Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(18E)-22,23-dihydro-20-oxa-oxidosqualene
3beta-hydroxy-22,23,24,25,26,27-hexanor-17beta-dammaran-20-one + ?
-
the 20-oxa substitution has negligible effect on substrate binding and on the activation energies
sole product
-
?
(3S)-2,3-epoxy-2,3-dihydrosqualene
lupeol
-
-
-
?
(3S)-2,3-oxidosqualene
lupeol
(3S)-oxidosqualene
lupeol
-
-
-
?
(3S,22S)-2,3:22,23-dioxidosqualene
(2R,4aR,6aS,6bS,10R,12aS,14aR,14bS)-2-(1-hydroxy-1-methylethyl)-4a,6a,6b,9,9,12a-hexamethylicosahydro-2H-phenanthro[1,2-h]chromen-10-ol + (3alpha,5xi,8alpha,9xi,10alpha,13aalpha,14beta,17xi,20R,24R)-20,24-epoxydammarane-3,25-diol + (3alpha,5xi,8alpha,9xi,10alpha,13alpha,14beta,17xi,24R)-20,24-epoxydammarane-3,25-diol
-
-
products 5_4_99.B3_11.8, 5_4_99.B3_11.9a and 5_4_99.B3_11.9b in ratio 3:4:2, almost complete consumption of substrate
-
?
(S)-2,3-oxidosqualene
beta-amyrin
via dammarenyl cation, low activity
-
-
r
(S)-2,3-oxidosqualene
lupeol
2,3-oxidosqualene
lupeol + germanicol + beta-amyrin + taraxasterol + psi-taraxasterol + 3,20-dihydroxylupane
-
-
-
-
?
3-(omega-oxidogeranlygeranyl)indole
petromindole
-
substrate undergoes protonation, epoxide ring opening, and chair-chair bicyclization to cation. A Markovnikov intermediate is strongly favored, and its cyclization to indole forms the final product
-
-
?
additional information
?
-
(3S)-2,3-oxidosqualene

lupeol
-
-
-
?
(3S)-2,3-oxidosqualene
lupeol
-
beta-amyrin is a minor product
-
?
(3S)-2,3-oxidosqualene
lupeol
-
no discrimination of the terminal two methyl groups of substrate, proton abstraction occurs from both methyl groups in equal ratio. This is in contrast to Olea europea and Taraxacum officinale enzymes, which abstract the proton exclusively from (Z)-methyl of substrate
-
-
?
(3S)-2,3-oxidosqualene
lupeol
-
strict discrimination of the terminal two methyl groups of substrate, proton abstraction occurs exclusively from (Z)-methyl of 2,3-oxidosqualene. Mechanism is similar in Taraxacum officinale enzyme, but not in Arabidopsis thaliana LUP1 enzyme
-
-
?
(3S)-2,3-oxidosqualene
lupeol
-
strict discrimination of the terminal two methyl groups of substrate, proton abstraction occurs exclusively from (Z)-methyl of 2,3-oxidosqualene. Mechanism is similar in Olea europea enzyme, but not in Arabidopsis thaliana LUP1 enzyme
-
-
?
(S)-2,3-oxidosqualene

lupeol
-
-
-
-
?
(S)-2,3-oxidosqualene
lupeol
via dammarenyl cation
-
-
r
2,3-oxidosqualene

lupeol
-
-
-
-
?
2,3-oxidosqualene
lupeol
-
-
enzyme additionally catalyzes the stereospecific addition of water to yield 3beta,20-dihydroxylupane without rotation of the C19-C20 bond
-
?
2,3-oxidosqualene
lupeol
-
-
-
?
2,3-oxidosqualene
lupeol
-
sole product
-
?
2,3-oxidosqualene
lupeol
-
-
-
-
?
2,3-oxidosqualene
lupeol
-
sole product, no trace of other oxidosqualene derived products can be detected
-
?
2,3-oxidosqualene
lupeol
-
0.9% beta-amyrin and 0.1% alpha-amyrin beside lupeol
-
?
2,3-oxidosqualene
lupeol
lupeol is the main cuticular wax compound during early stages of hypocotyl development. Enzyme is responsible for formation of the cuticular lupeol and thus for the characteristic surface properties of Rhicinus communis stems
-
-
?
2,3-oxidosqualene
lupeol
-
sole product, no trace of other oxidosqualene derived products can be detected
-
?
additional information

?
-
MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and beta-amyrin at a ratio of 95:5
-
-
?
additional information
?
-
-
MdOSC5 cyclizes 2,3-oxidosqualene into lupeol and beta-amyrin at a ratio of 95:5
-
-
?
additional information
?
-
-
the labeling profile of lupeol-3-(3'-hydroxy)-sterarate (procrim b) from a 13CO2 pulse/chase experiment using Pentalinon andrieuxii plants grown under quasi physiological conditions is reported. The 13C-pattern reveals the origin of the isopentyl diphosphate/demethylallyl diphosphate precursors, as well as important details on the cyclization processes occurring in the biosynthesis of lupeol-3-(3'-hydroxy)-sterarate
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
L256A
-
mutation in region responsible for product differentiation. Mutant produces 3.8% beta-amyrin, 69.5% lupeol, 10% butyrospermol and 13.5% of dammara-18(E),21-dien-3beta-ol, dammara-18(Z),21-dien-3beta-ol and dammara-18(28),21-dien-3beta-ol
L256F
-
mutation in region responsible for product differentiation. Mutant produces 9.8% beta-amyrin, 69.7% lupeol, 17.9% butyrospermol
L256H
-
mutation in region responsible for product differentiation. Mutant produces 3.8% beta-amyrin, 69.5% lupeol, 10% butyrospermol and 13.5% of dammara-18(E),21-dien-3beta-ol, dammara-18(Z),21-dien-3beta-ol and dammara-18(28),21-dien-3beta-ol
L256W
-
mutation in region responsible for product differentiation. Mutant produces 74.8% beta-amyrin, 6.9% lupeol, 9.9% butyrospermol and 8.4% germanicol
L256Y
-
mutation in region responsible for product differentiation. Mutant produces 1.6% beta-amyrin, 54.8% lupeol, 22.7% butyrospermol and 18.7% of dammara-18(E),21-dien-3beta-ol, dammara-18(Z),21-dien-3beta-ol and dammara-18(28),21-dien-3beta-ol
Y258H
-
mutation in region responsible for product differentiation. Mutant produces 43.6% lupeol, 6.2% butyrospermol and 42.4% of dammara-18(E),21-dien-3beta-ol, dammara-18(Z),21-dien-3beta-ol and dammara-18(28),21-dien-3beta-ol
yes
functional expression in Sacchaormyces cerevisiae results in production of lupeol
additional information

construction of chimera between Arabidopsis thaliana YUP8H12R.43 multifunctional triterpene synthase and LUP1 lupeol synthase. Mutant with N-terminal half of LUP1 and C-terminal half of YUP8H12R.43 gives a product pattern similar to native LUP1 with increased production of minor compounds. Mutant LUP1 containing amino acids corresponding to residues 184 to 398 from YUP8H12R.43 gives an almost identical product pattern with native LUP1. Mutant YUP8H12R.43 containing amino acids corresponding to residues 184 to 395 from LUP1 shows similar product multiplicity to that observed in YUP8H12R.43
additional information
construction of chimeric proteins using beta-amyrin synthase from Panax ginseng and lupeol synthase from Arabidopsis thaliana. Chimera with N-terminal half of beta-amyrin synthase and C-terminal half of lupeol synthase produces beta-amyrin and lupeol in ratio 3:1. Chimera with only the second quarter of the N-terminus from beta-amyrin synthase, produces beta-amyrin and lupeol in a 4:1 ratio, while another chimera created by mixed PCR produces beta-amyrin and lupeol in a 1:4 ratio
additional information
functional expression in Saccharomyces cerevisiae lacking lanosterol synthase activity results in production of lupeol
additional information
-
functional expression in Saccharomyces cerevisiae lacking lanosterol synthase activity results in production of lupeol
additional information
2,3-oxidosqualene production is implemented and subsequently combined with different cyclization reactions catalyzed by the representative oxidosqualene cyclases CAS1 (cycloartenol synthase), LUP1 (lupeol synthase), THAS1 (thalianol synthase) and MRN1 (marneral synthase), derived from model plant Arabidopsis thaliana, in the two alternative hosts for biosynthesis of cyclic plant triterpenes, the metabolically versatile photosynthetic alpha-proteobacterium Rhodobacter capsulatus strain SB1003 and cyanobacterium Synechocystis sp. PCC 6803, triterpene pathway design, overview. While successful accumulation of 2,3-oxidosqualene can be detected by LC-MS analysis in both hosts, cyclase expression results in differential production profiles. CAS1 catalyzes conversion to only cycloartenol, but expression of LUP1 yields lupeol and a triterpenoid matching an oxidation product of lupeol, lupX, in both hosts. In contrast, THAS1 expression does not lead to cyclic product formation in either host, whereas MRN1-dependent production of marnerol and hydroxymarnerol is observed in Synechocystis but not in Rhodobacter capsulatus. 2,3-Oxidosqualene cyclization in heterologous phototrophic bacteria is basically feasible but efficient conversion depends on both the respective cyclase enzyme and individual host properties
additional information
functional expression in Saccharomyces cerevisiae mutant lacking lanosterol synthase activity results in production of lupeol
additional information
functional expression in Saccharomyces cerevisiae results in production of lupeol
additional information
-
functional expression in Saccharomyces cerevisiae results in production of lupeol
additional information
-
functional expression in Saccharomyces cerevisiae mutant with disruption in oxidosqualene cyclase gene results in production of lupeol
additional information
transient expression of MdOSC1 and MdOSC5 together with CYP716A175 confirms the ratio between the different triterpene backbones observed after transient expression of MdOSC1 and MDOSC5 alone, overview
additional information
-
transient expression of MdOSC1 and MdOSC5 together with CYP716A175 confirms the ratio between the different triterpene backbones observed after transient expression of MdOSC1 and MDOSC5 alone, overview
additional information
expression in Saccharomyces cerevisiae lacking in lanosterol synthase activity results in production of lupeol
additional information
expression in Saccharomyces cerevisiae lacking in lanosterol synthase activity results in production of lupeol
additional information
-
expression in Saccharomyces cerevisiae lacking in lanosterol synthase activity results in production of lupeol
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Guhling, O.; Hobl, B.; Yeats, T.; Jetter, R.
Cloning and characterization of a lupeol synthase involved in the synthesis of epicuticular wax crystals on stem and hypocotyl surfaces of Ricinus communis
Arch. Biochem. Biophys.
448
60-72
2006
Ricinus communis (Q2XPU7), Ricinus communis
brenda
Sawai, S.; Shindo, T.; Sato, S.; Kaneko, T.; Tabata, S.; Ayabe, S.; Aoki, T.
Functional and structural analysis of genes encoding oxidosqualene cyclases of Lotus japonicus
Plant Sci.
170
247-257
2006
Lotus japonicus
brenda
Zhang, H.; Shibuya, M.; Yokota, S.; Ebizuka, Y.
Oxidosqualene cyclases from cell suspension cultures of Betula platyphylla var. japonica: molecular evolution of oxidosqualene cyclases in higher plants
Biol. Pharm. Bull.
26
642-650
2003
Betula platyphylla (Q8W3Z2)
brenda
Shibuya, M.; Zhang, H.; Endo, A.; Shishikura, K.; Kushiro, T.; Ebizuka, Y.
Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases
Eur. J. Biochem.
266
302-307
1999
Taraxacum officinale (Q9SLW1), Taraxacum officinale, Olea europaea (Q9SLW3)
brenda
Basyuni, M.; Oku, H.; Tsujimoto, E.; Kinjo, K.; Baba, S.; Takara, K.
Triterpene synthases from the Okinawan mangrove tribe, Rhizophoraceae
FEBS J.
274
5028-5042
2007
Bruguiera gymnorhiza (A8CDT3), Bruguiera gymnorhiza
brenda
Kushiro, T.; Shibuya, M.; Ebizuka, Y.
Chimeric triterpene synthase. A possible model for multifunctional triterpene synthase
J. Am. Chem. Soc.
121
1208-1216
1999
Arabidopsis thaliana (Q9C5M3)
-
brenda
Kushiro, T.; Shibuya, M.; Masuda, K.; Ebizuka, Y.
Mutational studies on triterpene synthases: engineering lupeol synthase into beta-amyrin synthase
J. Am. Chem. Soc.
122
6816-6824
2000
Olea europaea
-
brenda
Xiong, Q.; Zhu, X.; Wilson, W.K.; Ganesan, A.; Matsuda, S.P.
Enzymatic synthesis of an indole diterpene by an oxidosqualene cyclase: mechanistic, biosynthetic, and phylogenetic implications
J. Am. Chem. Soc.
125
9002-9003
2003
Arabidopsis thaliana
brenda
Shan, H.; Segura, M.J.; Wilson, W.K.; Lodeiro, S.; Matsuda, S.P.
Enzymatic cyclization of dioxidosqualene to heterocyclic triterpenes
J. Am. Chem. Soc.
127
18008-18009
2005
Arabidopsis thaliana
brenda
Xiong, Q.; Rocco, F.; Wilson, W.K.; Xu, R.; Ceruti, M.; Matsuda, S.P.
Structure and reactivity of the dammarenyl cation: configurational transmission in triterpene synthesis
J. Org. Chem.
70
5362-5375
2005
Arabidopsis thaliana
brenda
Segura, M.J.; Meyer, M.M.; Matsuda, S.P.
Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol
Org. Lett.
2
2257-2259
2000
Arabidopsis thaliana
brenda
Kushiro, T.; Hoshino, M.; Tsutsumi, T.; Kawai, K.i.; Shiro, M.; Shibuya, M.; Ebizuka, Y.
Stereochemical course in water addition during LUP1-catalyzed triterpene cyclization
Org. Lett.
8
5589-5592
2006
Arabidopsis thaliana
brenda
Herrera, J.B.; Bartel, B.; Wilson, W.K.; Matsuda, S.P.
Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene
Phytochemistry
49
1905-1911
1998
Arabidopsis thaliana (Q9C5M3), Arabidopsis thaliana
brenda
Husselstein-Muller, T.; Schaller, H.; Benveniste, P.
Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana
Plant Mol. Biol.
45
75-92
2001
Arabidopsis thaliana (Q9C5M3), Arabidopsis thaliana
brenda
Kushiro, T.; Shibuya, M.; Ebizuka, Y.
Cryptic regiospecificity in deprotonation step of triterpene biosynthesis catalyzed by new members of lupeol synthase
Tetrahedron Lett.
40
5553-5556
1999
Arabidopsis thaliana, Olea europaea, Taraxacum officinale
-
brenda
Kushiro, T.; Shibuya, M.; Masuda, K.; Ebizuka, Y.
A novel multifunctional triterpene synthase from Arabidopsis thaliana
Tetrahedron Lett.
41
7705-7710
2000
Arabidopsis thaliana (Q9C5M3)
-
brenda
Pena-Rodriguez, L.M.; Yam-Puc, A.; Knispel, N.; Schramek, N.; Huber, C.; Grassberger, C.; Ramirez-Torres, F.G.; Escalante-Erosa, F.; Garcia-Sosa, K.; Hiebert-Giesbrecht, M.R.; Chan-Bacab, M.J.; Godoy-Hernandez, G.; Bacher, A.; Eisenreich, W.
Isotopologue profiling of triterpene formation under physiological conditions. Biosynthesis of Lupeol-3-(3-R-hydroxy)-stearate in Pentalinon andrieuxii
J. Org. Chem.
79
2864-2873
2014
Pentalinon andrieuxii
brenda
Fan, G.; Zhai, Q.; Zhan, Y.
Gene expression of lupeol synthase and biosynthesis of nitric oxide in cell suspension cultures of Betula platyphylla in response to a Phomopsis elicitor
Plant Mol. Biol. Rep.
31
296-302
2013
Betula platyphylla
-
brenda
Andre, C.; Legay, S.; Deleruelle, A.; Nieuwenhuizen, N.; Punter, M.; Brendolise, C.; Cooney, J.; Lateur, M.; Hausman, J.; Larondelle, Y.; Laing, W.
Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids
New Phytol.
211
1279-1294
2016
Malus domestica (A0A142LT04), Malus domestica
brenda
Nasrollahi, V.; Mirzaie-Asl, A.; Piri, K.; Nazeri, S.; Mehrabi, R.
The effect of drought stress on the expression of key genes involved in the biosynthesis of triterpenoid saponins in liquorice (Glycyrrhiza glabra)
Phytochemistry
103
32-37
2014
Glycyrrhiza glabra (Q764T8), Glycyrrhiza glabra
brenda
Loeschcke, A.; Dienst, D.; Wewer, V.; Hage-Huelsmann, J.; Dietsch, M.; Kranz-Finger, S.; Hueren, V.; Metzger, S.; Urlacher, V.B.; Gigolashvili, T.; Kopriva, S.; Axmann, I.M.; Drepper, T.; Jaeger, K.E.
The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis
PLoS ONE
12
e0189816
2017
Arabidopsis thaliana (Q9C5M3)
brenda