Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 5 of 5
EC Number General Information Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 3.5.1.48evolution the enzyme adopts the characteristic arginase-deacetylase fold and employ a Zn2+-activated water molecule for catalysis. The active sites of HDAC10 and APAH (acetylpolyamine amidohydrolase, EC 3.5.1.62) are sterically constricted to enforce specificity for long, slender polyamine substrates and exclude bulky peptides and proteins containing acetyl-L-lysine. The tertiary structure (a unique 310 helix defined by the P(E,A)CE motif) provides the steric constriction that directs the polyamine substrate specificity of HDAC10. Structure and catalytic mechanism of polyamine deacetylases, comparison of HDAC and APAH, overview 752780
Display the word mapDisplay the reaction diagram Show all sequences 3.5.1.48more nucleophilic attack of Zn2+-bound water at the amide carbonyl group polarized by Zn2+ and the catalytic tyrosine is facilitated by a general base. The Zn2+ ion, tyrosine, and tandem histidine residues contribute to transition state stabilization in each deacetylase. Collapse of the tetrahedral intermediate requires a proton donor, and the second histidine of the tandem pair must serve as the general acid due to its proximity to the leaving amino group. Structure-function analysis of substrate specificity, overview 752780
Display the word mapDisplay the reaction diagram Show all sequences 3.5.1.48physiological function cationic polyamines such as spermidine and spermine are critical in all forms of life, as they regulate the function of biological macromolecules. Intracellular polyamine metabolism is regulated by reversible acetylation and dysregulated polyamine metabolism is associated with neoplastic diseases such as colon cancer, prostate cancer and neuroblastoma. Both HDAC10 and its product spermidine are known to promote cellular survival through autophagy 754843
Display the word mapDisplay the reaction diagram Show all sequences 3.5.1.48physiological function Cationic polyamines such as spermidine and spermine are critical in all forms of life, as they regulate the function of biological macromolecules. Intracellular polyamine metabolism is regulated by reversible acetylation. Both HDAC10 and its product spermidine are known to promote cellular survival through autophagy 754843
Display the word mapDisplay the reaction diagram Show all sequences 3.5.1.48physiological function HDAC10 and spermidine act as mediators of autophagy 752780
Results 1 - 5 of 5