Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(+)-carvone + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 100%, ee: 97%
-
-
?
(+)-costunolide + NADPH
11(S),13-dihydrocostunolide + NADP+
(-)-carvone + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 100%, ee: 95%
-
-
?
(1-nitroprop-1-en-2-yl)benzene + NADP+
?
-
-
-
-
?
(1-nitroprop-1-en-2-yl)benzene + NADP+
[(2R)-1-nitropropan-2-yl]benzene + NADPH + H+
-
-
product of isoform OPR1
-
?
(1-nitroprop-1-en-2-yl)benzene + NADP+
[(2S)-1-nitropropan-2-yl]benzene + NADPH + H+
-
-
product of isoform OPR3
-
?
(1-nitroprop-1-en-2-yl)benzene + NADP+
[(2S)-2-methyl-3-nitropropyl]benzene + NADPH + H+
-
-
-
-
?
(2E)-2-benzylidenecyclohexanone + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 92%, ee: 51%
-
-
?
(2E)-2-benzylidenecyclopentanone + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 4%, ee: racemate
-
-
?
(2E)-2-cyano-3-phenylprop-2-enoic acid + NADPH
2-cyano-3-phenylpropanoic acid + NADP+
conversion rate measured using HPLC after 48 h. Conversion: 83%, ee: racemic
-
-
?
(2E)-2-methyl-3-phenylacrylic acid + electron donor
2-methyl-3-phenylpropanoic acid + electron acceptor
-
-
-
-
?
(2E)-2-methyl-3-phenylbut-2-enoic acid + electron donor
2-methyl-3-phenylbutanoic acid + electron acceptor
-
-
-
-
?
(2E)-2-methylbut-2-enedioic acid + electron donor
2-methylbutanedioic aicd + electron acceptor
-
-
-
-
?
(2E)-2-methylpent-2-enal + NADH + H+
(2R)-2-methylpentanal + NAD+
-
-
-
-
?
(2E)-3,7-dimethylocta-2,6-dienal + NADH + H+
3,7-dimethyloct-6-enal + NAD+
-
-
-
-
?
(2E)-3-phenylacrylic acid + electron donor
3-phenylpropanoic acid + electron acceptor
-
-
-
-
?
(2E)-4-methoxy-2-methyl-4-oxobut-2-enoic acid + electron donor
4-methoxy-2-methyl-4-oxobutanoic acid + electron acceptor
-
-
-
-
?
(2E)-4-methoxy-3-methyl-4-oxobut-2-enoic acid + electron donor
4-methoxy-3-methyl-4-oxobutanoic acid + electron acceptor
-
-
-
-
?
(2E,4E)-2,3,5,8-tetramethylnona-2,4,7-trienoic acid + electron donor
? + electron acceptor
-
-
-
-
?
(2E,4E)-2,3-dimethylhexa-2,4-dienoic acid + electron donor
? + electron acceptor
-
-
-
-
?
(2E,6Z)-nona-2,6-dienal + NADH + H+
?
-
relative activity: 62.7%
-
-
?
(2Z)-3-(4-chlorophenyl)-3-cyanoprop-2-enoic acid + NADPH
(R)-3-(4-chlorophenyl)-3-cyano-propanoic acid + NADP+
conversion rate measured using HPLC after 48 h. Conversion: 80%, ee: 94% (R)
-
-
?
(5R)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-one + NADH + H+
(2R,5R)-2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-one + NAD+
-
-
-
-
?
(5S)-2-methyl-5-(prop-1-en-2-yl)cyclohex-2-en-1-one + NADH + H+
(2R,5S)-2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-one + NAD+
-
-
-
-
?
(E)-(2-nitroprop-1-en-1-yl)benzene + NADP+
?
-
-
-
-
?
(E)-(2-nitroprop-1-en-1-yl)benzene + NADP+
[(3S)-3-nitrobutyl]benzene + NADPH + H+
-
-
-
-
?
(E)-2,5-dimethoxycinnamate + NADH
3-(2,5-dimethoxyphenyl)propionate + NAD+
-
-
-
-
?
(E)-2-butenoate + NADH
butanoate + NAD+
(E)-2-decenal + NADH + H+
decanal + NAD+
-
relative activity: 90%
-
-
?
(E)-2-hexen-1-al + NADH + H+
hexanal + NAD+
-
relative activity: 100%
-
-
?
(E)-2-hexenal + NADPH
hexanal + NADP+
-
relative activity: 100%
-
-
?
(E)-2-methyl-2-butenal + NADH + H+
2-methylbutanal + NAD+
-
relative activity: 59.2%
-
-
?
(E)-2-methyl-2-butenoate + 4,5-dihydroxyanthraquinone-2-carboxylic acid
2-methylbutanoate + ?
-
-
-
-
?
(E)-2-methyl-2-butenoate + NADH
2-methylbutanoate + NAD+
(E)-2-methyl-3-phenyl-2-propenoate + reduced methyl viologen
(R)-2-methyl-3-phenylpropanoate + methyl viologen
-
-
-
?
(E)-2-methylbutenoate + NADH
(R)-2-methylbutanoate + NAD+
(E)-2-methylbutenoate + reduced methylviologen
(R)-2-methylbutanoate + methyl viologen
(E)-2-nonenal + NADH + H+
nonanal + NAD+
-
relative activity: 57%
-
-
?
(E)-2-octenal + NADH + H+
octanal + NAD+
-
relative activity: 75.4%
-
-
?
(E)-2-oxo-4-phenyl-3-butenoate + NADH
2-oxo-4-phenyl-3-butanoate + NAD+
-
18% of the activity with butenoate
-
-
?
(E)-2-pentenal + NADH + H+
2-pentanone + NAD+
-
relative activity: 45%
-
-
?
(E)-3-methyl-2-oxo-4-phenyl-3-butenoate + NADH
3-methyl-2-oxo-4-phenyl-3-butenoate + NAD+
-
27% of the activity with butenoate
-
-
?
(E)-3-methylpentenoate + NADH
3-methylpentanoate + NAD+
(E)-3-nonen-2-one + NADH + H+
nonan-2-one + NAD+
-
relative activity: 36.6%
-
-
?
(E)-3-nonen-2-one + NADPH
nonan-2-one + NADP+
-
relative activity: 61.6%
-
-
?
(E)-4-(2,4-dimethoxyphenyl)but-3-en-2-one + NAD+
4-(2,4-dimethoxyphenyl)butan-2-one + NADH + H+
(E)-4-(4'-isopropylphenyl)but-3-en-2-one + NAD+
4-(4-isopropylphenyl)butan-2-one + NADH + H+
(E)-4-(4'-methoxyphenyl)but-3-en-2-one + NAD+
4-(4-methoxyphenyl)butan-2-one + NADH + H+
(E)-4-(benzo[1,3]dioxol-5-yl)but-3-en-2-one + NAD+
4-(1,3-benzodioxol-5-yl)butan-2-one + NADH + H+
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
(E)-4-phenylbut-3-ene-2-one + NAD+
4-phenylbutan-2-one + NADH + H+
(E)-cinnamate + NADH
phenylpropionate + NAD+
(E)-ethyl 2-methyl-4-oxopent-2-enoate + NADP+
?
-
-
-
-
?
(E)-ethyl 2-methyl-4-oxopent-2-enoate + NADP+
ethyl (2R)-2-methyl-4-oxopentanoate + NADPH + H+
-
-
-
-
?
(E)-geraniate + NADH
?
-
-
-
-
?
(E)-o-hydroxycinnamate + NADH
3-(2-hydroxyphenyl)propionate + NAD+
(E)-p-(dimethylamino)cinnamate + NADH
3-(4-(dimethylamino)phenyl)propionate + NAD+
(E)-p-chlorocinnamate + NADH
3-(4-chlorophenyl)propionate + NAD+
(E)-p-methoxycinnamate + NADH
3-(4-methoxyphenyl)propionate + NAD+
(E)-p-nitrocinnamate + NADH
3-(4-nitrophenyl)propionate + NAD+
(E,E)-2,4-hexadienoate + NADH
? + NAD+
-
-
-
-
?
(R)-(-)-carvone + NADH + H+
?
-
relative activity: 70%
-
-
?
(R)-carvone + NADPH
2-methyl-5-(1-methylethenyl)cyclohexanone + NADP+
(R,S)-1-methyl-3-phenylallenecarboxylate + NADH
? + NAD+
-
-
-
-
?
(Z)-2-(formylamino)cinnamate + NADH
3-(4-(formylamino)phenyl)propionate + NAD+
(Z)-2-bromocinnamate + NADH
3-(2-bromophenyl)propionate + NAD+
-
-
-
-
?
(Z)-2-chloro-3-(p-chlorophenyl)acrylate + NADH
2-chloro-3-(4-chlorophenyl)propionate + NAD+
-
-
-
-
?
(Z)-2-fluorocinnamate + NADH
3-(2-fluorophenyl)propionate + NAD+
-
-
-
-
?
(Z)-3-chlorocinnamate + NADH
3-(3-chlorophenyl)propionate + NAD+
-
-
-
-
?
(Z)-3-cyano-3-phenyl-propenoic acid + NADPH + H+
(R)-3-cyano-3-phenylpropanoic acid + NADP+
highest enantiomeric excess of 98% ee is achieved at a glucose concentration of 1% (w/v) with a 47% conversion for an 18 h reaction. Concentration of 2-propanol also affects the activity and selectivity of the reaction, and a concentration of 5% (v/v) results in the best substrate conversion and ee value of product. Conversion rate measured using HPLC after 48 h. Conversion: 80%, ee: 98% (R)
-
-
?
(Z)-3-methylpentenoate + NADH
3-methylpentanoate + NAD+
(Z)-geraniate + NADH
?
-
-
-
-
?
1,3-dimethyl-1H-pyrrole-2,5-dione + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 99%, ee: 99%
-
-
?
1-(cyclohex-1-en-1-yl)ethanone + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 71%, ee: not applicable
-
-
?
1-(cyclopent-1-en-1-yl)ethanone + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 30%, ee: not applicable
-
-
?
1-(prop-2-en-1-yl)-1H-pyrrole-2,5-dione + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 99%, ee: not applicable
-
-
?
1-benzyl-1H-pyrrole-2,5-dione + NADH + H+
1-benzylpyrrolidine-2,5-dione + NAD+
-
-
-
-
?
1-benzyl-3-methyl-1H-pyrrole-2,5-dione + NADH + H+
(3R)-1-benzyl-3-methylpyrrolidine-2,5-dione + NAD+
-
-
-
-
?
1-butyl-3-methyl-1H-pyrrole-2,5-dione + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 99%, ee: 99%
-
-
?
1-ethyl-3-methyl-1H-pyrrole-2,5-dione + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 99%, ee: 99%
-
-
?
12-phenyldodec-2-enoic acid + electron donor
12-phenyldodecanoic acid + electron acceptor
-
-
-
-
?
2,3-dimethylmaleimide + NADH
trans-dimethylsuccinimide + NAD+
-
-
-
-
?
2,6,6-trimethyl-2-cyclohexen-1,4-dione + NADPH
?
-
relative activity: 103%
-
-
?
2,6,6-trimethylcyclohex-2-ene-1,4-dione + NADH + H+
(6R)-2,2,6-trimethylcyclohexane-1,4-dione + NAD+
-
-
-
-
?
2-cyclohexen-1-one + NADH
2-cyclohexanone + NAD+
2-cyclohexen-1-one + NADH + H+
2-cyclohexanone + NAD+
-
-
-
-
?
2-cyclohexen-1-one + NADH + H+
cyclohexanone + NAD+
-
relative activity: 830%
-
-
?
2-cyclohexen-1-one + NADPH
?
-
relative activity: 56.7%
-
-
?
2-hydroxycyclopent-2-en-1-one + NADH + H+
(2S)-2-hydroxycyclopentan-1-one + NAD+
-
-
-
-
?
2-isopropyl-5-methyl-2-hexenal + NADH + H+
2-isopropyl-5-methylhexanal + NAD+
-
relative activity: 15.5%
-
-
?
2-methyl-2-butenoate + NADH
2-methylbutanoate + NAD+
2-methyl-2-cyclopenten-1-one + NADH + H+
?
-
relative activity: 62.7%
-
-
?
2-methyl-N-phenylmaleimide + NADH + H+
(3R)-3-methyl-1-phenylpyrrolidine-2,5-dione + NAD+
2-methyl-N-phenylmaleimide + NADPH
(3R)-3-methyl-1-phenylpyrrolidine-2,5-dione + NADP+
2-methylbutenoate + NADH
2-methylbutanoate + NAD+
-
-
-
-
?
2-methylcyclopent-2-enone + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 92%, ee: 52%
-
-
?
2-methylcyclopenten-1-one + NADPH
?
-
relative activity: 12.4%
-
-
?
2-methylenesuccinic acid + NAD(P)H
(R)-2-methylsuccinic acid + NAD(P)+
2-methylfumaric acid + NAD(P)H
2-methylsuccinic acid + NAD(P)+
2-methylmaleic acid + NAD(P)H
(R)-2-methylsuccinic acid + NAD(P)+
3-methyl-1-(prop-2-en-1-yl)-1H-pyrrole-2,5-dione + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 99%, ee: 99%
-
-
?
3-methyl-1-phenyl-1H-pyrrole-2,5-dione + NADPH
(R)-N-phenyl-2-methylsuccinimide + NADP+
conversion rate measured using HPLC after 48 h. Conversion: 99%, ee: 99% (R)
-
-
?
3-methyl-1-propyl-1H-pyrrole-2,5-dione + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 99%, ee: 99%
-
-
?
3-methyl-2-butenal + NADPH
3-methylbutanal + NADP+
3-methyl-2-cyclopentenone + NADH + H+
?
-
relative activity: 31%
-
-
?
3-methylpentenoate + NADH
3-methylpentanoate + NAD+
4-(1,3-benzodioxol-5-yl)butan-2-one + NAD+
(S)-4-(1,3-benzodioxol-5-yl)butan-2-ol + NADH + H+
-
-
-
-
?
4-coumaric acid + NAD+
3-(4-hydroxyphenyl)propionic acid + NADH + H+
-
-
-
-
?
4-phenylbutan-2-one + NAD+
(S)-4-phenylbutan-2-ol + NADH + H+
-
-
-
-
?
5-benzylidenethiazolidine-2,4-dione + NADH
(5R)-5-benzyl-1,3-thiazolidine-2,4-dione + NAD+
alpha-methylmaleimide + NADH
(R)-2-methylsuccinimide + NAD+
-
-
-
-
?
bromomaleic anhydride + NADH + H+
?
-
relative activity: 107%
-
-
?
but-3-en-2-one + NADPH
butan-2-one + NADP+
butenoate + NADH
butanoate + NAD+
butenoate + reduced methyl viologen
butanoate + methyl viologen
-
-
-
-
?
chalcone + NAD+
dihydrochalcone + NADH + H+
-
-
-
?
chloroacrylic acid + NADPH
(S)-2-chloropropionic acid + NADP+
-
-
-
-
?
cinnamate + NADH
phenylpropionate + NAD+
cinnamic acid + NAD+
3-phenylpropionic acid + NADH + H+
-
-
-
-
?
citraconic anhydride + NADH
?
-
-
-
-
?
citral + NADPH
3-phenylpropanal + NADP+
citral + NADPH
?
-
relative activity: 34%
-
-
?
diethyl (2Z)-2-methylbut-2-enedioate + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 99%, ee: 99%
-
-
?
dimethyl (2E)-2-methylbut-2-enedioate + NAD(P)H
dimethyl (2R)-2-methylbutanedioate + dimethyl (2S)-2-methylbutanedioate + NAD(P)+
dimethyl (2Z)-2-methylbut-2-enedioate + NAD(P)H
dimethyl (2R)-2-methylbutanedioate + NAD(P)+
dimethyl (2Z)-2-methylbut-2-enedioate + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 99%, ee: 98%
-
-
?
dimethyl 2-methylidenebutanedioate + NAD(P)H
dimethyl (2R)-2-methylbutanedioate + NAD(P)+
dimethyl 2-methylidenebutanedioate + NADPH
?
-
biotransformation in the presence of a NADP+/G6P/G6PDH cofactor recycling system, conversion: 19%, ee: 90%
-
-
?
ethyl (2Z)-3-nitro-2-phenylprop-2-enoate + NADPH
ethyl (2R)-3-nitro-2-phenylpropanoate + NADP+
conversion rate measured using HPLC after 48 h. Conversion: 40%, ee: 45% (R)
-
-
?
ethyl 3-(tetrahydrofuran)propanoate + NADP+
? + NADPH
-
-
-
-
?
ethyl 3-(tetrahydrofuran)propanoate + NADPH
? + NADP+
hexa-2,4-dienoic acid + electron donor
? + electron acceptor
-
-
-
-
?
indolylacrylate + NADH
indolepropionate + NAD+
-
-
-
-
?
ketoisophorone + NAD(P)H
(6R)-levodione + NAD(P)+
-
-
-
-
?
ketoisophorone + NADPH
(6R)-levodione
maleic anhydride + NADPH
dihydrofuran-2,5-dione + NADP+
maleimide + NADH + H+
pyrrolidine-2,5-dione + NAD+
methyl 2-phenylacrylate + NADP+
?
-
-
-
-
?
methyl 2-phenylacrylate + NADP+
methyl (2R)-2-methyl-3-phenylpropanoate + NADPH + H+
-
-
-
-
?
monomethyl fumarate + NADH
4-methoxy-4-oxobutanoate + NAD+
-
-
-
-
?
N-ethylmaleimide + NADPH
N-ethylpyrrolidine-2,5-dione + NADP+
oct-2-en-4-ynoic acid + electron donor
? + electron acceptor
-
-
-
-
?
phenylmaleic anhydride + NADH + H+
?
-
relative activity: 402%
-
-
?
trans,trans-2,4-hexadienal + NADPH
?
[(1E)-1-nitroprop-1-en-2-yl]benzene + NADPH
(S)-1-nitro-2-phenylpropane + NADP+
conversion rate measured using HPLC after 48 h. Conversion: 87%, ee: 97% (S)
-
-
?
[(1E)-2-nitroprop-1-en-1-yl]benzene + NADPH
1-phenyl-2-nitropropane + NADP+
conversion rate measured using HPLC after 48 h. Conversion: 60%, ee: racemic
-
-
?
additional information
?
-
(+)-costunolide + NADPH

11(S),13-dihydrocostunolide + NADP+
-
-
-
-
?
(+)-costunolide + NADPH
11(S),13-dihydrocostunolide + NADP+
-
part of the metabolization of (+)-costunolide to leucodin, overview
-
-
?
(E)-2-butenoate + NADH

butanoate + NAD+
-
-
-
-
?
(E)-2-butenoate + NADH
butanoate + NAD+
-
-
-
-
?
(E)-2-methyl-2-butenoate + NADH

2-methylbutanoate + NAD+
-
-
-
?
(E)-2-methyl-2-butenoate + NADH
2-methylbutanoate + NAD+
-
-
-
-
?
(E)-2-methyl-2-butenoate + NADH
2-methylbutanoate + NAD+
-
-
-
-
?
(E)-2-methyl-2-butenoate + NADH
2-methylbutanoate + NAD+
-
-
-
?
(E)-2-methyl-2-butenoate + NADH
2-methylbutanoate + NAD+
-
-
-
-
?
(E)-2-methylbutenoate + NADH

(R)-2-methylbutanoate + NAD+
-
-
-
?
(E)-2-methylbutenoate + NADH
(R)-2-methylbutanoate + NAD+
-
-
-
?
(E)-2-methylbutenoate + NADH
(R)-2-methylbutanoate + NAD+
-
-
-
?
(E)-2-methylbutenoate + reduced methylviologen

(R)-2-methylbutanoate + methyl viologen
-
-
-
?
(E)-2-methylbutenoate + reduced methylviologen
(R)-2-methylbutanoate + methyl viologen
-
-
-
?
(E)-3-methylpentenoate + NADH

3-methylpentanoate + NAD+
-
-
-
-
?
(E)-3-methylpentenoate + NADH
3-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-(2,4-dimethoxyphenyl)but-3-en-2-one + NAD+

4-(2,4-dimethoxyphenyl)butan-2-one + NADH + H+
-
-
-
-
?
(E)-4-(2,4-dimethoxyphenyl)but-3-en-2-one + NAD+
4-(2,4-dimethoxyphenyl)butan-2-one + NADH + H+
-
-
-
-
?
(E)-4-(4'-isopropylphenyl)but-3-en-2-one + NAD+

4-(4-isopropylphenyl)butan-2-one + NADH + H+
-
-
-
-
?
(E)-4-(4'-isopropylphenyl)but-3-en-2-one + NAD+
4-(4-isopropylphenyl)butan-2-one + NADH + H+
-
-
-
-
?
(E)-4-(4'-methoxyphenyl)but-3-en-2-one + NAD+

4-(4-methoxyphenyl)butan-2-one + NADH + H+
-
-
-
-
?
(E)-4-(4'-methoxyphenyl)but-3-en-2-one + NAD+
4-(4-methoxyphenyl)butan-2-one + NADH + H+
-
-
-
-
?
(E)-4-(benzo[1,3]dioxol-5-yl)but-3-en-2-one + NAD+

4-(1,3-benzodioxol-5-yl)butan-2-one + NADH + H+
-
-
-
-
?
(E)-4-(benzo[1,3]dioxol-5-yl)but-3-en-2-one + NAD+
4-(1,3-benzodioxol-5-yl)butan-2-one + NADH + H+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH

4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-methyl-2-pentenoate + NADH
4-methylpentanoate + NAD+
-
-
-
-
?
(E)-4-phenylbut-3-ene-2-one + NAD+

4-phenylbutan-2-one + NADH + H+
-
-
-
-
?
(E)-4-phenylbut-3-ene-2-one + NAD+
4-phenylbutan-2-one + NADH + H+
-
-
-
-
?
(E)-cinnamate + NADH

phenylpropionate + NAD+
-
-
-
-
?
(E)-cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
(E)-cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
(E)-cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
(E)-cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
(E)-cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
(E)-cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
(E)-cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
(E)-cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
(E)-o-hydroxycinnamate + NADH

3-(2-hydroxyphenyl)propionate + NAD+
-
-
-
-
?
(E)-o-hydroxycinnamate + NADH
3-(2-hydroxyphenyl)propionate + NAD+
-
-
-
-
?
(E)-p-(dimethylamino)cinnamate + NADH

3-(4-(dimethylamino)phenyl)propionate + NAD+
-
-
-
-
?
(E)-p-(dimethylamino)cinnamate + NADH
3-(4-(dimethylamino)phenyl)propionate + NAD+
-
-
-
-
?
(E)-p-chlorocinnamate + NADH

3-(4-chlorophenyl)propionate + NAD+
-
-
-
-
?
(E)-p-chlorocinnamate + NADH
3-(4-chlorophenyl)propionate + NAD+
-
-
-
-
?
(E)-p-methoxycinnamate + NADH

3-(4-methoxyphenyl)propionate + NAD+
-
-
-
-
?
(E)-p-methoxycinnamate + NADH
3-(4-methoxyphenyl)propionate + NAD+
-
-
-
-
?
(E)-p-nitrocinnamate + NADH

3-(4-nitrophenyl)propionate + NAD+
-
-
-
-
?
(E)-p-nitrocinnamate + NADH
3-(4-nitrophenyl)propionate + NAD+
-
-
-
-
?
(R)-carvone + NADPH

2-methyl-5-(1-methylethenyl)cyclohexanone + NADP+
-
-
-
?
(R)-carvone + NADPH
2-methyl-5-(1-methylethenyl)cyclohexanone + NADP+
-
-
-
?
(R)-carvone + NADPH
2-methyl-5-(1-methylethenyl)cyclohexanone + NADP+
-
-
-
-
?
(Z)-2-(formylamino)cinnamate + NADH

3-(4-(formylamino)phenyl)propionate + NAD+
-
-
-
-
?
(Z)-2-(formylamino)cinnamate + NADH
3-(4-(formylamino)phenyl)propionate + NAD+
-
-
-
-
?
(Z)-3-methylpentenoate + NADH

3-methylpentanoate + NAD+
-
-
-
-
?
(Z)-3-methylpentenoate + NADH
3-methylpentanoate + NAD+
-
-
-
-
?
2-cyclohexen-1-one + NADH

2-cyclohexanone + NAD+
-
-
-
-
?
2-cyclohexen-1-one + NADH
2-cyclohexanone + NAD+
-
-
-
?
2-cyclohexen-1-one + NADH
2-cyclohexanone + NAD+
-
-
-
?
2-cyclohexen-1-one + NADH
2-cyclohexanone + NAD+
-
-
-
-
?
2-methyl-2-butenoate + NADH

2-methylbutanoate + NAD+
-
-
-
-
?
2-methyl-2-butenoate + NADH
2-methylbutanoate + NAD+
-
-
-
-
?
2-methyl-N-phenylmaleimide + NADH + H+

(3R)-3-methyl-1-phenylpyrrolidine-2,5-dione + NAD+
-
-
-
?
2-methyl-N-phenylmaleimide + NADH + H+
(3R)-3-methyl-1-phenylpyrrolidine-2,5-dione + NAD+
-
-
-
?
2-methyl-N-phenylmaleimide + NADPH

(3R)-3-methyl-1-phenylpyrrolidine-2,5-dione + NADP+
-
-
-
?
2-methyl-N-phenylmaleimide + NADPH
(3R)-3-methyl-1-phenylpyrrolidine-2,5-dione + NADP+
-
-
-
?
2-methylenesuccinic acid + NAD(P)H

(R)-2-methylsuccinic acid + NAD(P)+
-
-
-
-
?
2-methylenesuccinic acid + NAD(P)H
(R)-2-methylsuccinic acid + NAD(P)+
-
-
-
-
?
2-methylfumaric acid + NAD(P)H

2-methylsuccinic acid + NAD(P)+
-
-
-
-
?
2-methylfumaric acid + NAD(P)H
2-methylsuccinic acid + NAD(P)+
-
-
-
-
?
2-methylmaleic acid + NAD(P)H

(R)-2-methylsuccinic acid + NAD(P)+
-
-
-
-
?
2-methylmaleic acid + NAD(P)H
(R)-2-methylsuccinic acid + NAD(P)+
-
-
-
-
?
3-methyl-2-butenal + NADPH

3-methylbutanal + NADP+
-
-
-
?
3-methyl-2-butenal + NADPH
3-methylbutanal + NADP+
-
-
-
?
3-methyl-2-butenal + NADPH
3-methylbutanal + NADP+
-
-
-
-
?
3-methylpentenoate + NADH

3-methylpentanoate + NAD+
-
-
-
-
?
3-methylpentenoate + NADH
3-methylpentanoate + NAD+
-
-
-
-
?
5-benzylidenethiazolidine-2,4-dione + NADH

(5R)-5-benzyl-1,3-thiazolidine-2,4-dione + NAD+
-
-
-
-
?
5-benzylidenethiazolidine-2,4-dione + NADH
(5R)-5-benzyl-1,3-thiazolidine-2,4-dione + NAD+
-
-
-
-
?
but-3-en-2-one + NADPH

butan-2-one + NADP+
-
-
-
?
but-3-en-2-one + NADPH
butan-2-one + NADP+
-
-
-
?
but-3-en-2-one + NADPH
butan-2-one + NADP+
-
-
-
-
?
butenoate + NADH

butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
reverse reaction is energetically extremely unfavorable
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
butenoate + NADH
butanoate + NAD+
-
-
-
-
?
cinnamaldehyde + NADPH

?
-
-
-
?
cinnamaldehyde + NADPH
?
-
-
-
?
cinnamaldehyde + NADPH
?
-
-
-
-
?
cinnamate + NADH

phenylpropionate + NAD+
-
-
-
-
?
cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
cinnamate + NADH
phenylpropionate + NAD+
-
-
-
-
?
citral + NADPH

3-phenylpropanal + NADP+
-
-
-
?
citral + NADPH
3-phenylpropanal + NADP+
-
-
-
?
citral + NADPH
3-phenylpropanal + NADP+
-
-
-
-
?
dimethyl (2E)-2-methylbut-2-enedioate + NAD(P)H

dimethyl (2R)-2-methylbutanedioate + dimethyl (2S)-2-methylbutanedioate + NAD(P)+
-
-
-
-
?
dimethyl (2E)-2-methylbut-2-enedioate + NAD(P)H
dimethyl (2R)-2-methylbutanedioate + dimethyl (2S)-2-methylbutanedioate + NAD(P)+
-
-
-
-
?
dimethyl (2Z)-2-methylbut-2-enedioate + NAD(P)H

dimethyl (2R)-2-methylbutanedioate + NAD(P)+
-
-
-
-
?
dimethyl (2Z)-2-methylbut-2-enedioate + NAD(P)H
dimethyl (2R)-2-methylbutanedioate + NAD(P)+
-
-
-
-
?
dimethyl 2-methylidenebutanedioate + NAD(P)H

dimethyl (2R)-2-methylbutanedioate + NAD(P)+
-
-
-
-
?
dimethyl 2-methylidenebutanedioate + NAD(P)H
dimethyl (2R)-2-methylbutanedioate + NAD(P)+
-
-
-
-
?
ethyl 3-(tetrahydrofuran)propanoate + NADPH

? + NADP+
-
-
-
?
ethyl 3-(tetrahydrofuran)propanoate + NADPH
? + NADP+
-
-
-
?
ketoisophorone + NADPH

(6R)-levodione
-
-
-
?
ketoisophorone + NADPH
(6R)-levodione
-
-
-
?
ketoisophorone + NADPH
(6R)-levodione
-
-
-
-
?
maleic anhydride + NADPH

dihydrofuran-2,5-dione + NADP+
-
-
-
?
maleic anhydride + NADPH
dihydrofuran-2,5-dione + NADP+
-
-
-
?
maleic anhydride + NADPH
dihydrofuran-2,5-dione + NADP+
-
-
-
-
?
maleimide + NADH + H+

pyrrolidine-2,5-dione + NAD+
-
-
-
?
maleimide + NADH + H+
pyrrolidine-2,5-dione + NAD+
-
-
-
?
maleimide + NADH + H+
pyrrolidine-2,5-dione + NAD+
-
-
-
-
?
N-ethylmaleimide + NADPH

N-ethylpyrrolidine-2,5-dione + NADP+
-
-
-
?
N-ethylmaleimide + NADPH
N-ethylpyrrolidine-2,5-dione + NADP+
-
-
-
?
N-ethylmaleimide + NADPH
N-ethylpyrrolidine-2,5-dione + NADP+
-
-
-
-
?
trans,trans-2,4-hexadienal + NADPH

?
-
-
-
?
trans,trans-2,4-hexadienal + NADPH
?
-
-
-
?
trans,trans-2,4-hexadienal + NADPH
?
-
-
-
-
?
additional information

?
-
-
enzyme may be part of the O2-dependent cytochrome P450-enzyme (+)-costunolide synthase, pathway, overview
-
-
?
additional information
?
-
-
transhydrogenase activity: reduction of 3-acetylpyridine adenine dinucleotide by NADH
-
-
?
additional information
?
-
-
enzyme is involved in the reduction of allyl alcohols
-
-
?
additional information
?
-
-
activity reaches a maximum in cells of the stationary phase
-
-
?
additional information
?
-
-
-
-
-
?
additional information
?
-
-
transhydrogenase activity: reduction of 3-acetylpyridine adenine dinucleotide by NADH
-
-
?
additional information
?
-
-
enzyme is involved in the reduction of allyl alcohols
-
-
?
additional information
?
-
-
reduction of enoate is coupled to the formation of ATP
-
-
?
additional information
?
-
the recombinant enzyme exhibits low activity for the conversion of the naringenin into phloretin
-
-
?
additional information
?
-
-
the recombinant enzyme exhibits low activity for the conversion of the naringenin into phloretin
-
-
?
additional information
?
-
NADPH does not react at all in the presence of 2-cyclohexen-1-one and rarely in presence of maleimide
-
-
?
additional information
?
-
NADPH does not react at all in the presence of 2-cyclohexen-1-one and rarely in presence of maleimide
-
-
?
additional information
?
-
-
NADPH does not react at all in the presence of 2-cyclohexen-1-one and rarely in presence of maleimide
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Preiss, U.; White, H.; Simon, H.
Additional enoates amd other alpha,beta-unsaturated carbonyl compounds as substrates for the enoate reductase from Clostridium tyrobutyricum, influence of elevated hydrogen pressure on the reduction rate
DECHEMA Biotechnol. Conf.
3
189-192
1989
Clostridium tyrobutyricum
-
brenda
Krause, G.; Simon, H.
Design and application of sensitive enzyme immunoassays specific for clostridial enoate reductase
Z. Naturforsch. C
44
345-352
1989
Clostridium sporogenes, Clostridium tyrobutyricum, Moorella thermoacetica
brenda
Verhaert, R.M.D.; Tyrakowska, B.; Hilhorst, R.; Schaafsma, T.J.; Veeger, C.
Enzyme kinetics in reversed micelles. 2. Behaviour of enoate reductase
Eur. J. Biochem.
187
73-79
1990
Clostridium sp.
brenda
Thanos, I.; Deffner, A.; Simon, H.
Reductions of 2-enals, dehydrogenation of saturated aldehydes and their racemisation
Biol. Chem. Hoppe-Seyler
369
451-460
1988
Clostridium kluyveri, Clostridium tyrobutyricum
brenda
Thanos, I.; Bader, J.; Guenther, H.; Neumann, S.; Krauss, F.; Simon, H.
Electroenzymatic and electromicrobial reduction: preparation of chiral compounds
Methods Enzymol.
136
302-317
1987
Clostridium tyrobutyricum
-
brenda
Thanos, I.C.G.; Simon, H.
Electro-enzymic viologen-mediated stereospecific reduction of 2-enoates with free and immobilized enoate reductase on cellulose filters or modified carbon electrodes
J. Biotechnol.
6
13-29
1987
Clostridium tyrobutyricum
-
brenda
Kuno, S.; Bacher, A.; Simon, H.
Structure of enoate reductase from a Clostridium tyrobutyricum (C. spec. La1)
Biol. Chem. Hoppe-Seyler
366
463-472
1985
Clostridium tyrobutyricum
brenda
Bader, J.; Simon, H.
ATP formation is coupled to the hydrogenation of 2-enoates in Clostridium sporogenes
FEMS Microbiol. Lett.
20
171-175
1983
Clostridium sporogenes
-
brenda
Giesel, H.; Simon, H.
On the occurrence of enoate reductase and 2-oxo-carboxylate reductase in clostridia and some observations on the amino acid fermentation by Peptostreptococcus anaerobius
Arch. Microbiol.
135
51-57
1983
Paraclostridium bifermentans, Clostridium botulinum, Clostridioides difficile, Paeniclostridium ghonii, Tissierella praeacuta, Clostridioides mangenotii, Clostridium oceanicum, Paeniclostridium sordellii, Clostridium sporogenes, Acetoanaerobium sticklandii, no activity in Clostridium butyricum, no activity in Clostridium pasteurianum, no activity in Clostridium propionicum, Peptostreptococcus anaerobius
brenda
Giesel, H.; Simon, H.
Immunological relationship of enoate reductases from different clostridia and the classification of Clostridium species La 1
FEMS Microbiol. Lett.
19
43-45
1983
Clostridium kluyveri, Clostridium sp., Clostridium sporogenes, Clostridium tyrobutyricum
-
brenda
Buehler, M.; Simon, H.
On the kinetics and mechanism of enoate reductase
Hoppe-Seyler's Z. Physiol. Chem.
363
609-625
1982
Clostridium kluyveri, Clostridium sp.
brenda
Egerer, P.; Buehler, M.; Simon, H.
Rhein as an electron acceptor for various flavoproteins and for electron transport particles
Hoppe-Seyler's Z. Physiol. Chem.
363
627-633
1982
Clostridium sp.
brenda
Bader, J.; Kim, M.A.; Simon, H.
The reduction of allyl alcohols by Clostridium species is catalyzed by the combined action of alcohol dehydrogenase and enoate reductase
Hoppe-Seyler's Z. Physiol. Chem.
362
809-820
1981
Clostridium kluyveri, Clostridium sp.
brenda
Bader, J.; Simon, H.
The activities of hydrogenase and enoate reductase in two Clostridium species, their interrelationship and dependence on growth conditions
Arch. Microbiol.
127
279-287
1980
Clostridium kluyveri, Clostridium sp.
brenda
Buehler, M.; Giesel, H.; Tischer, W.; Simon, H.
Occurrence and the possible physiological role of 2-enoate reductases
FEBS Lett.
109
244-246
1980
Clostridium kluyveri, Clostridium sp., Clostridium sporogenes, Peptostreptococcus anaerobius
brenda
Tischer, W.; Bader, J.; Simon, H.
Purification and some properties of a hitherto-unknown enzyme reducing the carbon-carbon double bond of alpha, beta-unsaturated carboxylate anions
Eur. J. Biochem.
97
103-112
1979
Clostridium kluyveri, Clostridium sp.
brenda
Caldeira, J.; Feicht, R.; White, H.; Teixeira, M.; Moura, J.J.G.; Simon, H.; Moura, I.
EPR and Moessbauer spectroscopic studies on enoate reductase
J. Biol. Chem.
271
18743-18748
1996
Clostridium tyrobutyricum
brenda
Rohdich, F.; Wiese, A.; Feicht, R.; Simon, H.; Bacher, A.
Enoate reductases of Clostridia: cloning, sequencing, and expression
J. Biol. Chem.
276
5779-5787
2001
Clostridium tyrobutyricum (O52933), Moorella thermoacetica (O52935)
brenda
de Kraker, J.W.; Franssen, M.C.R.; Joerink, M.; de Groot, A.; Bouwmeester, H.J.
Biosynthesis of costunolide, dihydrocostunolide, and leucodin. Demostration of cytochrome P450-catalyzed formation of the lactone ring present in sesquiterpene lactones of chicory
Plant Physiol.
129
257-268
2002
Cichorium intybus
brenda
Chaparro-Riggers, J.F.; Rogers, T.A.; Vazquez-Figueroa, E.; Polizzi, K.M.; Bommarius, A.S.
Comparison of three enoate reductases and their potential use for biotransformations
Adv. Synth. Catal.
349
1521-1531
2007
Yersinia bercovieri, Kluyveromyces lactis (P40952), Pseudomonas putida (Q9R9V9)
-
brenda
Stuermer, R.; Hauer, B.; Hall, M.; Faber, K.
Asymmetric bioreduction of activated C:C bonds using enoate reductases from the old yellow enzyme family
Curr. Opin. Chem. Biol.
11
203-213
2007
Burkholderia sp., Marchantia polymorpha, Rhodotorula, Rhodotorula sp., Saccharomyces cerevisiae
brenda
Stueckler, C.; Hall, M.; Ehammer, H.; Pointner, E.; Kroutil, W.; Macheroux, P.; Faber, K.
Stereocomplementary bioreduction of alpha,beta-unsaturated dicarboxylic acids and dimethyl esters using enoate reductases: enzyme- and substrate-based stereocontrol
Org. Lett.
9
5409-5411
2007
Bacillus subtilis, Solanum lycopersicum
brenda
Richter, N.; Groeger, H.; Hummel, W.
Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans
Appl. Microbiol. Biotechnol.
89
79-89
2011
Gluconobacter oxydans
brenda
Liu, Y.J.; Pei, X.Q.; Lin, H.; Gai, P.; Liu, Y.C.; Wu, Z.L.
Asymmetric bioreduction of activated alkenes by a novel isolate of Achromobacter species producing enoate reductase
Appl. Microbiol. Biotechnol.
95
635-645
2012
Achromobacter sp. (I3V5V5)
brenda
Wang, H.; Pei, X.; Wu, Z.
An enoate reductase Achr-OYE4 from Achromobacter sp. JA81: characterization and application in asymmetric bioreduction of CC bonds
Appl. Microbiol. Biotechnol.
98
705-15
2013
Achromobacter sp. (I3V5V6), Achromobacter sp. JA81 (I3V5V6)
brenda
Romagnolo, A.; Spina, F.; Carusetta, D.; Nerva, L.; Cramarossa, M.; Parmeggiani, F.; Forti, L.; Brenna, E.; Varese, G.
Fungal laccases and enoate reductases as biocatalysts of fine chemical transformations
Chem. Eng. Technol.
32
961-966
2013
Absidia glauca, Penicillium citrinum
-
brenda
Gao, X.; Ren, J.; Wu, Q.; Zhu, D.
Biochemical characterization and substrate profiling of a new NADH-dependent enoate reductase from Lactobacillus casei
Enzyme Microb. Technol.
51
26-34
2012
Lacticaseibacillus casei
brenda
Iqbal, N.; Rudroff, F.; Brige, A.; Van Beeumen, J.; Mihovilovic, M.D.
Asymmetric bioreduction of activated carbon-carbon double bonds using Shewanella yellow enzyme (SYE-4) as novel enoate reductase
Tetrahedron
68
7619-7623
2012
Shewanella sp.
brenda
Gall, M.; Thomsen, M.; Peters, C.; Pavlidis, I.V.; Jonczyk, P.; Gruenert, P.P.; Beutel, S.; Scheper, T.; Gross, E.; Backes, M.; Geissler, T.; Ley, J.P.; Hilmer, J.M.; Krammer, G.; Palm, G.J.; Hinrichs, W.; Bornscheuer, U.T.
Enzymatic conversion of flavonoids using bacterial chalcone isomerase and enoate reductase
Angew. Chem. Int. Ed. Engl.
53
1439-1442
2014
Eubacterium ramulus (V9P074), Eubacterium ramulus
brenda
Skrobiszewski, A.; Ogorek, R.; Plaskowska, E.; Gladkowski, W.
Pleurotus ostreatus as a source of enoate reductase
Biocatal. Agricult. Biotechnol.
2
26-31
2013
Pleurotus ostreatus, Pleurotus ostreatus PO310783
-
brenda
Peters, C.; Rudroff, F.; Mihovilovic, M.D.; T Bornscheuer, U.
Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase facilitate the synthesis of chiral lactones
Biol. Chem.
398
31-37
2017
Pseudomonas putida
brenda
Classen, T.; Pietruszka, J.; Schuback, S.
Revisiting the enantioselective sequence patterns in enoate reductases
ChemCatChem
5
711-713
2013
Solanum lycopersicum, Photorhabdus luminescens
-
brenda
Sun, J.; Lin, Y.; Shen, X.; Jain, R.; Sun, X.; Yuan, Q.; Yan, Y.
Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase
Metab. Eng.
35
75-82
2016
Clostridium acetobutylicum
brenda
Paul, C.; Gargiulo, S.; Opperman, D.; Lavandera, I.; Gotor-Fernandez, V.; Gotor, V.; Taglieber, A.; Arends, I.; Hollmann, F.
Mimicking nature: Synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases
Org. Lett.
15
180-183
2013
Thermus scotoductus
brenda