Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 4.4.1.11 - methionine gamma-lyase and Organism(s) Citrobacter freundii and UniProt Accession Q84AR1

for references in articles please use BRENDA:EC4.4.1.11
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
A pyridoxal-phosphate protein. The enzyme cleaves a carbon-sulfur bond, releasing methanethiol and an unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic deamination to form 2-oxobutanoate and ammonia. The latter reaction, which can occur spontaneously, can also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. The enzyme is involved in L-methionine catabolism.
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Citrobacter freundii
UNIPROT: Q84AR1
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Citrobacter freundii
The expected taxonomic range for this enzyme is: Bacteria, Eukaryota, Archaea
Synonyms
mgl, rmetase, metase, methioninase, l-methioninase, methionine gamma-lyase, l-methionine gamma-lyase, methionine-gamma-lyase, cale6, l-methionase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
L-methionine gamma-lyase
-
L-methioninase
L-methionine gamma-lyase
L-methionine-alpha-deamino-gamma-mercaptomethane-lyase
-
-
-
-
lyase, methionine
-
-
-
-
methioninase
-
-
-
-
methionine dethiomethylase
-
-
-
-
methionine gamma-lyase
methionine lyase
-
-
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
L-methionine + H2O = methanethiol + NH3 + 2-oxobutanoate
show the reaction diagram
gamma-elimination reaction mechanism and intermediates, overview
L-methionine + H2O = methanethiol + NH3 + 2-oxobutanoate
show the reaction diagram
rate determining stage of the enzymatic reaction is deamination of aminocrotonate, important contribution of the sulfur atom and methylene groups to the efficiency of binding of substrates and inhibitors
-
SYSTEMATIC NAME
IUBMB Comments
L-methionine methanethiol-lyase (deaminating; 2-oxobutanoate-forming)
A pyridoxal-phosphate protein. The enzyme cleaves a carbon-sulfur bond, releasing methanethiol and an unstable enamine product that tautomerizes to an imine form, which undergoes a hydrolytic deamination to form 2-oxobutanoate and ammonia. The latter reaction, which can occur spontaneously, can also be catalysed by EC 3.5.99.10, 2-iminobutanoate/2-iminopropanoate deaminase. The enzyme is involved in L-methionine catabolism.
CAS REGISTRY NUMBER
COMMENTARY hide
42616-25-1
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(+)-alliin + H2O
allicin + pyruvate + NH3
show the reaction diagram
-
-
-
?
(+)methiin + H2O
methanesulfenic acid + pyruvate + NH3
show the reaction diagram
-
-
-
?
(+)propiin + H2O
propane-1-sulfenic acid + pyruvate + NH3
show the reaction diagram
-
-
-
?
(+-)-alliin + H2O
allicin + pyruvate + NH3
show the reaction diagram
-
-
-
?
(+-)-butiin + H2O
butane-1-sulfenic acid + pyruvate + NH3
show the reaction diagram
-
-
-
?
(+-)-ethiin + H2O
ethanesulfenic acid + pyruvate + NH3
show the reaction diagram
-
-
-
?
(+-)methiin + H2O
methanesulfenic acid + pyruvate + NH3
show the reaction diagram
-
-
-
?
(+-)propiin + H2O
propane-1-sulfenic acid + pyruvate + NH3
show the reaction diagram
-
-
-
?
alliin + H2O
allicin + pyruvic acid + NH3
show the reaction diagram
-
-
-
?
DL-homocysteine + H2O
2-oxobutanoate + NH3 + hydrogen sulfide
show the reaction diagram
-
-
-
?
DL-homocysteine + H2O
hydrogen sulfide + NH3 + 2-oxobutanoate
show the reaction diagram
-
-
-
?
ethiin + H2O
ethanesulfenic acid + pyruvate + NH3
show the reaction diagram
-
-
-
?
L-1-amino-3-methylthiopropylphosphinic acid + H2O
methanethiol + NH3 + propanoylphosphinic acid
show the reaction diagram
Arg374 and Ser339 are involved in the binding of carboxyl groups of the substrate, the hydroxyl of Tyr113 is a potential acceptor of a proton from the amino groups of the amino acid
-
-
?
L-alanine
?
show the reaction diagram
-
-
-
?
L-cysteine + H2O
sulfide + NH3 + pyruvate
show the reaction diagram
-
-
-
?
L-ethionine + H2O
ethanethiol + NH3 + 2-oxobutanoate
show the reaction diagram
-
-
-
?
L-methionine + H2O
methanethiol + NH3 + 2-oxobutanoate
show the reaction diagram
L-norvaline
?
show the reaction diagram
-
-
-
?
methiin + H2O
methanesulfenic acid + pyruvate + NH3
show the reaction diagram
-
-
-
?
O-acetyl-L-homoserine + H2O
2-oxobutanoate + NH3 + acetate
show the reaction diagram
-
-
-
?
O-acetyl-L-serine + H2O
2-oxopropanoate + NH3 + acetate
show the reaction diagram
-
-
-
?
S-benzyl-L-cysteine + H2O
thiobenzyl alcohol + NH3 + 2-oxopropanoate
show the reaction diagram
S-butyl-L-cysteine + H2O
butanethiol + NH3 + 2-oxopropanoate
show the reaction diagram
-
-
-
?
S-ethyl-L-cysteine + H2O
ethanethiol + NH3 + 2-oxopropanoate
show the reaction diagram
S-ethyl-L-cysteine + H2O
ethanethiol + NH3 + pyruvate
show the reaction diagram
Arg374 and Ser339 are involved in the binding of carboxyl groups of the substrate, the hydroxyl of Tyr113 is a potential acceptor of a proton from the amino groups of the amino acid. Formation of external aldimine, conformational changes in the active center enable the Tyr58 hydroxyl group to occupy a position favorable for protonation of the leaving group
-
-
?
S-ethyl-L-homocysteine + H2O
ethanethiol + NH3 + 2-oxobutanoate
show the reaction diagram
-
-
-
?
S-methyl-L-cysteine + H2O
methanethiol + NH3 + 2-oxopropanoate
show the reaction diagram
S-propyl-L-cysteine + H2O
propanethiol + NH3 + 2-oxopropanoate
show the reaction diagram
-
-
-
?
DL-homocysteine + H2O
2-oxobutanoate + NH3 + H2S
show the reaction diagram
-
-
-
-
?
DL-homocysteine + H2O
?
show the reaction diagram
-
-
-
-
?
DL-homocysteine + H2O
hydrogen sulfide + NH3 + 2-oxobutanoate
show the reaction diagram
-
-
-
-
?
DL-homoserine + H2O
NH3 + 2-oxobutanoate
show the reaction diagram
-
-
-
-
?
L-cysteine
2-oxopropanoate + NH3 + H2S
show the reaction diagram
-
-
-
-
?
L-cysteine + H2O
?
show the reaction diagram
-
-
-
-
?
L-ethionine + H2O
?
show the reaction diagram
-
-
-
-
?
L-Gly(vinyl) + H2O
?
show the reaction diagram
-
-
-
-
?
L-methionine
methanethiol + NH3 + 2-oxobutanoate
show the reaction diagram
-
-
-
-
?
L-methionine + H2O
?
show the reaction diagram
-
-
-
-
?
L-methionine + H2O
methanethiol + NH3 + 2-oxobutanoate
show the reaction diagram
L-methionine sulfone
?
show the reaction diagram
-
-
-
-
?
L-methionine sulfoxide
?
show the reaction diagram
-
-
-
-
?
L-methionine sulfoxide + H2O
?
show the reaction diagram
-
gamma-elimination reaction
-
-
?
L-vinylglycine
?
show the reaction diagram
-
-
-
-
?
O-acetyl-DL-homoserine + H2O
NH3 + 2-oxobutanoate + acetate
show the reaction diagram
-
-
-
-
?
S-benzyl-L-cysteine + H2O
?
show the reaction diagram
-
beta-elimination reaction
-
-
?
S-benzyl-L-cysteine + H2O
thiobenzyl alcohol + NH3 + 2-oxopropanoate
show the reaction diagram
-
-
-
-
?
S-ethyl-L-cysteine + H2O
?
show the reaction diagram
-
beta-elimination reaction
-
-
?
S-ethyl-L-cysteine + H2O
ethanethiol + NH3 + 2-oxopropanoate
show the reaction diagram
-
-
-
-
?
S-ethyl-L-homocysteine + H2O
?
show the reaction diagram
-
gamma-elimination reaction
-
-
?
S-ethyl-L-homocysteine + H2O
ethanethiol + NH3 + 2-oxobutanoate
show the reaction diagram
-
-
-
-
?
S-methyl-L-cysteine + H2O
?
show the reaction diagram
-
-
-
-
?
S-methyl-L-cysteine + H2O
methanethiol + NH3 + 2-oxopropanoate
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
L-methionine + H2O
methanethiol + NH3 + 2-oxobutanoate
show the reaction diagram
L-methionine + H2O
methanethiol + NH3 + 2-oxobutanoate
show the reaction diagram
COFACTOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
pyridoxal 5'-phosphate
pyridoxal 5'-phosphate
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
glycine
competitive inhibitor, subtle conformational changes provide effective binding of the inhibitor and facilitate labilization of Calpha-protons of the external aldimine, binding structure, overview
L-Cycloserine
inactivation by L-cycloserine is completely reversed by dialysis against potassium phosphate buffer (pH 8.0), containing 0.5 mM PLP and 5 mM dithiothreitol
L-norleucine
Arg374 and Ser339 are involved in the binding of carboxyl groups of the inhibitor, the hydroxyl of Tyr113 is a potential acceptor of a proton from the amino groups of the amino acid
aminoethyloxyvinylglycine
-
-
glycine
L-2-aminobutanoate
-
-
L-Cycloserine
-
microspectrophotometric measurements
L-norleucine
-
-
L-norvaline
-
-
L-Vinylglycine
-
microspectrophotometric measurements
propargylglycine
-
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.44 - 1.75
alliin
0.97 - 3.46
DL-homocysteine
0.457 - 5.48
ethiin
1.2
L-1-amino-3-methylthiopropylphosphinic acid
pH and temperature not specified in the publication
0.16 - 0.18
L-cysteine
0.54 - 0.56
L-ethionine
0.3 - 19.65
L-methionine
0.57 - 0.63
methiin
2.46 - 6
O-acetyl-L-homoserine
2.88 - 3.68
O-acetyl-L-serine
0.18 - 2.75
S-Benzyl-L-cysteine
0.17 - 8.19
S-ethyl-L-cysteine
8.11
S-ethyl-L-homocysteine
mutant Y58F, pH 8.0, 30°C
0.61 - 2.62
S-methyl-L-cysteine
0.97 - 1.1
DL-homocysteine
56.5
DL-homoserine
0.16 - 0.18
L-cysteine
0.56
L-ethionine
-
-
6.7
L-Gly(vinyl)
-
30°C, pH 8.0
0.7
L-methionine
4
L-methionine sulfone
-
pH 8.0, 30°C
6.2
L-methionine sulfoxide
-
pH 8.0, 30°C
6.7
L-Vinylglycine
-
pH 8.0, 30°C
5.82
O-acetyl-DL-homoserine
-
pH 8.0, 30°C
0.18
S-Benzyl-L-cysteine
-
30°C, pH 8.0
0.17
S-ethyl-L-cysteine
-
30°C, pH 8.0
0.5
S-ethyl-L-homocysteine
-
30°C, pH 8.0
0.61 - 0.71
S-methyl-L-cysteine
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.41 - 11.31
alliin
0.88 - 8.51
DL-homocysteine
1.25 - 5.59
ethiin
2.24 - 2.33
L-cysteine
6.2 - 6.78
L-ethionine
0.22 - 15.1
L-methionine
1.63 - 5.14
methiin
6.23 - 18.29
O-acetyl-L-homoserine
1.35 - 2.93
O-acetyl-L-serine
3.34 - 10.9
S-Benzyl-L-cysteine
0.57 - 6.8
S-ethyl-L-cysteine
2.07
S-ethyl-L-homocysteine
mutant Y58F, pH 8.0, 30°C
1.38 - 23.08
S-methyl-L-cysteine
5.1 - 8.5
DL-homocysteine
0.5 - 0.52
DL-homoserine
2.3
L-cysteine
6.2
L-ethionine
-
-
1.9
L-Gly(vinyl)
-
30°C, pH 8.0
6.2 - 6.5
L-methionine
2.1
L-methionine sulfone
-
pH 8.0, 30°C
2.5
L-methionine sulfoxide
-
pH 8.0, 30°C
1.9
L-Vinylglycine
-
pH 8.0, 30°C
2.1
O-acetyl-DL-homoserine
-
pH 8.0, 30°C
8.2
S-Benzyl-L-cysteine
-
30°C, pH 8.0
5
S-ethyl-L-cysteine
-
30°C, pH 8.0
6.8
S-ethyl-L-homocysteine
-
30°C, pH 8.0
4.6 - 5.9
S-methyl-L-cysteine
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.23 - 25.7
alliin
0.254
DL-homocysteine
mutant Y58F, pH 8.0, 30°C
0.23 - 12
ethiin
0.135 - 9.7
L-methionine
2.6 - 9.02
methiin
1.04 - 7.43
O-acetyl-L-homoserine
0.46 - 0.8
O-acetyl-L-serine
0.121
S-Benzyl-L-cysteine
mutant Y58F, pH 8.0, 30°C
0.291 - 6.99
S-ethyl-L-cysteine
0.255
S-ethyl-L-homocysteine
mutant Y58F, pH 8.0, 30°C
1.7 - 8.81
S-methyl-L-cysteine
8.8
DL-homocysteine
-
pH 8.0, 30°C
0.01
DL-homoserine
-
pH 8.0, 30°C
8.9
L-methionine
-
pH 8.0, 30°C
0.52
L-methionine sulfone
-
pH 8.0, 30°C
0.4
L-methionine sulfoxide
-
pH 8.0, 30°C
0.28
L-Vinylglycine
-
pH 8.0, 30°C
0.36
O-acetyl-DL-homoserine
-
pH 8.0, 30°C
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.6
L-norleucine
pH and temperature not specified in the publication
49
glycine
-
pH 8.0, 30°C
8.3
L-2-aminobutanoate
-
pH 8.0, 30°C
3.4
L-alanine
-
pH 8.0, 30°C
0.6
L-norleucine
-
pH 8.0, 30°C
4.7
L-norvaline
-
pH 8.0, 30°C
SPECIFIC ACTIVITY [µmol/min/mg]
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
10
purified enzyme
3.25
mutant Y58F, pH 8.0, 30°C
10.2
-
purified recombinant enzyme, pH 8.0, 30°C, substrate L-methionine
additional information
-
value is 10 U/mg protein
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
pH RANGE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
7 - 8
-
decrease of kcat/Km at high pH
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
the enzyme belongs to the subclass of cystathionine beta-lyase with type I folding of the polypeptide chain of pyridoxal 5'-phosphate-dependent enzymes
physiological function
the pyridoxal5'-phosphate-dependent enzyme catalyzes the gamma-elimination and gamma-replacement of L-methionine and its derivatives and the reactions of beta-elimination and beta-replacement of L-cysteine and S-substituted L-cysteines. The enzyme also catalyzes the reactions of gamma-elimination and gamma-replacement of the phosphinic analogue of methionine, Met-PH. Met-PH has a high antibacterial activity, is an effective fungi cide under field conditions, and inhibits the growth of tumor cells due to transformation into a metabolically stable phosphonic analog of S-adenosylmethionine
additional information
catalytic residues: Lys210 is the base, and Tyr113 acts as a general acid, active site structure, overview
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
Q84AR1_CITFR
398
0
42915
TrEMBL
-
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
43000 - 45000
SDS-PAGE
43000
-
4 * 43000, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
tetramer
dimer of dimers, each dimer contains two active centers formed by amino acid residues of both subunits of the dimer. The protein monomer consists of three domains: N-terminal, central PLP-binding, and C-terminal
tetramer
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
computational model of the enzyme and the external aldimine intermediate, based on the crystal structures of methionine gamma-lyase from Clostridium sporogenes and Citrobacter freundii. The catalytic reaction can be divided into the formation of external aldimine intermediate from the internal aldimine intermediate, and a second step, when the external aldimine intermediate converts to the aminocrotonate intermediate, which contains complex asynchronous and concerted proton transfer processes
enzyme in complex with gamma-(L-1-amino-3-methylthiopropylphosphinic acid), beta-(S-ethyl-L-cysteine), and L-norleucine, soaking of holoenzyme crystals in a cryoprotective solution containing 35% PEG monomethyl ether 2000, 50 mM Tris-HCl, pH 8.5, 0.2 mM pyridoxal 5'-phosphate, 25 mM DTT, with addition of the respective ligand, 6.8 mM of beta-(S-ethyl-L-cysteine), 40 mM L-norleucine, or 48 mM gamma-(L-1-amino-3-methylthiopropylphosphinic acid), during different time intervals of 5-120 min, 1-2 weeks, X-ray diffraction structure determination and anaysis at 1.45-1.84 A resolution, molecular replacement
in complex with cycloserine
mutant C115H, in complex with inhibitor L-norleucine, to 1.45 A resolution. The inhibotor binds both noncovalently and covalently at the active site, corresponding to the intermediates of the gamma- and beta-elimination reactions, Michaelis complex and the external aldimine
mutant V358Y, to 1.45 A resolution
purified recombinant enzyme in complex with inhibitor glycine, crystals are obtained using a method without the presence of ammonium sulfate, complexing with glycine by soaking of holoenzyme crystals in a cryoprotective mother liquid solution to which glycine is added stepwise from 5 mM to 20 mM during 20 min,, 1-2 weeks, X-ray diffraction structure determination and analysis at 2.45 A resolution, molecular replacement
structure of mutant Y58F, to 1.96 A resolution. The mutation does not result in essential changes of the conformation of the active site
at 1.35 A resolution
-
hanging-drop vapor-diffusion method
-
to 1.65 A resolution. Absence of an aldimine bond between the active site Lys210 and pyridoxal 5'-phosphate in crystals, grown in monomethyl ether polyethylene glycol 2000 in the presence of ammonium sulfate
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A366Y
mutant of the C-terminal flexible loop at the active site entry channel
C115A
mutation leads to a decrease of the catalytic efficiency in the gamma-elimination reaction of the physiological substrate by more than an order of magnitude
C115H
P357I
mutant of the C-terminal flexible loop at the active site entry channel
P360Q
mutant of the C-terminal flexible loop at the active site entry channel
V358Y
mutant exhibits a 1.9fold increase in the catalytic rate and a 3fold increase in Km value, catalytic efficiency is similar to wild type MGL. The cytotoxic activity towards a panel of cancer and nonmalignant cell lines is lower than that of wild-type
Y58F
mutation leads to a decrease of catalytic efficiencies in both gamma- and beta-elimination reactions of about two orders of magnitude and to a change of rate the limiting step of the physiological reaction
additional information
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
ion exchange and gel filtration chromatography
-
recombinant enzyme from Escherichia coli strain BL21
-
recombinant protein
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expression in Escherichia coli
expression in Escherichia coli
-
expression in Escherichia coli BL21
-
recombinant enzyme expression in Escherichia coli strain BL21
-
APPLICATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
medicine
medicine
synthesis
-
presence of a hybrid plasmid in Escherichia coli K12 containing the enzyme gene leads to a decrease in efficiciency of EcoKI restriction
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Mamaeva, D.V.; Morozova, E.A.; Nikulin, A.D.; Revtovich, S.V.; Nikonov, S.V.; Garber, M.B.; Demidkina, T.V.
Structure of Citrobacter freundii L-methionine gamma-lyase
Acta Crystallogr. Sect. F
61
546-549
2005
Citrobacter freundii
Manually annotated by BRENDA team
Manukhov, I.V.; Mamaeva, D.V.; Rastorguev, S.M.; Faleev, N.G.; Morozova, E.A.; Demidkina, T.V.; Zavilgelsky, G.B.
A gene encoding L-methionine gamma-lyase is present in Enterobacteriaceae family genomes: identification and characterization of Citrobacter freundii L-methionine gamma-lyase
J. Bacteriol.
187
3889-3893
2005
Citrobacter freundii (Q84AR1), Citrobacter freundii, Citrobacter freundii ATCC 29063 (Q84AR1)
Manually annotated by BRENDA team
Nikulin, A.; Revtovich, S.; Morozova, E.; Nevskaya, N.; Nikonov, S.; Garber, M.; Demidkina, T.
High-resolution structure of methionine gamma-lyase from Citrobacter freundii
Acta Crystallogr. Sect. D
64
211-218
2008
Citrobacter freundii
Manually annotated by BRENDA team
Manukhov, I.V.; Mamaeva, D.V.; Morozova, E.A.; Rastorguev, S.M.; Faleev, N.G.; Demidkina, T.V.; Zavilgelsky, G.B.
L-methionine gamma-lyase from Citrobacter freundii: cloning of the gene and kinetic parameters of the enzyme
Biochemistry (Moscow)
71
361-369
2006
Citrobacter freundii
Manually annotated by BRENDA team
El-Sayed, A.S.
Microbial L-methioninase: production, molecular characterization, and therapeutic applications
Appl. Microbiol. Biotechnol.
86
445-467
2010
Achromobacter starkeyi, Aeromonas sp., Aspergillus flavipes, Aspergillus sp., Citrobacter freundii, Citrobacter intermedius, Cladosporium cladosporioides, Clostridium sporogenes, Entamoeba histolytica, Lactococcus lactis, no activity in mammalia, Pseudomonas putida, Treponema denticola, Trichomonas vaginalis, Brevibacterium linens BL2, Aspergillus sp. Rs-1a
Manually annotated by BRENDA team
Faleev, N.G.; Alferov, K.V.; Tsvetikova, M.A.; Morozova, E.A.; Revtovich, S.V.; Khurs, E.N.; Vorobev, M.M.; Phillips, R.S.; Demidkina, T.V.; Khomutov, R.M.
Methionine gamma-lyase: mechanistic deductions from the kinetic pH-effects. The role of the ionic state of a substrate in the enzymatic activity
Biochim. Biophys. Acta
1794
1414-1420
2009
Citrobacter freundii
Manually annotated by BRENDA team
Morozova, E.A.; Bazhulina, N.P.; Anufrieva, N.V.; Mamaeva, D.V.; Tkachev, Y.V.; Streltsov, S.A.; Timofeev, V.P.; Faleev, N.G.; Demidkina, T.V.
Kinetic and spectral parameters of interaction of Citrobacter freundii methionine gamma-lyase with amino acids
Biochemistry (Moscow)
75
1272-1280
2010
Citrobacter freundii
Manually annotated by BRENDA team
Ronda, L.; Bazhulina, N.P.; Morozova, E.A.; Revtovich, S.V.; Chekhov, V.O.; Nikulin, A.D.; Demidkina, T.V.; Mozzarelli, A.
Exploring methionine gamma-lyase structure-function relationship via microspectrophotometry and X-ray crystallography
Biochim. Biophys. Acta
1814
834-842
2011
Citrobacter freundii
Manually annotated by BRENDA team
Morozova, E.A.; Kulikova, V.V.; Yashin, D.V.; Anufrieva, N.V.; Anisimova, N.Y.; Revtovich, S.V.; Kotlov, M.I.; Belyi, Y.F.; Pokrovsky, V.S.; Demidkina, T.V.
Kinetic parameters and cytotoxic activity of recombinant methionine gamma-lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii
Acta Naturae
5
92-98
2013
Porphyromonas gingivalis, Citrobacter freundii, Clostridium sporogenes, Clostridium tetani
Manually annotated by BRENDA team
Revtovich, S.V.; Morozova, E.A.; Khurs, E.N.; Zakomirdina, L.N.; Nikulin, A.D.; Demidkina, T.V.; Khomutov, R.M.
Three-dimensional structures of noncovalent complexes of Citrobacter freundii methionine gamma-lyase with substrates
Biochemistry (Moscow)
76
564-570
2011
Citrobacter freundii (Q84AR1)
Manually annotated by BRENDA team
Revtovich, S.V.; Faleev, N.G.; Morozova, E.A.; Anufrieva, N.V.; Nikulin, A.D.; Demidkina, T.V.
Crystal structure of the external aldimine of Citrobacter freundii methionine gamma-lyase with glycine provides insight in mechanisms of two stages of physiological reaction and isotope exchange of alpha- and beta-protons of competitive inhibitors
Biochimie
101
161-167
2014
Citrobacter freundii (Q84AR1)
Manually annotated by BRENDA team
Anufrieva, N.V.; Faleev, N.G.; Morozova, E.A.; Bazhulina, N.P.; Revtovich, S.V.; Timofeev, V.P.; Tkachev, Y.V.; Nikulin, A.D.; Demidkina, T.V.
The role of active site tyrosine 58 in Citrobacter freundii methionine gamma-lyase
Biochim. Biophys. Acta
1854
1220-1228
2015
Citrobacter freundii (Q84AR1), Citrobacter freundii
Manually annotated by BRENDA team
Revtovich, S.V.; Morozova, E.A.; Kulikova, V.V.; Anufrieva, N.V.; Osipova, T.I.; Koval, V.S.; Nikulin, A.D.; Demidkina, T.V.
Crystal structure of mutant form Cys115His of Citrobacter freundii methionine gamma-lyase complexed with l-norleucine
Biochim. Biophys. Acta
1865
1123-1128
2017
Citrobacter freundii (Q84AR1)
Manually annotated by BRENDA team
Raboni, S.; Revtovich, S.; Demitri, N.; Giabbai, B.; Storici, P.; Cocconcelli, C.; Faggiano, S.; Rosini, E.; Pollegioni, L.; Galati, S.; Buschini, A.; Morozova, E.; Kulikova, V.; Nikulin, A.; Gabellieri, E.; Cioni, P.; Demidkina, T.; Mozzarelli, A.
Engineering methionine gamma-lyase from Citrobacter freundii for anticancer activity
Biochim. Biophys. Acta
1866
1260-1270
2018
Citrobacter freundii (Q84AR1), Citrobacter freundii
Manually annotated by BRENDA team
Morozova, E.; Kulikova, V.; Rodionov, A.; Revtovich, S.; Anufrieva, N.; Demidkina, T.
Engineered Citrobacter freundii methionine gamma-lyase effectively produces antimicrobial thiosulfinates
Biochimie
128-129
92-98
2016
Citrobacter freundii (Q84AR1), Citrobacter freundii
Manually annotated by BRENDA team
Kulikova, V.; Morozova, E.; Rodionov, A.; Koval, V.; Anufrieva, N.; Revtovich, S.; Demidkina, T.
Non-stereoselective decomposition of (+-)-S-alk(en)yl-l-cysteine sulfoxides to antibacterial thiosulfinates catalyzed by C115H mutant methionine gamma-lyase from Citrobacter freundii
Biochimie
151
42-44
2018
Citrobacter freundii (Q84AR1), Citrobacter freundii
Manually annotated by BRENDA team
Morozova, E.A.; Anufrieva, N.V.; Davydov, D.Z.; Komarova, M.V.; Dyakov, I.N.; Rodionov, A.N.; Demidkina, T.V.; Pokrovsky, V.S.
Plasma methionine depletion and pharmacokinetic properties in mice of methionine gamma-lyase from Citrobacter freundii, Clostridium tetani and Clostridium sporogenes
Biomed. Pharmacother.
88
978-984
2017
Clostridium tetani (A0A1L7H888), Clostridium tetani, Clostridium sporogenes (J7TA22), Clostridium sporogenes, Citrobacter freundii (Q84AR1), Citrobacter freundii, Clostridium sporogenes ATCC 15579 (J7TA22)
Manually annotated by BRENDA team
Kuznetsov, N.A.; Faleev, N.G.; Kuznetsova, A.A.; Morozova, E.A.; Revtovich, S.V.; Anufrieva, N.V.; Nikulin, A.D.; Fedorova, O.S.; Demidkina, T.V.
Pre-steady-state kinetic and structural analysis of interaction of methionine gamma-lyase from Citrobacter freundii with inhibitors
J. Biol. Chem.
290
671-681
2015
Citrobacter freundii (Q84AR1), Citrobacter freundii
Manually annotated by BRENDA team
Morozova, E.A.; Kulikova, V.V.; Faggiano, S.; Raboni, S.; Gabellieri, E.; Cioni, P.; Anufrieva, N.V.; Revtovich, S.V.; Demidkina, T.; Mozzarelli, A.
Soluble and nanoporous silica gel-entrapped C. freundii methionine gamma-lyase
J. Nanosci. Nanotechnol.
18
2210-2219
2018
Citrobacter freundii (Q84AR1)
Manually annotated by BRENDA team
Lin, B.; Tian, G.; Liu, Y.
Mechanistic insights into the gamma-elimination reaction of L-methionine catalyzed by methionine gamma-lyase (MGL)
Theoret. Chem. Accounts
136
105
2017
Clostridium sporogenes (J7TA22), Citrobacter freundii (Q84AR1), Clostridium sporogenes ATCC 15579 (J7TA22)
-
Manually annotated by BRENDA team