Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

BRENDA Home
show all | hide all No of entries

Information on EC 5.3.2.6 - 2-hydroxymuconate tautomerase and Organism(s) Pseudomonas putida and UniProt Accession Q01468

for references in articles please use BRENDA:EC5.3.2.6
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments
Involved in the meta-cleavage pathway for the degradation of phenols, modified phenols and catechols. The enol form (2Z,4E)-2-hydroxyhexa-2,4-dienedioate is produced as part of this pathway and is converted to the keto form (3E)-2-oxohex-3-enedioate by the enzyme . Another keto form, (4E)-2-oxohex-4-enedioate (4-oxalocrotonate), was originally thought to be produced by the enzyme [1,2] but later shown to be produced non-enzymically .
Specify your search results
Select one or more organisms in this record: ?
This record set is specific for:
Pseudomonas putida
UNIPROT: Q01468
Show additional data
Do not include text mining results
Include (text mining) results
Include results (AMENDA + additional results, but less precise)
Word Map
The taxonomic range for the selected organisms is: Pseudomonas putida
The enzyme appears in selected viruses and cellular organisms
Synonyms
4-oxalocrotonate tautomerase, afdmpi, hpdmpi, sar1376, 2-hydroxymuconate tautomerase, more
SYNONYM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
4-oxalocrotonate tautomerase
-
D-4-oxalocrotonate tautomerase
-
-
L-4-oxalocrotonate tautomerase
-
-
REACTION
REACTION DIAGRAM
COMMENTARY hide
ORGANISM
UNIPROT
LITERATURE
(2Z,4E)-2-hydroxyhexa-2,4-dienedioate = (3E)-2-oxohex-3-enedioate
show the reaction diagram
SYSTEMATIC NAME
IUBMB Comments
(2Z,4E)-2-hydroxyhexa-2,4-dienedioate keto-enol isomerase
Involved in the meta-cleavage pathway for the degradation of phenols, modified phenols and catechols. The enol form (2Z,4E)-2-hydroxyhexa-2,4-dienedioate is produced as part of this pathway and is converted to the keto form (3E)-2-oxohex-3-enedioate by the enzyme [6]. Another keto form, (4E)-2-oxohex-4-enedioate (4-oxalocrotonate), was originally thought to be produced by the enzyme [1,2] but later shown to be produced non-enzymically [5].
CAS REGISTRY NUMBER
COMMENTARY hide
85876-28-4
-
SUBSTRATE
PRODUCT                       
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
Reversibility
r=reversible
ir=irreversible
?=not specified
(2Z,4E)-2-hydroxyhexa-2,4-dienedioate
(3E)-2-oxohex-3-enedioate
show the reaction diagram
-
-
-
r
acetaldehyde + (1Z)-4-methyl-1-nitropent-1-ene
6-methyl-4-(nitromethyl)heptan-2-one
show the reaction diagram
-
-
-
r
acetaldehyde + 1-chloro-4-[(E)-2-nitroethenyl]benzene
4-(4-chlorophenyl)-5-nitropentan-2-one
show the reaction diagram
-
-
-
r
acetaldehyde + 1-fluoro-4-[(E)-2-nitroethenyl]benzene
4-(4-fluorophenyl)-5-nitropentan-2-one
show the reaction diagram
-
-
-
r
acetaldehyde + 2-(cyclopentyloxy)-1-methoxy-4-[(E)-2-nitroethenyl]benzene
4-[3-(cyclopentyloxy)-4-methoxyphenyl]-5-nitropentan-2-one
show the reaction diagram
-
-
-
r
acetaldehyde + 2-methoxy-5-[(E)-2-nitroethenyl]phenol
4-(3-hydroxy-4-methoxyphenyl)-5-nitropentan-2-one
show the reaction diagram
-
-
-
r
acetaldehyde + 4-[(E)-2-nitroethenyl]phenol
4-(4-hydroxyphenyl)-5-nitropentan-2-one
show the reaction diagram
-
-
-
r
acetaldehyde + benzaldehyde
cinnamaldehyde
show the reaction diagram
-
-
-
r
acetaldehyde + [(E)-2-nitroethenyl]benzene
5-nitro-4-phenylpentan-2-one
show the reaction diagram
-
-
-
r
butanal + [(E)-2-nitroethenyl]benzene
3-ethyl-5-nitro-4-phenylpentan-2-one
show the reaction diagram
-
-
-
r
phenylenolpyruvate
phenylpyruvate
show the reaction diagram
-
-
-
r
(2E)-2-hydroxy-3-phenylprop-2-enoate
2-oxo-3-phenylpropanoate
show the reaction diagram
-
-
-
-
?
(2Z,4E)-2-hydroxyhexa-2,4-dienedioate
(3E)-2-oxohex-3-enedioate
show the reaction diagram
(3E)-6-oxohept-3-enedioate
2-hydroxy-2,4-heptadiene-1,7-dioate
show the reaction diagram
-
-
-
-
?
(E)-1-nitro-2-(2-thienyl)ethene + isobutanal
2,2-dimethyl-4-nitro-3-(thiophen-2-yl)butanal
show the reaction diagram
-
-
-
-
?
(E)-2-(furan-2-yl)nitroethene + isobutanal
3-(furan-2-yl)-2,2-dimethyl-4-nitrobutanal
show the reaction diagram
-
-
-
-
?
(E)-2-(thiophen-2-yl)nitroethene + isobutanal
2,2-dimethyl-4-nitro-3-(thiophen-2-yl)butanal
show the reaction diagram
-
-
-
-
?
2-chloro-beta-nitrostyrene + acetaldehyde
3-(2-chlorophenyl)-4-nitrobutanal
show the reaction diagram
-
-
51% yield
-
?
2-hydroxy-2,4-heptadiene-1,7-dioate
(3E)-2-oxohept-3-enedioate
show the reaction diagram
-
-
-
-
?
2-hydroxy-2,4-hexadienedioate
2-oxo-3,4-hexenedioate
show the reaction diagram
-
4-OT with 2-hydroxy-2,4-hexadienedioate in D2O results in a racemic mixture of 2-oxo-[3-2H]-4-hexenedioate, suggesting that 4-OT may not catalyze a 1,3-keto-enol tautomerization reaction using this dienol
-
-
?
2-hydroxy-2,4-hexadienedioate
2-oxo-3-hexenedioate
show the reaction diagram
-
-
-
-
?
2-hydroxy-2,4-pentadienoate
(3E)-2-oxopent-3-enoate
show the reaction diagram
-
-
-
-
?
2-hydroxy-4-trans-hexenedioate
?
show the reaction diagram
-
-
-
-
?
2-hydroxymuconate
2-oxo-3-(E)-hexenedioate
show the reaction diagram
-
stereospecific ketonization
-
-
?
2-hydroxymuconate
2-oxo-3-hexenedioate
show the reaction diagram
2-oxo-3-hexenedioate
2-oxo-3-trans-hexenedioate
show the reaction diagram
-
-
-
-
?
2-oxo-4(E)-hexenedioate
2-oxo-3(E)-hexenedioate
show the reaction diagram
-
1,3-allylic isomerization
-
-
?
2-oxo-4-hexenedioate
2-oxo-3-hexenedioate
show the reaction diagram
2-oxopent-4-enoate
2-hydroxy-2,4-pentadienoate
show the reaction diagram
-
-
-
-
?
3,4-(methylenedioxy)-beta-nitrostyrene + isobutanal
(3E)-3-(2H-1,3-benzodioxol-5-yl)-2,2-dimethyl-4-nitrobut-3-enal
show the reaction diagram
-
-
-
-
?
4-chloro-beta-nitrostyrene + acetaldehyde
3-(4-chlorophenyl)-4-nitrobutanal
show the reaction diagram
-
-
38% yield
-
?
4-fluoro-beta-nitrostyrene + acetaldehyde
3-(4-fluorophenyl)-4-nitrobutanal
show the reaction diagram
-
-
31% yield
-
?
4-vinyl-2,3-dihydropyrrole-2-carboxylic acid
4-ethylidene-3,4-dihydropyrrole-2-carboxylic acid
show the reaction diagram
-
-
-
-
r
beta-nitrostyrene + acetaldehyde
4-nitro-3-phenyl-butanal
show the reaction diagram
-
-
60% yield
-
?
beta-nitrostyrene + acetaldehyde
4-nitro-3-phenylbutanal
show the reaction diagram
-
-
-
-
r
beta-nitrostyrene + isobutanal
2,2-dimethyl-4-nitro-3-phenylbutanal
show the reaction diagram
-
-
-
-
?
isobutanal + beta-nitrostyrene
2,2-dimethyl-4-nitro-3-phenylbutanal + 4-nitro-3-phenylbutanal
show the reaction diagram
-
-
-
-
?
trans-p-chloro-beta-nitrostyrene + isobutanal
3-(4-chlorophenyl)-2,2-dimethyl-4-nitrobutanal
show the reaction diagram
-
-
-
-
?
additional information
?
-
NATURAL SUBSTRATE
NATURAL PRODUCT
REACTION DIAGRAM
ORGANISM
UNIPROT
COMMENTARY
(Substrate) hide
LITERATURE
(Substrate)
COMMENTARY
(Product) hide
LITERATURE
(Product)
REVERSIBILITY
r=reversible
ir=irreversible
?=not specified
(2Z,4E)-2-hydroxyhexa-2,4-dienedioate
(3E)-2-oxohex-3-enedioate
show the reaction diagram
-
-
-
r
phenylenolpyruvate
phenylpyruvate
show the reaction diagram
-
-
-
r
(2Z,4E)-2-hydroxyhexa-2,4-dienedioate
(3E)-2-oxohex-3-enedioate
show the reaction diagram
2-hydroxymuconate
2-oxo-3-hexenedioate
show the reaction diagram
2-oxo-4(E)-hexenedioate
2-oxo-3(E)-hexenedioate
show the reaction diagram
-
1,3-allylic isomerization
-
-
?
2-oxo-4-hexenedioate
2-oxo-3-hexenedioate
show the reaction diagram
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
(2E,4Z)-2-bromo-5-hydroxyhexa-2,4-dienedioic acid
-
(2E,4Z)-2-chloro-5-hydroxyhexa-2,4-dienedioic acid
-
(2E,4Z)-2-fluoro-5-hydroxyhexa-2,4-dienedioic acid
-
(2Z,4E)-5-bromo-2-hydroxypenta-2,4-dienoic acid
-
(2Z,4E)-5-chloro-2-hydroxypenta-2,4-dienoic acid
-
(2Z,4E)-5-fluoro-2-hydroxypenta-2,4-dienoic acid
-
(3Z)-5-bromo-2-oxopent-3-enoic acid
-
(3Z)-5-chloro-2-oxopent-3-enoic acid
-
(3Z)-5-fluoro-2-oxopent-3-enoic acid
-
2-Oxo-3-pentynoate
-
(2E)-2-fluoro-2,4-pentadienoate
-
-
(2E)-fluoromuconate
-
a dicarboxylate competitive inhibitor, shows substoichiometric binding to 3 +/- 1 sites per hexamer
(2Z)-2-fluoro-2,4-pentadienoate
-
-
2-Oxo-3-pentynoate
additional information
-
although 4-OT exhibits no structural asymmetry either by X-ray or by NMR, inactivation by two affinity labels shows half-site stoichiometry
-
KM VALUE [mM]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.334
(2E)-2-hydroxy-3-phenylprop-2-enoate
-
wild type enzyme, in 10 mM potassium phosphate buffer, pH 7.3, at 22°C
0.05
(2Z,4E)-2-hydroxyhexa-2,4-dienedioate
-
at pH 7.3 and 22°C
0.18 - 1.6
2-hydroxy-2,4-hexadienedioate
1.11
2-hydroxy-2,4-pentadienoate
0.017 - 1.05
2-hydroxymuconate
0.189
2-oxo-3-hexenedioate
-
pH 7.3, 30°C
0.09 - 0.103
2-oxo-4(E)-hexenedioate
additional information
additional information
-
TURNOVER NUMBER [1/s]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
16
(2E)-2-hydroxy-3-phenylprop-2-enoate
-
wild type enzyme, in 10 mM potassium phosphate buffer, pH 7.3, at 22°C
1330
(2Z,4E)-2-hydroxyhexa-2,4-dienedioate
-
at pH 7.3 and 22°C
0.4 - 3500
2-hydroxy-2,4-hexadienedioate
0.4 - 1
2-hydroxy-2,4-pentadienoate
0.2 - 139000
2-hydroxymuconate
288000
2-oxo-3-hexenedioate
-
pH 7.3, 30°C
2890 - 2940
2-oxo-4(E)-hexenedioate
kcat/KM VALUE [1/mMs-1]
SUBSTRATE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
48
(2E)-2-hydroxy-3-phenylprop-2-enoate
-
wild type enzyme, in 10 mM potassium phosphate buffer, pH 7.3, at 22°C
26600
(2Z,4E)-2-hydroxyhexa-2,4-dienedioate
-
at pH 7.3 and 22°C
19 - 19000
2-hydroxy-2,4-hexadienedioate
0.36 - 0.9
2-hydroxy-2,4-pentadienoate
0.45 - 957000
2-hydroxymuconate
1520000
2-oxo-3-hexenedioate
-
pH 7.3, 30°C
29000 - 32000
2-oxo-4(E)-hexenedioate
Ki VALUE [mM]
INHIBITOR
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
IMAGE
0.045
(2E)-fluoromuconate
-
pH and temperature not specified in the publication
pH OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
TEMPERATURE OPTIMUM
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
GENERAL INFORMATION
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
evolution
malfunction
-
introduction of polar residues into the active site produces significant decreases in kcat and Km
metabolism
physiological function
additional information
UNIPROT
ENTRY NAME
ORGANISM
NO. OF AA
NO. OF TRANSM. HELICES
MOLECULAR WEIGHT[Da]
SOURCE
SEQUENCE
LOCALIZATION PREDICTION?
4OT1_PSEPU
63
0
6942
Swiss-Prot
-
MOLECULAR WEIGHT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
10000
-
x * 10000, SDS-PAGE
SUBUNIT
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
?
x * 6812, electrospray ionization mass spectrometry
hexamer
homohexamer
-
-
additional information
CRYSTALLIZATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
mutant enzyme M45Y/F50A, sitting drop vapor diffusion method, using 0.2 M sodium formate, 0.1 M bis-tris propane pH 8.5 and 20% PEG 3350 (w/v)
sitting drop vapor diffusion method, using 100 mM magnesium acetate/100 mM sodium acetate, 5%-21% (w/v) PEG 8000, pH 4.5, and 100 mM calcium acetate/100 mM sodium acetate, 1%-13% (w/v) PEG 4000, pH 4.5
-
PROTEIN VARIANTS
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
A33D
the mutant shows highest enantioselectivity for the Michael-type addition of acetaldehyde to trans-beta nitrostyrene producing 4-nitro-3-phenylbutanal, compared to the wild type enzyme
A33E
the mutation significantly (4fold) improves the activity of the enzyme for the Michael-type addition of acetaldehyde to trans-beta nitrostyrene, compared to the wild type enzyme
H6M
the mutant has about 3fold increased specific activity compared with that of wild type enzyme
H6M/A33E/F50V
the mutation strongly enhances the activity for the Michael-type addition of butanal to trans-beta nitrostyrene, compared to the wild type enzyme
M45Y/F50A
the mutant enzyme displays low Michael-type addition activity compared to the wild type enzyme
R39E
the mutant shows highest enantioselectivity for the Michael-type addition of butanal to trans-beta nitrostyrene, producing 2-ethyl-4-nitro-3-phenylbutanal, compared to the wild type enzyme
alphaI52E
-
site-directed mutagenesis, active site mutant,the mutant shows improved trans-3-chloroacrylic acid dehalogenase activity with a 36fold increase in kcat/Km, largely due to a 110fold decrease in Km, and diminished 4-oxalocrotonate tautomerase activity. The negatively charged group may hinder the formation of the enolate intermediate and may contribute to a decrease in kcat
alphaL8R
-
site-directed mutagenesis, active site mutant, the mutant shows improved trans-3-chloroacrylic acid dehalogenase activity with a 50fold increase in kcat/Km, primarily from an 8.8fold increase in kcat, and diminished 4-oxalocrotonate tautomerase activity with a 5fold decrease in kcat/Km. The increased CaaD activity of L8R-4-OT does not substantially diminish the original 4-OT activity
alphaL8R/I52E
-
site-directed mutagenesis, active site mutant, the mutant shows improved trans-3-chloroacrylic acid dehalogenase activity with a 32fold increase in kcat/Km, largely due to a 23fold decrease in Km, and diminished 4-oxalocrotonate tautomerase activity with a 1700fold decrease in kcat/Km
P1A
-
the mutation results in 430fold decreases in kcat/Km compared to the wild type enzyme
R11A/R39A
-
site-directed mutagenesis, inactive mutant
PURIFICATION (Commentary)
ORGANISM
UNIPROT
LITERATURE
phenyl-Sepharose column chromatography and DEAE-Sepharose column chromatography
-
recombinant enzyme from Escherichia coli by ultracentrifugation, two different steps of anion exchange chromatography, hydroxylapatite and hydrophobic interaction chromatography, and gel filtration with alternating steps of ultrafiltration
-
recombinant wild-type and mutant enzymes from Escherichia coli strain BL21-Gold(DE3) to over 95% purity
-
recombinant wild-type and mutants from Escherichia coli strain BL21(DE3)pLysS to homogeneity
-
CLONED (Commentary)
ORGANISM
UNIPROT
LITERATURE
expressed in Escherichia coli BL21(DE3) cells
expressed in Escherichia coli BL21(DE3) cells
-
expressed in Escherichia coli BL21-Gold(DE3) cells
-
overexpression of wild-type and mutant enzymes in Escherichia coli strain BL21-Gold(DE3)
-
overexpression of wild-type and mutants in Escherichia coli strain BL21(DE3)pLysS, subcloning in Escherichia coli strain JM109
-
recombinant expression in Escherichia coli
-
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Harris, T.K.; Czerwinski, R.M.; Johnson, W.H.; Legler, P.M.; Abeygunawardana, C.; Massiah, M.A.; Stivers, J.T.; Whitman, C.P.; Mildvan, A.S.
Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase
Biochemistry
38
12343-12357
1999
Pseudomonas putida, Pseudomonas putida mt-2 / ATCC 33015 / DSM 3931 / NCIB 12182 / NCIMB 12182
Manually annotated by BRENDA team
Azurmendi, H.F.; Miller, S.G.; Whitman, C.P.; Mildvan, A.S.
Half-of-the-sites binding of reactive intermediates and their analogues to 4-oxalocrotonate tautomerase and induced structural asymmetry of the enzyme
Biochemistry
44
7725-7737
2005
Pseudomonas putida
Manually annotated by BRENDA team
Poelarends, G.J.; Almrud, J.J.; Serrano, H.; Darty, J.E.; Johnson, W.H.; Hackert, M.L.; Whitman, C.P.
Evolution of enzymatic activity in the tautomerase superfamily: mechanistic and structural consequences of the L8R mutation in 4-oxalocrotonate tautomerase
Biochemistry
45
7700-7708
2006
Pseudomonas putida, Pseudomonas putida mt-2 / ATCC 33015 / DSM 3931 / NCIB 12182 / NCIMB 12182
Manually annotated by BRENDA team
Wang, S.; Johnson Jr., W.; Czerwinski, R.; Stamps, S.; Whitman, C.
Kinetic and stereochemical analysis of YwhB, a 4-oxalocrotonate tautomerase homologue in Bacillus subtilis: Mechanistic implications for the YwhB- and 4-oxalocrotonate tautomerase-catalyzed reactions
Biochemistry
46
11919-11929
2007
Bacillus subtilis, Pseudomonas putida, Pseudomonas putida mt-2 / ATCC 33015 / DSM 3931 / NCIB 12182 / NCIMB 12182
Manually annotated by BRENDA team
Whitman, C.; Aird, B.; Gillespie, W.; Stolowich, N.
Chemical and enzymatic ketonization of 2-hydroxymuconate, a conjugated enol
J. Am. Chem. Soc.
113
3154-3162
1991
Pseudomonas putida, Pseudomonas putida mt-2 / ATCC 33015 / DSM 3931 / NCIB 12182 / NCIMB 12182
-
Manually annotated by BRENDA team
Whitman, C.; Hajipour, G.; Watson, R.; Johnson Jr., W.; Bembenek, M.; Stolowich, N.
Stereospecific ketonization of 2-hydroxymuconate by 4-oxalocrotonate tautomerase and 5-(carboxymethyl)-2-hydroxymuconate isomerase
J. Am. Chem. Soc.
114
10104-10110
1992
Escherichia coli, Escherichia coli C, Pseudomonas putida, Pseudomonas putida mt-2 / ATCC 33015 / DSM 3931 / NCIB 12182 / NCIMB 12182
-
Manually annotated by BRENDA team
Fitzgerald, M.; Chernushevich, I.; Standing, K.; Kent, S.; Whitman, C.
Total chemical synthesis and catalytic properties of the enzyme enantiomers L- and D-4-oxalocrotonate tautomerase
J. Am. Chem. Soc.
117
11075-11080
1995
Pseudomonas putida, Pseudomonas putida mt-2 / ATCC 33015 / DSM 3931 / NCIB 12182 / NCIMB 12182
-
Manually annotated by BRENDA team
Wu, P.; Cisneros, G.A.; Hu, H.; Chaudret, R.; Hu, X.; Yang, W.
Catalytic mechanism of 4-oxalocrotonate tautomerase: significances of protein-protein interactions on proton transfer pathways
J. Phys. Chem. B
116
6889-6897
2012
Pseudomonas putida
Manually annotated by BRENDA team
Burks, E.A.; Yan, W.; Johnson, W.H.; Li, W.; Schroeder, G.K.; Min, C.; Gerratana, B.; Zhang, Y.; Whitman, C.P.
Kinetic, crystallographic, and mechanistic characterization of TomN: elucidation of a function for a 4-oxalocrotonate tautomerase homologue in the tomaymycin biosynthetic pathway
Biochemistry
50
7600-7611
2011
Pseudomonas putida
Manually annotated by BRENDA team
Narancic, T.; Radivojevic, J.; Jovanovic, P.; Francuski, D.; Bigovic, M.; Maslak, V.; Savic, V.; Vasiljevic, B.; O'Connor, K.E.; Nikodinovic-Runic, J.
Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase
Biores. Technol.
142
462-468
2013
Pseudomonas putida
Manually annotated by BRENDA team
Huddleston, J.P.; Burks, E.A.; Whitman, C.P.
Identification and characterization of new family members in the tautomerase superfamily analysis and implications
Arch. Biochem. Biophys.
564
189-196
2014
Pseudomonas putida
Manually annotated by BRENDA team
Stack, T.M.M.; Li, W.; Johnson, W.H.; Zhang, Y.J.; Whitman, C.P.
Inactivation of 4-oxalocrotonate tautomerase by 5-halo-2-hydroxy-2,4-pentadienoates
Biochemistry
57
1012-1021
2018
Leptothrix cholodnii, Pseudomonas putida (Q01468), Leptothrix cholodnii SP-6
Manually annotated by BRENDA team
Djokic, L.; Spasic, J.; Jeremic, S.; Vasiljevic, B.; Prodanovic, O.; Prodanovic, R.; Nikodinovic-Runic, J.
Immobilization of Escherichia coli cells expressing 4-oxalocrotonate tautomerase for improved biotransformation of beta-nitrostyrene
Bioprocess Biosyst. Eng.
38
2389-2395
2015
Pseudomonas putida
Manually annotated by BRENDA team
Poddar, H.; Rahimi, M.; Geertsema, E.M.; Thunnissen, A.M.; Poelarends, G.J.
Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase
ChemBioChem
16
738-741
2015
Pseudomonas putida (Q01468)
Manually annotated by BRENDA team
Baas, B.J.; Zandvoort, E.; Wasiel, A.A.; Poelarends, G.J.
Demethionylation of Pro-1 variants of 4-oxalocrotonate tautomerase in Escherichia coli by co-expression with an engineered methionine aminopeptidase
FEBS Open Bio
4
651-658
2014
Pseudomonas putida
Manually annotated by BRENDA team
Lazic, J.; Spasic, J.; Francuski, D.; Tokic-Vujosevic, Z.; Nikodinovic-Runic, J.; Maslak, V.; Djokic, L.
Importance of N-terminal proline for the promiscuous activity of 4-oxalocrotonate tautomerase (4-OT)
J. Serb. Chem. Soc.
81
871-881
2016
Pseudomonas putida
-
Manually annotated by BRENDA team
van der Meer, J.Y.; Poddar, H.; Baas, B.J.; Miao, Y.; Rahimi, M.; Kunzendorf, A.; van Merkerk, R.; Tepper, P.G.; Geertsema, E.M.; Thunnissen, A.M.; Quax, W.J.; Poelarends, G.J.
Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases
Nat. Commun.
7
10911
2016
Pseudomonas putida (Q01468)
Manually annotated by BRENDA team
Radivojevic, J.; Minovska, G.; Senerovic, L.; OConnor, K.; Jovanovic, P.; Savic, V.; Tokic-Vujosevic, Z.; Nikodinovic-Runic, J.; Maslak, V.
Synthesis of gamma-nitroaldehydes containing quaternary carbon in the alpha-position using a 4-oxalocrotonate tautomerase whole-cell biocatalyst
RSC Adv.
4
60502-60510
2014
Pseudomonas putida
-
Manually annotated by BRENDA team