BRENDA - Enzyme Database
show all sequences of 2.4.1.46

Activation of the chloroplast monogalactosyldiacylglycerol synthase, MGD1, by phosphatidic acid and phosphatidylglycerol

Dubots, E.; Audry, M.; Yamaryo, Y.; Bastien, O.; Ohta, H.; Breton, C.; Marechal, E.; Block, M.A.; J. Biol. Chem. 285, 6003-6011 (2010)

Data extracted from this reference:

Activating Compound
Activating Compound
Commentary
Organism
Structure
phosphatidic acid
allosterically activates MGD1, half-maximal activation at about 0.2 mol%. With 0.15 mol% of phosphatidic acid, the enzyme velocity versus substrate curve is sigmoid, whereas with 1.5 mol% of phosphatidic acid, the curve is hyperbolic. MGDG synthase activity of leaf homogenates is dependent on the constant presence of phosphatidic acid, decrease of phosphatidic acid production leads to a decrease of the MGDG synthase activity. Molecular discrimination of phosphatidic acid and phosphatidylglycerol binding sites, overview
Arabidopsis thaliana
Cloned(Commentary)
Commentary
Organism
expression of wild-type and mutant C-terminally His6-tagged MGD1 in Escherichia coli
Arabidopsis thaliana
Engineering
Amino acid exchange
Commentary
Organism
D150N
the mutant shows enhanced activation by phosphatidylglycerol binding, but unaltered activation by phosphatidic acid compared to the wild-type enzyme
Arabidopsis thaliana
P189A
the mutant shows wild-type catalytic capability, but modified phosphatidylglycerol binding capability compared to the wild-type enzyme
Arabidopsis thaliana
R260A
the mutant shows enhanced activation by phosphatidylglycerol binding, but unaltered activation by phosphatidic acid compared to the wild-type enzyme
Arabidopsis thaliana
W287A
the mutant shows wild-type catalytic capability, but modified phosphatidylglycerol binding capability compared to the wild-type enzyme
Arabidopsis thaliana
Localization
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast envelope
-
Arabidopsis thaliana
9941
-
Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
additional information
Arabidopsis thaliana
regulation of MGDGsynthesis by phosphatidic acid, which is a general precursor in the synthesis of all glycerolipids and is also a signaling molecule in plants
?
-
-
-
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Arabidopsis thaliana
-
-
-
Purification (Commentary)
Commentary
Organism
recombinant wild-type and mutant C-terminally His6-tagged MGD1 from Escherichia coli by nickel affinity chromatography and gel filtration
Arabidopsis thaliana
Source Tissue
Source Tissue
Commentary
Organism
Textmining
rosette leaf
-
Arabidopsis thaliana
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
additional information
regulation of MGDGsynthesis by phosphatidic acid, which is a general precursor in the synthesis of all glycerolipids and is also a signaling molecule in plants
704698
Arabidopsis thaliana
?
-
-
-
-
additional information
binding site for UDP-Gal lays in the cleft separating the two Rossmann folds involving residues of a conserved UDP-sugar binding pocket in the C-domain
704698
Arabidopsis thaliana
?
-
-
-
-
Subunits
Subunits
Commentary
Organism
More
the structure model for an MGD monomer comprises 2 Rossman domains, C- and N-domains
Arabidopsis thaliana
pH Optimum
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7.8
-
assay at
Arabidopsis thaliana
Activating Compound (protein specific)
Activating Compound
Commentary
Organism
Structure
phosphatidic acid
allosterically activates MGD1, half-maximal activation at about 0.2 mol%. With 0.15 mol% of phosphatidic acid, the enzyme velocity versus substrate curve is sigmoid, whereas with 1.5 mol% of phosphatidic acid, the curve is hyperbolic. MGDG synthase activity of leaf homogenates is dependent on the constant presence of phosphatidic acid, decrease of phosphatidic acid production leads to a decrease of the MGDG synthase activity. Molecular discrimination of phosphatidic acid and phosphatidylglycerol binding sites, overview
Arabidopsis thaliana
Cloned(Commentary) (protein specific)
Commentary
Organism
expression of wild-type and mutant C-terminally His6-tagged MGD1 in Escherichia coli
Arabidopsis thaliana
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
D150N
the mutant shows enhanced activation by phosphatidylglycerol binding, but unaltered activation by phosphatidic acid compared to the wild-type enzyme
Arabidopsis thaliana
P189A
the mutant shows wild-type catalytic capability, but modified phosphatidylglycerol binding capability compared to the wild-type enzyme
Arabidopsis thaliana
R260A
the mutant shows enhanced activation by phosphatidylglycerol binding, but unaltered activation by phosphatidic acid compared to the wild-type enzyme
Arabidopsis thaliana
W287A
the mutant shows wild-type catalytic capability, but modified phosphatidylglycerol binding capability compared to the wild-type enzyme
Arabidopsis thaliana
Localization (protein specific)
Localization
Commentary
Organism
GeneOntology No.
Textmining
chloroplast envelope
-
Arabidopsis thaliana
9941
-
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
additional information
Arabidopsis thaliana
regulation of MGDGsynthesis by phosphatidic acid, which is a general precursor in the synthesis of all glycerolipids and is also a signaling molecule in plants
?
-
-
-
Purification (Commentary) (protein specific)
Commentary
Organism
recombinant wild-type and mutant C-terminally His6-tagged MGD1 from Escherichia coli by nickel affinity chromatography and gel filtration
Arabidopsis thaliana
Source Tissue (protein specific)
Source Tissue
Commentary
Organism
Textmining
rosette leaf
-
Arabidopsis thaliana
-
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
additional information
regulation of MGDGsynthesis by phosphatidic acid, which is a general precursor in the synthesis of all glycerolipids and is also a signaling molecule in plants
704698
Arabidopsis thaliana
?
-
-
-
-
additional information
binding site for UDP-Gal lays in the cleft separating the two Rossmann folds involving residues of a conserved UDP-sugar binding pocket in the C-domain
704698
Arabidopsis thaliana
?
-
-
-
-
Subunits (protein specific)
Subunits
Commentary
Organism
More
the structure model for an MGD monomer comprises 2 Rossman domains, C- and N-domains
Arabidopsis thaliana
pH Optimum (protein specific)
pH Optimum Minimum
pH Optimum Maximum
Commentary
Organism
7.8
-
assay at
Arabidopsis thaliana
General Information
General Information
Commentary
Organism
physiological function
MGD1 is the main MGDG synthase expressed in leaves and is essential for chloroplast development, and enrichment of chloroplast membranes with monogalactosyldiacylglycerols
Arabidopsis thaliana
General Information (protein specific)
General Information
Commentary
Organism
physiological function
MGD1 is the main MGDG synthase expressed in leaves and is essential for chloroplast development, and enrichment of chloroplast membranes with monogalactosyldiacylglycerols
Arabidopsis thaliana
Other publictions for EC 2.4.1.46
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [C]
Temperature Range [C]
Temperature Stability [C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [C] (protein specific)
Temperature Range [C] (protein specific)
Temperature Stability [C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
737005
Rocha
Structural insights and membra ...
Arabidopsis thaliana
Plant J.
85
622-633
2016
-
-
-
1
-
-
-
-
1
-
-
1
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
1
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
733407
Yuzawa
Cyanobacterial monogalactosyld ...
Arabidopsis thaliana
Biochim. Biophys. Acta
1841
475-483
2014
-
-
1
-
-
-
-
-
-
-
-
1
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
735136
Selao
Subcellular localization of mo ...
Synechocystis sp.
PLoS ONE
9
e88153
2014
2
-
1
-
-
-
2
-
2
-
-
1
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
2
-
1
-
-
-
-
-
2
-
-
2
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
736154
Murakawa
Monogalactosyldiacylglycerol s ...
Arabidopsis thaliana
Front. Plant Sci.
5
280
2014
-
-
-
-
-
-
-
-
1
-
1
1
-
4
-
-
-
-
-
2
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
1
-
-
-
-
-
2
-
-
1
1
-
-
-
-
-
-
-
-
1
1
1
1
-
-
737025
Wang
Maintenance of chloroplast str ...
Oryza sativa
Plant Physiol.
165
1144-1155
2014
-
-
1
-
-
-
-
-
3
-
1
1
-
6
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
3
-
1
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
1
1
-
-
-
737027
Fujii
Inducible knockdown of monogal ...
Arabidopsis thaliana
Plant Physiol.
166
1436-1449
2014
-
-
-
-
-
-
1
-
2
-
-
1
-
4
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
2
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
2
2
-
-
-
736153
Shimojima
Differential regulation of two ...
Sesamum indicum, Sesamum indicum 4294
Front. Plant Sci.
4
469
2013
1
-
1
-
-
-
-
-
2
-
-
4
-
11
2
-
1
-
-
1
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
3
-
-
4
-
2
-
2
-
2
-
-
4
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
720517
Botte
Chemical inhibitors of monogal ...
Arabidopsis thaliana
Nat. Chem. Biol.
7
834-842
2011
-
-
1
-
-
-
2
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
2
-
-
1
-
-
-
-
2
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
720683
Myers
Maize opaque5 encodes monogala ...
Zea mays
Plant Cell
23
2331-2347
2011
-
-
-
-
3
-
-
-
2
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
720684
Masuda
A monogalactosyldiacylglycerol ...
Chlorobaculum tepidum
Plant Cell
23
2644-2658
2011
-
-
1
-
-
-
-
1
1
-
-
-
-
5
-
-
1
-
-
-
2
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
1
-
-
2
-
2
-
-
-
-
-
-
-
-
-
-
1
1
-
-
-
704698
Dubots
Activation of the chloroplast ...
Arabidopsis thaliana
J. Biol. Chem.
285
6003-6011
2010
1
-
1
-
4
-
-
-
1
-
-
1
-
1
-
-
1
-
-
1
-
-
2
1
-
-
-
-
1
-
-
-
-
-
-
1
-
1
-
-
4
-
-
-
-
-
1
-
-
1
-
-
-
1
-
1
-
-
2
1
-
-
-
-
1
-
-
-
-
1
1
-
-
-
706272
Kobayashi
Type A and type B monogalactos ...
Arabidopsis thaliana, Cucumis sp.
Plant Physiol. Biochem.
47
518-525
2009
-
-
-
-
1
-
-
-
3
-
2
-
-
7
-
-
2
-
-
5
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
5
-
4
-
-
-
-
4
-
10
-
-
-
4
-
-
-
-
-
-
-
-
3
3
7
6
-
-
689552
Kobayashi
Type B monogalactosyldiacylgly ...
Arabidopsis thaliana
Plant J.
57
322-331
2008
-
-
-
-
1
-
-
-
1
-
-
1
-
4
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
706353
Aronsson
The galactolipid monogalactosy ...
Arabidopsis thaliana
Plant Signal. Behav.
3
1093-1095
2008
-
-
-
-
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
1
1
1
-
-
686671
Vojta
Protein transport in chloropla ...
Arabidopsis thaliana
FEBS J.
274
5043-5054
2007
-
-
-
-
-
-
-
-
2
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
689762
Kobayashi
Galactolipid synthesis in chlo ...
Arabidopsis thaliana
Proc. Natl. Acad. Sci. USA
104
17216-17221
2007
-
-
-
-
1
-
-
-
2
-
-
1
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
2
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
673660
Yamaryo
In vitro reconstitution of mon ...
Cucumis sativus
FEBS Lett.
580
4086-4090
2006
1
-
1
-
-
-
-
-
1
-
-
1
-
4
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
659496
Botte
Molecular modelling and site d ...
Spinacia oleracea
J. Biol. Chem.
280
34691-34701
2005
-
-
-
-
-
-
-
-
1
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660238
Kobayashi
Arabidopsis type B monogalacto ...
Arabidopsis sp., Arabidopsis thaliana
Plant Physiol.
134
640-648
2004
-
-
-
-
-
-
-
-
1
-
-
3
-
4
-
-
-
-
-
4
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
3
-
-
-
-
-
4
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
660142
Yamaryo
Light and cytokinin play a co- ...
Cucumis sativus
Plant Cell Physiol.
44
844-855
2003
-
-
-
-
-
-
-
-
1
-
-
1
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489238
Marechal
The multigenic family of monog ...
Arabidopsis thaliana, Cucumis sativus, Pisum sativum, Spinacia oleracea
Biochem. Soc. Trans.
28
732-738
2000
-
-
1
-
-
-
-
-
4
-
3
6
-
7
-
-
-
-
-
3
-
-
18
1
-
-
-
-
3
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
6
-
3
6
-
-
-
-
-
5
-
-
18
3
-
-
-
-
3
-
-
-
-
-
-
-
-
-
489239
Jarvis
Galactolipid deficiency and ab ...
Arabidopsis thaliana
Proc. Natl. Acad. Sci. USA
97
8175-8179
2000
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489237
Miege
Biochemical and topological pr ...
Spinacia oleracea
Eur. J. Biochem.
265
990-1001
1999
-
-
1
-
-
-
1
-
2
-
3
-
-
3
-
-
-
-
-
1
-
-
1
1
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
2
-
3
-
-
-
-
-
-
1
-
-
1
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
489236
Tietje
-
Uridine-diphospho-sulfoquinovo ...
Pisum sativum, Spinacia oleracea
Planta
206
72-78
1998
-
-
-
-
-
-
-
-
2
-
-
-
-
2
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489234
Ohta
-
A close relationship between i ...
Cucumis sativus
Plant Cell Physiol.
36
1115-1120
1995
1
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489235
Marechal
The catalytic site of monogala ...
Spinacia oleracea
J. Biol. Chem.
270
5714-5722
1995
-
-
-
-
-
1
5
-
3
-
-
-
-
2
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
5
2
-
3
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489232
Marechal
Comparison of the kinetic prop ...
Spinacia oleracea
FEBS Lett.
352
307-310
1994
-
-
-
-
-
-
-
3
4
-
-
-
-
2
-
-
-
-
-
1
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
4
-
-
-
-
-
-
-
-
1
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489233
Marechal
Kinetic properties of monogala ...
Spinacia oleracea
J. Biol. Chem.
269
5788-5798
1994
-
-
-
-
-
-
-
3
3
-
-
-
-
2
-
-
1
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
3
3
-
-
-
-
-
-
1
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489228
Teucher
Purification of UDP-galactose: ...
Spinacia oleracea
Planta
184
319-326
1991
1
-
-
-
-
-
2
-
1
-
1
-
-
1
-
-
1
-
-
1
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
2
-
-
1
-
1
-
-
-
-
1
-
1
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489231
Coves
Lipid requirement and kinetic ...
Spinacia oleracea
Proc. Natl. Acad. Sci. USA
85
4966-4970
1988
4
-
-
-
-
-
1
2
3
-
-
1
-
2
-
-
1
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
1
-
-
4
-
-
-
-
-
-
-
1
1
2
3
-
-
1
-
-
-
1
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
488813
Heemskerk
-
Characterization of galactosyl ...
Spinacia oleracea
Biochim. Biophys. Acta
918
189-203
1987
-
-
-
-
-
-
6
1
1
3
-
-
-
1
-
-
-
-
-
-
-
-
3
-
2
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
6
-
1
1
3
-
-
-
-
-
-
-
-
-
-
3
-
2
-
-
-
1
1
-
-
-
-
-
-
-
-
489230
Coves
-
Solubilization and partial pur ...
Spinacia oleracea
FEBS Lett.
208
401-406
1986
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
489227
Veerkamp
Biochemical changes in Bifidob ...
Bifidobacterium bifidum
Biochim. Biophys. Acta
348
23-34
1974
3
-
-
-
-
-
1
1
1
8
-
-
-
1
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
3
-
-
-
-
-
-
-
1
-
1
1
8
-
-
-
-
-
-
-
-
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
489226
Wenger
The metabolism of glyceride gl ...
Rattus norvegicus
Biochemistry
7
3700-3707
1968
-
-
-
-
-
-
-
-
1
1
-
1
-
1
-
-
-
-
-
1
-
-
10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
1
-
-
10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-