The enzyme from Concord grape (Vitis labrusca) is solely responsible for the production of O-methyl anthranilate, an important aroma and flavor compound in the grape. The enzyme has a broad substrate specificity, and can use a range of alcohols with substantial activity, the best being butanol, benzyl alcohol, iso-pentanol, octanol and 2-propanol. It can use benzoyl-CoA and acetyl-CoA as acyl donors with lower efficiency. In addition to O-methyl anthranilate, the enzyme might be responsible for the production of ethyl butanoate, methyl-3-hydroxy butanoate and ethyl-3-hydroxy butanoate, which are present in large quantities in the grapes. Also catalyses EC 2.3.1.196, benzyl alcohol O-benzoyltransferase.
Specify your search results
The expected taxonomic range for this enzyme is: Eukaryota, Bacteria
The enzyme from Concord grape (Vitis labrusca) is solely responsible for the production of O-methyl anthranilate, an important aroma and flavor compound in the grape. The enzyme has a broad substrate specificity, and can use a range of alcohols with substantial activity, the best being butanol, benzyl alcohol, iso-pentanol, octanol and 2-propanol. It can use benzoyl-CoA and acetyl-CoA as acyl donors with lower efficiency. In addition to O-methyl anthranilate, the enzyme might be responsible for the production of ethyl butanoate, methyl-3-hydroxy butanoate and ethyl-3-hydroxy butanoate, which are present in large quantities in the grapes. Also catalyses EC 2.3.1.196, benzyl alcohol O-benzoyltransferase.
the enzyme is solely responsible for the production of O-methyl anthranilate, an important aroma and flavor compound in the grape. In addition to O-methyl anthranilate, the enzyme might be responsible for the production of ethyl butanoate, methyl-3-hydroxy butanoate and ethyl-3-hydroxy butanoate, which are present in large quantities in the Washington Concord grape (Vitis labrusca)
the enzyme has a broad substrate specificity, and can use a range of alcohols with substantial activity, the best being butanol, benzyl alcohol, iso-pentanol, octanol and 2-propanol. It can use benzoyl-CoA and acetyl-CoA as acyl donors with lower efficiency. The enzyme also shows benzyl alcohol O-benzoyltransferase activity, EC 2.3.1.196
the enzyme is solely responsible for the production of O-methyl anthranilate, an important aroma and flavor compound in the grape. In addition to O-methyl anthranilate, the enzyme might be responsible for the production of ethyl butanoate, methyl-3-hydroxy butanoate and ethyl-3-hydroxy butanoate, which are present in large quantities in the Washington Concord grape (Vitis labrusca)
three anthranilate derivatives, N-methylanthranilate, methyl anthranilate, and methyl N-methylanthranilate are synthesized using metabolically engineered stains of Escherichia coli. NMT encoding N-methyltransferase from Ruta graveolens, AMAT encoding anthraniloyl-coenzyme A (CoA):methanol acyltransferase from Vitis labrusca, and pqsA encoding anthranilate coenzyme A ligase from Pseudomonas aeruginosa are cloned and Eschetrichia coli strains harboring these genes were used to synthesize the three desired compounds. Escherichia coli mutants (metJ, trpD, tyrR mutants), which provide more anthranilate and/or S-adenosyl methionine, are used to increase the production of the synthesized compounds. 0.1853 mM N-methylanthranilate and 0.0952 mM methyl N-methylanthranilate are synthesized