate + L-glutamate
-
-
-
?
tryptophan + 2-oxoglutarate
3-indole-2-oxopropanoate + L-glutamate
-
-
-
?
tryptophan + 2-oxoglutarate
3-indole-2-oxopropanoate + L-glutamate
-
62% of the activity than with L-tyrosine
-
?
tryptophan + 2-oxoglutarate
3-indole-2-oxopropanoate + L-glutamate
-
no activity
-
-
tryptophan + 2-oxoglutarate
3-indole-2-oxopropanoate + L-glutamate
-
-
-
-
-
additional information

?
-
-
no detectable transamination of aspartate or other cosubstrates
-
-
-
additional information
?
-
-
leishmanial TAT is deprived of ALAT activity and exhibits undetectable activity towards leucine, glutamine and cysteine, leishmanial TAT reveals undetectable activity when other 2-oxoacids such as 2-oxoglutarate, glyoxylate, 2-oxoisovalerate and 2-oxoisocaproate are assayed at a concentration up to 10 mM, the leishmanial enzyme displays almost identical preference for 2-oxo-4-methylthiobutyrate, pyruvate and 2-oxobutyrate
-
-
-
additional information
?
-
activities with glutamate, methionine and leucine do not exceed 13% of the activity with tyrosine. Only phenylpyruvate and 2-oxoglutarate effectively serve as acceptors, and no activity is detected with prephenate
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(4-hydroxyphenyl)acetic acid
-
74% inhibition with tyrosine at 3 mM and (4-hydroxyphenyl)acetic acid at 12 mM
2-chloro-3-(5-{[(2,6-difluorobenzyl)oxy]methyl}-5-methyl-4,5-dihydro-1,2-oxazol-3-yl)-6-(propan-2-yl)pyridine
-
1 mM: 79% inhibition of enzyme activity, 0.5 mM: 67% inhibition of enzyme activity, 0.25 mM: 44% inhibition of enzyme activity
3,4-dihydroxyphenylalanine
-
-
3,4-Dihydroxyphenyllactate
-
strong inhibition of all the three TAT isoenzymes
3-(3,4-Dihydroxyphenyl)-2-methylalanine
-
-
3-(5-{[(2,6-difluorobenzyl)oxy]methyl}-5-methyl-4,5-dihydro-1,2-oxazol-3-yl)pyridine-2-carbonitrile
-
1 mM: 82% inhibition of enzyme activity, 0.5 mM: 46% inhibition of enzyme activity, 0.25 mM: 8% inhibition of enzyme activity
4-methylsulfonyl-2,5,6,2',4',5'-hexachlorobiphenyl
-
significant reduction of dexamethasone-induced activity, 50% inhibition at 0.0008 mM
4-methylsulfonyl-2,5,6,2',4'-pentachlorobiphenyl
-
significant reduction of dexamethasone-induced activity, 50% inhibition at 0.0007 mM
5-hydroxyindole acetic acid
-
55% inhibition with tyrosine at 3 mM and 5-hydroxyindole acetic acid at 12 mM
5-hydroxytryptophan
-
30% inhibition with tyrosine at 3 mM and 5-hydroxytryptophan at 12 mM
AgNO3
-
10 mM, complete inhibition
alpha-Methyl-L-aspartate
-
with L-tyrosine and 2-oxoglutarate or oxaloacetate as substrates
beta-Methyl-L-aspartate
-
with L-tyrosine and 2-oxoglutarate or oxaloacetate as substrates
beta-phenylalanine
enzyme shows substrate inhibition
cinmethylin
-
0.5 mM: 96% inhibition of enzyme activity, 0.25 mM: 20% inhibition of enzyme activity
CuSO4
-
10 mM, complete inhibition
D-Aspartate
-
weak inhibition
D-tyrosine
-
9% inhibition with tyrosine at 3 mM and D-tyrosine at 12 mM
Dextran sulfate
-
dextran sulfate inhibits TAT activity but conditioned macrophage medium reliably increases enzyme activity in hepatocytes
-
dihydroxymandelic acid
-
65% inhibition with tyrosine at 3 mM and dihydroxymandelic acid at 3 mM
dihydroxyphenylacetic acid
-
88% inhibition with tyrosine at 3 mM and dihydroxyphenylacetic acid at 3 mM
dopamine
-
100% inhibition with tyrosine at 3 mM and dopamine at 12 mM
EDTA
-
1 mM, 21% residual activity
homogentisate
-
half-maximal inhibition with 15 micromolar
indole-3-acetic acid
-
42% inhibition with tyrosine at 3 mM and indole-3-acetic acid at 12 mM
indole-3-butyric acid
-
71% inhibition with tyrosine at 3 mM and indole-3-butyric acid at 12 mM
Indole-3-propionic acid
-
48% inhibition with tyrosine at 3 mM and indole-3-propionic acid at 12 mM
ketoconazole
-
significant reduction of dexamethasone-induced activity, 50% inhibition at 0.0011 mM
kynuric acid
-
10 mM, complete inhibition
L-aspartate
-
with L-tyrosine and 2-oxoglutarate or oxaloacetate as substrates
methiozolin
-
0.5 mM: 91% inhibition of enzyme activity, 0.25 mM: 57% inhibition of enzyme activity
norepinephrine
-
competitive inhibition
phenylacetic acid
-
30% inhibition with tyrosine at 3 mM and phenylacetic acid at 12 mM
Phenylethylamine
-
80% inhibition with tyrosine at 3 mM and phenylethylamine at 12 mM
phenylhydrazine
-
1 mM, complete inhibition
rosmarinic acid
-
isoenzymes TAT-2 and TAT-3
serotonin
-
37% inhibition with tyrosine at 3 mM and serotonin at 12 mM
SnCl2
-
10 mM, complete inhibition
sodium dodecylsulfate
-
1 mM, complete inhibition
tolylfluanid
-
significant reduction of dexamethasone-induced activity, 50% inhibition at 0.0014 mM
tyramine
-
13% inhibition with tyrosine at 3 mM and tyramine at 12 mM
vanillylmandelic acid
-
51% inhibition with tyrosine at 3 mM and vanillylmandelic acid at 3 mM
2-oxoglutarate

-
substrate inhibition at high concentration
2-oxoglutarate
enzyme shows substrate inhibition
Aminooxyacetate

-
1 mM, complete inhibition
Aminooxyacetate
-
probably acts reacting with the cofactor
Canaline

-
probably acts reacting with the cofactor
L-glutamate

-
competitive inhibition
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
1.5
(S)-beta-phenylalanine
pH 7.6, 30°C
0.13
2-oxo-3-phenylpropanoate
pH 8.2, 30°C
0.19 - 3300
2-oxoglutarate
7.3
2-Oxohexanoate
-
pH 7.0, 38°C
0.3 - 20.4
2-oxoisocaproate
26
3,4-dihydroxyphenylalanine
-
pH 7.9, 37°C
0.22
3-(4-hydroxyphenyl)-2-oxopropanoate
pH 8.2, 30°C
0.7 - 7.9
4-hydroxyphenylpyruvate
0.84 - 13.8
L-phenylalanine
7.83
L-tryptophan
-
pH 8.5, 30°C
1.2 - 580
p-hydroxyphenylpyruvate
additional information
additional information
-
0.19
2-oxoglutarate

pH 8.2, 30°C
0.25
2-oxoglutarate
-
pH 7.6, 37°C
0.3
2-oxoglutarate
pH 7.6, 30°C
0.35
2-oxoglutarate
mutant R315K, pH 7.5, 37°C
0.35
2-oxoglutarate
-
pH 8.5, 30°C
0.4
2-oxoglutarate
wild-type, pH 7.5, 37°C
0.7
2-oxoglutarate
-
pH 7.2, 37°C
0.9
2-oxoglutarate
-
pH 7.6, 37°C, enzyme form I
1
2-oxoglutarate
-
pH 7.6, 37°C, enzyme form III
1.1
2-oxoglutarate
-
pH 7.6, 37°C, enzyme form II
1.2
2-oxoglutarate
-
pH 7.6, 37°C, enzyme form IV
1.8
2-oxoglutarate
-
pH 7.0, 38°C
1.8
2-oxoglutarate
cosubstrate phenylalanine, pH 10.0, 30°C
3.5
2-oxoglutarate
mutant N54S, pH 7.5, 37°C
4.6
2-oxoglutarate
wild-type, pH 7.5, 37°C
9.6
2-oxoglutarate
mutant N17S, pH 7.5, 37°C
14.8
2-oxoglutarate
mutant R20A, pH 7.5, 37°C
38
2-oxoglutarate
-
pH 7.0, 37°C, tyrosine as co-substrate
3300
2-oxoglutarate
-
wild type enzyme
0.3
2-oxoisocaproate

mutant R20A, pH 7.5, 37°C
2.8
2-oxoisocaproate
mutant N17S, pH 7.5, 37°C
20.4
2-oxoisocaproate
wild-type, pH 7.5, 37°C
0.7
4-hydroxyphenylpyruvate

-
pH 7.0, 38°C
7.9
4-hydroxyphenylpyruvate
cosubstrate phenylalanine, pH 10.0, 30°C
0.9
L-alanine

wild-type, pH 7.5, 37°C
1.2
L-alanine
mutant N17S, pH 7.5, 37°C; mutant R20A, pH 7.5, 37°C
1.4
L-glutamate

pH 8.2, 30°C
1.9
L-glutamate
mutant R315K, pH 7.5, 37°C
2.2
L-glutamate
wild-type, pH 7.5, 37°C
4.9
L-glutamate
-
pH 7.0, 38°C
8.8
L-glutamate
mutant N54S, pH 7.5, 37°C
11.1
L-glutamate
cosubstrate phenylpyruvate, pH 10.0, 30°C
0.84
L-phenylalanine

pH 8.2, 30°C
4.3
L-phenylalanine
cosubstrate 4-hydroxyphenylpyruvate, pH 10.0, 30°C
6.33
L-phenylalanine
-
pH 8.5, 30°C
11.4
L-phenylalanine
-
pH 7.0, 38°C
13.8
L-phenylalanine
cosubstrate 2-oxoglutarate, pH 10.0, 30°C
0.19
L-tyrosine

pH 8.2, 30°C
0.21
L-tyrosine
-
aspartate aminotransferase with mutations HEX and I73V, A293D, pH 8.0, 25°C
0.29
L-tyrosine
-
aspartate aminotransferase with mutations HEX and I73V, pH 8.0, 25°C
0.33
L-tyrosine
-
aspartate aminotransferase with mutations HEX and A293D, pH 8.0, 25°C
0.45
L-tyrosine
-
pH 9.2, 40°C, isoenzyme TAT-3
0.5
L-tyrosine
-
pH 7.6, 37°C
1.2
L-tyrosine
wild-type, pH 7.5, 37°C
1.4
L-tyrosine
-
pH 7.6, 37°C, enzyme form II
1.8
L-tyrosine
-
pH 7.0, 38°C
1.82
L-tyrosine
-
pH 8.5, 30°C
1.86
L-tyrosine
-
in liver
1.9
L-tyrosine
cosubstrate phenylpyruvate, pH 10.0, 30°C
2.1
L-tyrosine
-
pH 7.6, 37°C
2.1
L-tyrosine
wild-type, pH 7.5, 37°C
2.3
L-tyrosine
mutant R315K, pH 7.5, 37°C
2.3
L-tyrosine
mutant R20A, pH 7.5, 37°C
2.4
L-tyrosine
mutant N17S, pH 7.5, 37°C
2.5 - 5
L-tyrosine
-
in white muscle
3.4
L-tyrosine
-
pH 7.2, 37°C
5
L-tyrosine
-
pH 9.2, 40°C, isoenzyme TAT-2
5.3
L-tyrosine
mutant N54S, pH 7.5, 37°C
6.8
L-tyrosine
-
pH 7.0, 37°C, pyruvate as co-substrate
15
L-tyrosine
-
pH 7.9, 37°C
20
L-tyrosine
-
pH 9.2, 40°C, isoenzyme TAT-1
67
L-tyrosine
-
mutant enzyme I249A
870
L-tyrosine
-
wild type enzyme
16
oxaloacetate

-
pH 7.0, 37°C, tyrosine as co-substrate
56.13
oxaloacetate
-
pH 8.5, 30°C
1.2
p-hydroxyphenylpyruvate

mutant R315K, pH 7.5, 37°C; wild-type, pH 7.5, 37°C
1.3
p-hydroxyphenylpyruvate
mutant N54S, pH 7.5, 37°C
580
p-hydroxyphenylpyruvate
-
wild type enzyme
17.9
phenylalanine

-
pH 7.0, 37°C, pyruvate as co-substrate
80
phenylalanine
-
pH 7.9, 37°C
0.9
phenylpyruvate

-
pH 7.0, 38°C
1.5
phenylpyruvate
cosubstrate L-tyrosine, pH 10.0, 30°C
2.6
phenylpyruvate
cosubstrate L-glutamate, pH 10.0, 30°C
0.5
pyruvate

-
pH 7.0, 37°C, tyrosine as co-substrate
0.6
pyruvate
mutant N17S, pH 7.5, 37°C; mutant R20A, pH 7.5, 37°C
0.8
pyruvate
wild-type, pH 7.5, 37°C
2.45
pyruvate
-
pH 8.5, 30°C
21.4
tryptophan

-
pH 7.0, 37°C, pyruvate as co-substrate
30
tryptophan
-
pH 7.9, 37°C
60
tryptophan
-
pH 7.2, 37°C
additional information
additional information

-
non-Michaelis complex kinetic
-
additional information
additional information
-
-
-
additional information
additional information
-
-
-
additional information
additional information
-
-
-
additional information
additional information
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Gohda, E.; Pitot, H.C.
Purification and characterization of a factor catalyzing the conversion of the multiple forms of tyrosine aminotransferase from rat liver
J. Biol. Chem.
255
7371-7379
1980
Rattus norvegicus
brenda
Miller, J.E.; Litwack, G.
Purification, properties, and identity of liver mitochondrial tyrosine aminotransferase
J. Biol. Chem.
246
3234-3240
1971
Rattus norvegicus
brenda
Hargrove, J.L.; Granner, D.K.
Purification of the native form of tyrosine aminotransferase from rat liver
Anal. Biochem.
104
231-235
1980
Rattus norvegicus
brenda
Lee, K.L.; Roberson, L.E.; Kenney, F.T.
Properties of tyrosine aminotransferase from rat liver
Anal. Biochem.
95
188-193
1979
Rattus norvegicus
brenda
Hargrove, J.L.; Granner, D.K.
Physical properties, limited proteolysis, and acetylation of tyrosine aminotransferase from rat liver
J. Biol. Chem.
256
8012-8017
1981
Rattus norvegicus
brenda
Donner, P.; Wagner, H.; Krƶger, H.
Tyrosine aminotransferase from rat liver, a purification in three steps
Biochem. Biophys. Res. Commun.
80
766-772
1978
Rattus norvegicus
brenda
Iwasaki, Y.; Lamar, C.; Danenberg, K.; Pitot, H.C.
Studies on the induction and repression of enzymes in rat liver. Characterization and metabolic regulation of multiple forms of tyrosine aminotransferase
Eur. J. Biochem.
34
347-357
1973
Rattus norvegicus
brenda
Belarbi, A.; Bollack, C.; Befort, N.; Beck, J.P.; Beck, G.
Purification and characterization of rat liver tyrosine aminotransferase
FEBS Lett.
75
221-225
1977
Rattus norvegicus
brenda
Roewekamp, W.; Sekeris, C.E.
Purification and subunit structure of tyrosine aminotransferase from rat liver cytosol
FEBS Lett.
73
225-228
1977
Rattus norvegicus
brenda
Johnson, R.W.; Roberson, L.E.; Kenney, F.T.
Regulation of tyrosine aminotransferase in rat liver. X. Characterization and interconversion of the multiple enzyme forms
J. Biol. Chem.
248
4521-4527
1973
Rattus norvegicus
brenda
Miller, J.V.; Cuatrecasas, P.; Thompson, E.B.
Purification of tyrosine aminotransferase by affinity chromatography
Biochim. Biophys. Acta
276
407-415
1972
Rattus norvegicus
brenda
Jacoby, G.A.; La Du, B.N.
Studies on the specificity of tyrosine-alpha-ketoglutarate transaminase
J. Biol. Chem.
239
419-424
1964
Rattus norvegicus
brenda
Echetebu, C.O.
Some properties of tyrosine aminotransferase from Trichoderma viride
J. Gen. Microbiol.
128
2735-2738
1982
Trichoderma viride
-
brenda
De-Eknamkul, W.; Ellis, B.E.
Purification and characterization of tyrosine aminotransferase activities from Anchusa officinalis cell cultures
Arch. Biochem. Biophys.
257
430-438
1987
Anchusa officinalis
brenda
Dietrich, J.B.; Lorber, B.; Kern, D.
Expression of mammalian tyrosine aminotransferase in Saccharomyces cerevisiae and Escherichia coli. Purification to homogeneity and characterization of the enzyme overproduced in the bacteria
Eur. J. Biochem.
201
399-407
1991
Rattus norvegicus
brenda
Ohisalo, J.J.; Andersson, S.M.; Pispa, J.P.
Partial purification and properties of frog liver tyrosine aminotransferase
Biochem. J.
163
411-417
1977
Rana temporaria
brenda
Rege, A.A.
Purification and characterization of a tyrosine aminotransferase from Crithidia fasciculata
Mol. Biochem. Parasitol.
25
1-9
1987
Crithidia fasciculata
brenda
Echetebu, C.O.; Ifem, F.M.; Echetebu, Z.O.
Hepatic tyrosine aminotransferase from the rainbow lizard Agama agama: purification and some properties
Biochimie
69
223-230
1987
Agama agama
brenda
Belew, K.; Brady, T.
Tyrosine aminotransferase from Drosophila hydei salivary glands: characterization, purification and antibody production
Insect Biochem.
11
239-245
1981
Drosophila hydei
-
brenda
Ohisalo, J.J.; Pispa, J.P.
Heterogeneity of hepatic tyrosine aminotransferase. Separation of the multiple forms from rat and frog liver by isoelectro focussing and hydroxyapatite column chromatography and their partial characterization
Acta Chem. Scand. B
30
491-500
1976
Rana temporaria, Rattus norvegicus
brenda
Montemartini, M.; Santome, J.A.; Cazzulo, J.J.; Nowick, C.
Purification and partial structural and kinetic characterization of tyrosine aminotransferase from epimastigotes of Trypanosoma cruzi
Biochem. J.
292
901-906
1993
Trypanosoma cruzi
brenda
Presch, I.; Birnbacher, R.; Herkner, K.; Lubec, G.
The effect of estradiol and ovariectomy on tyrosine hydroxylase, tyrosine aminotransferase and phenylalanine hydroxylase
Life Sci.
60
479-484
1997
Rattus norvegicus
brenda
Bai, S.C.; Rogers, Q.R.; Wong, D.L.; Sampson, D.A.; Morris, J.G.
Vitamin B-6 deficiency and level of dietary protein affect hepatic tyrosine aminotransferase activity in cats
J. Nutr.
128
1995-2000
1998
Felis catus
brenda
Nimi, S.; Yamaguchi, T.; Hayakawa, T.
Effect of dexamethasone pretreatment on the dexamethasone-dependent induction of tyrosine aminotransferase activity in primary cultured rat hepatocytes
Biol. Pharm. Bull.
21
1009-1012
1998
Rattus norvegicus
brenda
Pickering, C.S.; Watkins, R.H.; Dickson, A.J.
Rat primary hepatocytes and H4 hepatoma cells display differential sensitivity to cyclic AMP at the level of expression of tyrosine aminotransferase
Biochem. Biophys. Res. Commun.
252
764-769
1998
Rattus norvegicus
brenda
Donohue, T.M., Jr.; Drey, M.L.; Zetterman, R.K.
Contrasting effects of acute and chronic ethanol administration on rat liver tyrosine aminotransferase
Alcohol
15
141-146
1998
Rattus norvegicus
brenda
Blankenfeldt, W.; Nowicki, C.; Montemartini-Kalisz, M.; Kalisz, H.M.; Hecht, H.J.
Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode
Protein Sci.
8
2406-2417
1999
Trypanosoma cruzi
brenda
Ko, T.P.; Wu, S.P.; Yang, W.Z.; Tsai, H.; Yuan, H.S.
Crystallization and preliminary crystallographic analysis of the Escherichia coli tyrosine aminotransferase
Acta Crystallogr. Sect. D
55
1474-1477
1999
Escherichia coli
brenda
Tabiri, H.Y.; Sato, K.; Takahashi, K.; Toyomizu, M.; Akiba, Y.
Hepatic tyrosine aminotransferase activity is affected by chronic heat stress and dietary tyrosine in broiler chickens
Br. Poult. Sci.
43
629-634
2002
Gallus gallus
brenda
Amin, M.R.; Onodera, R.; Khan, R.I.; Wallace, R.J.; Newbold, C.J.
Purification and properties of glutamate-phenylpyruvate aminotransferase from the ruminal protozoan Entodinium caudatum
Aust. J. Agric. Res.
55
991-997
2004
Entodinium caudatum
-
brenda
Johansson, M.; Johansson, N.; Lund, B.O.
Xenobiotics and the glucocorticoid receptor: additive antagonistic effects on tyrosine aminotransferase activity in rat hepatoma cells
Basic Clin. Pharmacol. Toxicol.
96
309-315
2005
Rattus norvegicus
brenda
Rehman, K.K.; Ayesha, Q.; Khan, A.A.; Ahmed, N.; Habibullah, C.M.
Tyrosine aminotransferase and gamma-glutamyl transferase activity in human fetal hepatocyte primary cultures under proliferative conditions
Cell Biochem. Funct.
22
89-96
2004
Homo sapiens
brenda
Sobrado, V.R.; Montemartini-Kalisz, M.; Kalisz, H.M.; De La Fuente, M.C.; Hecht, H.J.; Nowicki, C.
Involvement of conserved asparagine and arginine residues from the N-terminal region in the catalytic mechanism of rat liver and Trypanosoma cruzi tyrosine aminotransferases
Protein Sci.
12
1039-1050
2003
Rattus norvegicus (P04694), Trypanosoma cruzi (P33447)
brenda
Rothman, S.C.; Voorhies, M.; Kirsch, J.F.
Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase
Protein Sci.
13
763-772
2004
Escherichia coli
brenda
Seetharamappa, J.; Oke, M.; Liu, H.; McMahon, S.A.; Johnson, K.A.; Carter, L.; Dorward, M.; Zawadzki, M.; Overton, I.M.; van Niekirk, C.A.; Graham, S.; Botting, C.H.; Taylor, G.L.; White, M.F.; Barton, G.J.; Coote, P.J.; Naismith, J.H.
Expression, purification, crystallization, data collection and preliminary biochemical characterization of methicillin-resistant Staphylococcus aureus Sar2028, an aspartate/tyrosine/phenylalanine pyridoxal-5-phosphate-dependent aminotransferase
Acta Crystallogr. Sect. F
F63
452-456
2007
Staphylococcus aureus (Q6GFC0)
brenda
Sivaraman, S.; Kirsch, J.F.
The narrow substrate specificity of human tyrosine aminotransferase--the enzyme deficient in tyrosinemia type II
FEBS J.
273
1920-1929
2006
Homo sapiens
brenda
Dundjerski, J.; Brkljacic, J.; Elakovic, I.; Manitasevic, S.; Matic, G.
Mercury influences rat liver tyrosine aminotransferase activity and induction by dexamethasone
J. Appl. Toxicol.
26
187-190
2006
Rattus norvegicus
brenda
Minami-Hori, M.; Ishida-Yamamoto, A.; Katoh, N.; Takahashi, H.; Iizuka, H.
Richner-Hanhart syndrome: Report of a case with a novel mutation of tyrosine aminotransferase
J. Dermatol. Sci.
41
82-84
2006
Homo sapiens
brenda
Hazra, A.; Pyszczynski, N.; Dubois, D.C.; Almon, R.R.; Jusko, W.J.
Modeling receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase dynamics in rats: dual regulation by endogenous and exogenous corticosteroids
J. Pharmacokinet. Pharmacodyn.
34
643-667
2007
Rattus norvegicus
brenda
Hollaender-Czytko, H.; Grabowski, J.; Sandorf, I.; Weckermann, K.; Weiler, E.W.
Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions
J. Plant Physiol.
162
767-770
2005
Arabidopsis thaliana
brenda
Charfeddine, C.; Monastiri, K.; Mokni, M.; Laadjimi, A.; Kaabachi, N.; Perin, O.; Nilges, M.; Kassar, S.; Keirallah, M.; Guediche, M.N.; Kamoun, M.R.; Tebib, N.; Ben Dridi, M.F.; Boubaker, S.; Ben Osman, A.; Abdelhak, S.
Clinical and mutational investigations of tyrosinemia type II in Northern Tunisia: Identification and structural characterization of two novel TAT mutations
Mol. Genet. Metab.
88
184-191
2006
Homo sapiens
brenda
Rego, J.V.; Murta, S.M.; Nirde, P.; Nogueira, F.B.; de Andrade, H.M.; Romanha, A.J.
Trypanosoma cruzi: characterisation of the gene encoding tyrosine aminotransferase in benznidazole-resistant and susceptible populations
Exp. Parasitol.
118
111-117
2008
Trypanosoma cruzi (Q4E4E7), Trypanosoma cruzi
brenda
Panin, L.E.; Usynin, I.F.
Role of glucocorticoids and resident liver macrophages in induction of tyrosine aminotransferase
Biochemistry
73
305-309
2008
Rattus norvegicus
brenda
Ebara, S.; Nakao, M.; Tomoda, M.; Yamaji, R.; Watanabe, F.; Inui, H.; Nakano, Y.
Vitamin B12 deficiency results in the abnormal regulation of serine dehydratase and tyrosine aminotransferase activities correlated with impairment of the adenylyl cyclase system in rat liver
Br. J. Nutr.
99
503-510
2008
Rattus norvegicus
brenda
Peragon, J.; Barroso, J.; De la Higuera, M.; Lupianez, J.
Serine dehydratase and tyrosine aminotransferase activities increased by long-term starvation and recovery by refeeding in rainbow trout (Oncorhynchus mykiss)
J. Exp. Zool. Part A Ecol. Genet. Physiol.
309
25-34
2008
Oncorhynchus mykiss
brenda
Marciano, D.; Maugeri, D.A.; Cazzulo, J.J.; Nowicki, C.
Functional characterization of stage-specific aminotransferases from trypanosomatids
Mol. Biochem. Parasitol.
166
172-182
2009
Leishmania major
brenda
Battilana, J.; Costantini, L.; Emanuelli, F.; Sevini, F.; Segala, C.; Moser, S.; Velasco, R.; Versini, G.; Stella Grando, M.
The 1-deoxy-D: -xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine
Theor. Appl. Genet.
118
653-669
2009
Vitis vinifera x Vitis riparia, Vitis vinifera x Vitis vinifera
brenda
Crismaru, C.G.; Wybenga, G.G.; Szymanski, W.; Wijma, H.J.; Wu, B.; Bartsch, S.; de Wildeman, S.; Poelarends, G.J.; Feringa, B.L.; Dijkstra, B.W.; Janssen, D.B.
Biochemical properties and crystal structure of a beta-phenylalanine aminotransferase from Variovorax paradoxus
Appl. Environ. Microbiol.
79
185-195
2013
Variovorax paradoxus (H8WR05)
brenda
Prabhu, P.R.; Hudson, A.O.
Identification and partial characterization of an L-tyrosine aminotransferase (TAT) from Arabidopsis thaliana
Biochem. Res. Int.
2010
549572
2010
Arabidopsis thaliana, Arabidopsis thaliana (Q9LVY1)
brenda
Grossmann, K.; Hutzler, J.; Tresch, S.; Christiansen, N.; Looser, R.; Ehrhardt, T.
On the mode of action of the herbicides cinmethylin and 5-benzyloxymethyl-1, 2-isoxazolines: putative inhibitors of plant tyrosine aminotransferase
Pest Manag. Sci.
68
482-492
2012
Arabidopsis thaliana
brenda
Riewe, D.; Koohi, M.; Lisec, J.; Pfeiffer, M.; Lippmann, R.; Schmeichel, J.; Willmitzer, L.; Altmann, T.
A tyrosine aminotransferase involved in tocopherol synthesis in Arabidopsis
Plant J.
71
850-859
2012
Arabidopsis thaliana
brenda
Lee, E.J.; Facchini, P.J.
Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy
Plant Physiol.
157
1067-1078
2011
Papaver somniferum
brenda
Mehere, P.; Han, Q.; Lemkul, J.A.; Vavricka, C.J.; Robinson, H.; Bevan, D.R.; Li, J.
Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations
Protein Cell
1
1023-1032
2010
Mus musculus
brenda
Yoo, H.; Widhalm, J.; Qian, Y.; Maeda, H.; Cooper, B.; Jannasch, A.; Gonda, I.; Lewinsohn, E.; Rhodes, D.; Dudareva, N.
An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase
Nat. Commun.
4
2833
2013
Petunia x hybrida (V5M241)
brenda
Kim, Y.B.; Uddina, M.R.; Kim, Y.; Park, C.G.; Park, S.U.
Molecular cloning and characterization of tyrosine aminotransferase and hydroxyphenylpyruvate reductase, and rosmarinic acid accumulation in Scutellaria baicalensis
Nat. Prod. Commun.
9
1311-1314
2014
Scutellaria baicalensis (A0A0A7DPK0), Scutellaria baicalensis (A0A0A7DQ59), Scutellaria baicalensis
brenda