Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
2,6-dimethoxyphenol + 2 H2O2
coerulignone + 2 H2O
-
-
-
-
?
avicel + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
-
?
avicel PH 101 + ascorbic acid + O2
? + dehydroascorbic acid + H2O
beta-(1->3,1->4)-glucan + ascorbate + O2
C4-oxidized glucan oligosaccharides + dehydroascorbate + H2O
substrate is regenerated amorphous cellulose
-
-
?
cellohexaose + acceptor + O2
oxidized cellobiose and cellotriose + reduced acceptor + H2O
-
-
-
-
?
cellohexaosyl-(2-aminobenzamide) + ascorbate + O2
cellotriose + oxidized cellotriosyl-(2-aminobenzamide) + dehydroascorbate + H2O
-
-
-
-
?
cellooligosaccharide + pyrogallol + O2
?
-
-
-
-
?
cellotetraose + acceptor + O2
? + reduced acceptor + H2O
-
-
-
-
?
cellotriose + acceptor + O2
? + reduced acceptor + H2O
-
-
-
-
?
cellulose + ascorbate + O2
C4-oxidized gluco-oligosaccharides + dehydroascorbate + H2O
substrate is regenerated amorphous cellulose
sole release of C4-oxidized and non-oxidized gluco-oligosaccharides
-
?
cellulose + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
-
?
cellulose + dopamine + O2
C4-oxidized gluco-oligosaccharides + 4-(2-aminoethyl)cyclohexa-3,5-diene-1,2-dione + H2O
-
dopamine shows 6% of the activity with ascorbate
-
?
cellulose + reduced acceptor + O2
? + oxidized acceptor + H2O
-
-
-
-
?
cellulose acetate + ? + O2
? + H2O
-
lytic polysaccharide monooxygenase is able to cleave cellulose acetates with a degree of acetylation of up to 1.4. Preferentially, fragments with a low degree of acetylation are released
-
-
?
chitin + ascorbic acid + O2
? + dehydroascorbate + H2O
konjac glucomannan + ascorbic acid + O2
? + dehydroascorbate + H2O
-
-
-
-
?
Kraft pulp + gallate + O2
? + H2O
-
-
-
-
?
NaOH pretreated soy spent flakes + ascorbic acid + O2
? + dehydroascorbic acid + H2O
phosphoric acid swollen cellulase + ascorbic acid + O2
? + dehydroascorbate + H2O
phosphoric acid swollen cellulose + acceptor + O2
oxidized cellobiose and cellotriose + reduced acceptor + H2O
-
-
main products, C4 is the sole site of oxidation
-
?
phosphoric acid swollen cellulose + ascorbate + O2
? + dehydroascorbate + H2O
phosphoric acid swollen cellulose + ascorbic acid + O2
? + dehydroascorbate + H2O
-
-
-
-
?
phosphoric acid swollen cellulose + ascorbic acid + O2
? + dehydroascorbic acid + H2O
phosphoric acid-swollen cellulose + ascorbate + O2
cellooligosaccharide + dehydroascorbate + H2O
-
-
-
-
?
reduced xyloglucan oligosaccharide + ascorbic acid + O2
xyloglucan oligosaccharides + dehydroascorbic acid + H2O
pure xyloglucan oligosaccharide with DP14
-
-
?
soluble beta-glucan + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
-
?
tamarind xyloglucan + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
?
xyloglucan + ascorbate + O2
C4-oxidized oligosaccharides + dehydroascorbate + H2O
-
-
-
?
additional information
?
-
avicel PH 101 + ascorbic acid + O2

? + dehydroascorbic acid + H2O
-
-
-
?
avicel PH 101 + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
-
?
chitin + ascorbic acid + O2

? + dehydroascorbate + H2O
-
-
-
?
chitin + ascorbic acid + O2
? + dehydroascorbate + H2O
-
-
-
?
chitin + ascorbic acid + O2
? + dehydroascorbate + H2O
-
-
-
?
chitin + ascorbic acid + O2
? + dehydroascorbate + H2O
-
-
-
?
NaOH pretreated soy spent flakes + ascorbic acid + O2

? + dehydroascorbic acid + H2O
-
-
-
-
?
NaOH pretreated soy spent flakes + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
?
phosphoric acid swollen cellulase + ascorbic acid + O2

? + dehydroascorbate + H2O
-
-
-
?
phosphoric acid swollen cellulase + ascorbic acid + O2
? + dehydroascorbate + H2O
-
-
-
?
phosphoric acid swollen cellulose + ascorbate + O2

? + dehydroascorbate + H2O
-
the nonreducing end product is a 4-ketoaldose
-
?
phosphoric acid swollen cellulose + ascorbate + O2
? + dehydroascorbate + H2O
-
the nonreducing end product is a 4-ketoaldose
-
?
phosphoric acid swollen cellulose + ascorbic acid + O2

? + dehydroascorbic acid + H2O
-
-
-
-
?
phosphoric acid swollen cellulose + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
?
phosphoric acid swollen cellulose + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
?
phosphoric acid swollen cellulose + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
-
?
phosphoric acid swollen cellulose + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
?
phosphoric acid swollen cellulose + ascorbic acid + O2
? + dehydroascorbic acid + H2O
-
-
-
?
additional information

?
-
-
no substrate: xylan, starch, laminarin, chitin. cleavage of cleavage of hemicelluloses and phosphoric acid swollen cellulose C uses both C1- and C4-oxidizing mechanisms, reaction of EC 1.14.99.54 and EC 1.14.99.56
-
-
?
additional information
?
-
enzyme catalyzes mixed C1/C4 oxidative cleavage of cellulose, reactions of EC 1.14.99.54 and EC1.14.99.56, and xyloglucan, reaction of lytic xyloglucan monooxygenase, but is inactive toward other (1,4)-linked beta-glucans or chitin and cellooligosaccharides with a degree of polymerization DP 3-6. It shows broad specificity on xyloglucan, cleaving any glycosidic bond in the beta-glucan main chain, regardless of xylosyl substitutions. When incubated with a mixture of xyloglucan and cellulose, LPMO9A efficiently attacks the xyloglucan, whereas cellulose conversion is inhibited. no substrates: xyloglucan-heptamer, birchwood xylan, wheat arabinoxylan, konjac glucomannan, ivory nut mannan, beta-glucan from barley, lichenan from Icelandic moss, starch, and spruce galactoglucomannan
-
-
?
additional information
?
-
enzyme catalyzes mixed C1/C4 oxidative cleavage of cellulose, reactions of EC 1.14.99.54 and EC1.14.99.56, and xyloglucan, reaction of lytic xyloglucan monooxygenase, but is inactive toward other (1,4)-linked beta-glucans or chitin and cellooligosaccharides with a degree of polymerization DP 3-6. It shows broad specificity on xyloglucan, cleaving any glycosidic bond in the beta-glucan main chain, regardless of xylosyl substitutions. When incubated with a mixture of xyloglucan and cellulose, LPMO9A efficiently attacks the xyloglucan, whereas cellulose conversion is inhibited. no substrates: xyloglucan-heptamer, birchwood xylan, wheat arabinoxylan, konjac glucomannan, ivory nut mannan, beta-glucan from barley, lichenan from Icelandic moss, starch, and spruce galactoglucomannan
-
-
?
additional information
?
-
-
no substrate: locus bean glucomannan, tamarind xyloglucan, barley beta-1,3/1,4-glucan and birchwood xylan, carboxymethylcellulose or short cellooligosaccharides
-
-
?
additional information
?
-
the enzyme inserts oxygen at the 4-position. After oxygen insertion, the glycosidic bond is destabilized and likely broken by an elimination reaction, which may be catalyzed by the PMO or occur spontaneously. This elimination is irreversible because the carbon on the reducing or nonreducing end has been oxidized
-
-
?
additional information
?
-
the enzyme inserts oxygen at the 4-position. After oxygen insertion, the glycosidic bond is destabilized and likely broken by an elimination reaction, which may be catalyzed by the PMO or occur spontaneously. This elimination is irreversible because the carbon on the reducing or nonreducing end has been oxidized
-
-
?
additional information
?
-
enzyme cleaves cellulose, xyloglucan, reaction of lytic xyloglucan monooxogenase, mixed-linkage glucan and glucomannan. Oligosaccharides are cleaved using a C4-oxidizing mechanism, reaction of EC 1.14.99.56, whereas polysaccharides are cleaved with both C1- and C4-oxidizing mechanisms in varying proportions, reactions of EC 1.14.99.54 and EC 1.14.99.56
-
-
?
additional information
?
-
for isoforms LPMO9A, LPMO9B and LPMO9C, ascorbic acid is one of the best electron donors. Besides ascorbic acid, compounds bearing a 1,2-benzenediol moiety such as 3-methylcatechol, 3,4-dihydroxyphenylalanine, or a 1,2,3-benzenetriol moiety such as gallic acid, epigallocatechin-gallate give formation of oxidized and non-oxidized gluco-oligosaccharides. Sinapic acid actes as donor. No electron donor: quercetin or taxifolin, and tannic acid
-
-
?
additional information
?
-
no substrates: galactan, cellopentaose, or cellohexaose
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Frommhagen, M.; Koetsier, M.J.; Westphal, A.H.; Visser, J.; Hinz, S.W.; Vincken, J.P.; van Berkel, W.J.; Kabel, M.A.; Gruppen, H.
Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity
Biotechnol. Biofuels
9
186
2016
Thermothelomyces thermophilus (A0A1C9CXI0)
brenda
Beeson, W.; Phillips, C.; Cate, J.; Marletta, M.
Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases
J. Am. Chem. Soc.
134
890-892
2012
Neurospora crassa (Q7RWN7), Neurospora crassa DSM 1257 (Q7RWN7)
brenda
Vermaas, J.V.; Crowley, M.F.; Beckham, G.T.; Payne, C.M.
Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases
J. Phys. Chem. B
119
6129-6143
2015
Trichoderma reesei, Trichoderma reesei QM6a
brenda
Frandsen, K.E.; Simmons, T.J.; Dupree, P.; Poulsen, J.C.; Hemsworth, G.R.; Ciano, L.; Johnston, E.M.; Tovborg, M.; Johansen, K.S.; von Freiesleben, P.; Marmuse, L.; Fort, S.; Cottaz, S.; Driguez, H.; Henrissat, B.; Lenfant, N.; Tuna, F.; Baldansuren, A.; Davies, G.J.; Lo Leggio, L.; Walton, P.H.
The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases
Nat. Chem. Biol.
12
298-303
2016
Panus similis
brenda
Hedegard, E.; Ryde, U.
Multiscale modelling of lytic polysaccharide monooxygenases
ACS Omega
2
536-545
2017
Thermoascus aurantiacus (G3XAP7)
-
brenda
Breslmayr, E.; Hanzek, M.; Hanrahan, A.; Leitner, C.; Kittl, R.; Santek, B.; Oostenbrink, C.; Ludwig, R.
A fast and sensitive activity assay for lytic polysaccharide monooxygenase
Biotechnol. Biofuels
11
79
2018
Neurospora crassa
brenda
Rodrigues, K.; Macedo, J.; Teixeira, T.; Barros, J.; Araujo, A.; Santos, F.; Quirino, B.; Brasil, B.; Salum, T.; Abdelnur, P.; Favaro, L.
Recombinant expression of Thermobifida fusca E7 LPMO in Pichia pastoris and Escherichia coli and their functional characterization
Carbohydr. Res.
448
175-181
2017
Thermobifida fusca (Q47QG3)
brenda
Moellers, K.; Mikkelsen, H.; Simonsen, T.; Cannella, D.; Johansen, K.; Bjerrum, M.; Felby, C.
On the formation and role of reactive oxygen species in light-driven LPMO oxidation of phosphoric acid swollen cellulose
Carbohydr. Res.
448
182-186
2017
Thermothielavioides terrestris (D0VWZ9)
brenda
Pierce, B.; Agger, J.; Zhang, Z.; Wichmann, J.; Meyer, A.
A comparative study on the activity of fungal lytic polysaccharide monooxygenases for the depolymerization of cellulose in soybean spent flakes
Carbohydr. Res.
449
85-94
2017
Aspergillus terreus, Trichoderma reesei (O14405)
brenda
Haske-Cornelius, O.; Pellis, A.; Tegl, G.; Wurz, S.; Saake, B.; Ludwig, R.; Sebastian, A.; Nyanhongo, G.; Guebitz, G.
Enzymatic systems for cellulose acetate degradation
Catalysts
7
187
2017
Neurospora crassa
-
brenda
Pierce, B.; Agger, J.; Wichmann, J.; Meyer, A.
Oxidative cleavage and hydrolytic boosting of cellulose in soybean spent flakes by Trichoderma reesei Cel61A lytic polysaccharide monooxygenase
Enzyme Microb. Technol.
98
58-66
2017
Trichoderma reesei (O14405)
brenda
Nekiunaite, L.; Petrovic, D.M.; Westereng, B.; Vaaje-Kolstad, G.; Hachem, M.A.; Varnai, A.; Eijsink, V.G.
FgLPMO9A from Fusarium graminearum cleaves xyloglucan independently of the backbone substitution pattern
FEBS Lett.
590
3346-3356
2016
Fusarium graminearum (I1REU9), Fusarium graminearum ATCC MYA-4620 (I1REU9)
brenda
Forsberg, Z.; Bissaro, B.; Gullesen, J.; Dalhus, B.; Vaaje-Kolstad, G.; Eijsink, V.G.H.
Structural determinants of bacterial lytic polysaccharide monooxygenase functionality
J. Biol. Chem.
293
1397-1412
2018
Micromonospora aurantiaca (D9SZQ3), Streptomyces coelicolor (Q9RJC1), Streptomyces coelicolor ATCC BAA-471 (Q9RJC1), Micromonospora aurantiaca DSM 43813 (D9SZQ3)
brenda
Kracher, D.; Andlar, M.; Furtmueller, P.; Ludwig, R.
Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenase and reduces stability
J. Biol. Chem.
293
1676-1687
2018
Neurospora crassa
brenda
Hedegard, E.; Ryde, U.
Targeting the reactive intermediate in polysaccharide monooxygenases
J. Biol. Inorg. Chem.
22
1029-1037
2017
Panus similis (A0A0S2GKZ1)
brenda
Simmons, T.J.; Frandsen, K.E.H.; Ciano, L.; Tryfona, T.; Lenfant, N.; Poulsen, J.C.; Wilson, L.F.L.; Tandrup, T.; Tovborg, M.; Schnorr, K.; Johansen, K.S.; Henrissat, B.; Walton, P.H.; Lo Leggio, L.; Dupree, P.
Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates
Nat. Commun.
8
1064
2017
Achaetomiella virescens, Panus similis (A0A0S2GKZ1)
brenda
Eibinger, M.; Sattelkow, J.; Ganner, T.; Plank, H.; Nidetzky, B.
Single-molecule study of oxidative enzymatic deconstruction of cellulose
Nat. Commun.
8
894
2017
Neurospora crassa
brenda
Liu, B.; Olson, A.; Wu, M.; Broberg, A.; Sandgren, M.
Biochemical studies of two lytic polysaccharide monooxygenasesfrom the white-rot fungus Heterobasidion irregulare and their roles in lignocellulose degradation
PLoS ONE
12
e0189479
2017
Heterobasidion irregulare
brenda
Hu, J.; Tian, D.; Renneckar, S.; Saddler, J.
Enzyme mediated nanofibrillation of cellulose by the synergistic actions of an endoglucanase, lytic polysaccharide monooxygenase (LPMO) and xylanase
Sci. Rep.
8
3195
2018
Thermoascus aurantiacus
brenda