Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
(1E)-prop-1-en-1-ylbenzene + FADH2 + O2
(2R,3S)-2-methyl-3-phenyloxirane + FAD + H2O
(2E)-3-phenylprop-2-en-1-ol + FADH2 + O2
(3-phenyloxiran-2-yl)methanol + 1-phenylpropane-1,2,3-triol + FAD + H2O
(2E)-3-phenylprop-2-en-1-yl acetate + FADH2 + O2
(3-phenyloxiran-2-yl)methyl acetate + 2,3-dihydroxy-3-phenylpropyl acetate + FAD + H2O
1,2-dihydronaphthalene + FADH2 + O2
(1R,2R)-1,2,3,4-tetrahydronaphthalene-1,2-diol + FAD + H2O
1,2-dihydronaphthalene + FADH2 + O2
(1R,2R)-1,2-dihydronaphthalene-1,2-diol + FAD + H2O
1-methylindole + FADH2 + O2
1-methyl-1,2-dihydro-3H-indol-3-one + FAD + H2O
-
-
-
?
1-methylindole-5-carboxylate + FADH2 + O2
1-methyl-3-oxo-2,3-dihydro-1H-indole-5-carboxylic acid + FAD + H2O
-
-
-
?
1H-indene + FADH2 + O2
(1aS,6aR)-6,6a-dihydro-1aH-indeno[1,2-b]oxirene + FAD + H2O
2-bromothioanisole + FADH2 + O2
?
2-chlorostyrene + FADH2 + O2
(2S)-2-(2-chlorophenyl)oxirane + FAD + H2O
2-chlorostyrene + FADH2 + O2
?
2-chlorothioanisole + FADH2 + O2
?
2-ethenylpyridine + FADH2 + O2
2-(oxiran-2-yl)pyridine + FAD + H2O
-
-
-
-
?
2-ethylstyrene + FADH2 + O2
(S)-2-ethyl-2-phenyloxirane + FAD + H2O
2-methylbenzo[b]thiophene + FADH2 + O2
?
2-methylhex-1-ene + FADH2 + O2
(S)-1,2-epoxy-2-methylhexane + FAD + H2O
-
-
-
?
2-methylstyrene + FADH2 + O2
(S)-2-methyl-2-phenyloxirane + FAD + H2O
2-methylthioanisole + FADH2 + O2
?
3-chlorostyrene + FADH2 + O2
(2S)-2-(3-chlorophenyl)oxirane + FAD + H2O
3-chlorostyrene + FADH2 + O2
?
3-methylstyrene + FADH2 + O2
(2S)-2-(3-methylphenyl)oxirane + FAD + H2O
-
-
-
-
?
4-bromostyrene + FADH2 + O2
(2S)-2-(4-bromophenyl)oxirane + FAD + H2O
-
-
-
-
?
4-bromostyrene + FADH2 + O2
?
-
-
-
?
4-bromothioanisole + FADH2 + O2
?
-
-
-
-
?
4-chlorostyrene + FADH2 + O2
(2S)-2-(4-chlorophenyl)oxirane + FAD + H2O
4-chlorostyrene + FADH2 + O2
?
4-chlorothioanisole + FADH2 + O2
?
-
-
-
-
?
4-ethenylpyridine + FADH2 + O2
4-(oxiran-2-yl)pyridine + FAD + H2O
-
-
-
-
?
4-fluorostyrene + FADH2 + O2
(2S)-2-(4-fluorophenyl)oxirane + FAD + H2O
-
-
-
-
?
4-fluorostyrene + FADH2 + O2
?
-
-
-
?
4-methoxyindole + FADH2 + O2
4-methoxy-1,2-dihydro-3H-indol-3-one + FAD + H2O
-
-
-
?
4-methylstyrene + FADH2 + O2
(2S)-2-(4-methylphenyl)oxirane + FAD + H2O
-
-
-
-
?
4-methylstyrene + FADH2 + O2
? + FAD + H2O
-
-
-
?
4-methylthioanisole + FADH2 + O2
?
-
-
-
-
?
5-methoxyindole + FADH2 + O2
5-methoxy-1,2-dihydro-3H-indol-3-one + FAD + H2O
-
-
-
?
6-bromohex-1-ene + FADH2 + O2
(S)-1,2-epoxy-6-bromohexane + FAD + H2O
-
-
-
?
6-bromoindole + FADH2 + O2
6-bromo-1,2-dihydro-3H-indol-3-one + FAD + H2O
-
-
-
?
6-chlorohex-1-ene + FADH2 + O2
(S)-1,2-epoxy-6-chlorohexane + FAD + H2O
-
-
-
?
6-chloroindole + FADH2 + O2
6-chloro-1,2-dihydro-3H-indol-3-one + FAD + H2O
-
-
-
?
6-methoxyindole + FADH2 + O2
6-methoxy-1,2-dihydro-3H-indol-3-one + FAD + H2O
-
-
-
?
7-azaindole + FADH2 + O2
1,2-dihydro-3H-pyrrolo[2,3-b]pyridin-3-one + FAD + H2O
-
-
-
?
7-methoxyindole + FADH2 + O2
7-methoxy-1,2-dihydro-3H-indol-3-one + FAD + H2O
-
-
-
?
allylbenzene + FADH2 + O2
?
-
-
-
?
benzo[b]thiophene + FADH2 + O2
benzo[b]thiophene sulfoxide + FAD + H2O
-
-
-
-
?
hept-1-ene + FADH2 + O2
(S)-1,2-epoxy-2-methylhexane + FAD + H2O
-
-
-
?
indene + FADH2 + O2
(1S,2R)-indene oxide + FAD + H2O
indene + FADH2 + O2
indene 2,3-oxide + FAD + H2O
-
-
-
-
?
indole + FADH2 + O2
1,2-dihydro-3H-indol-3-one + FAD + H2O
-
-
-
?
indole + FADH2 + O2
?
-
-
-
?
indole + FADH2 + O2
indole 2,3-oxide + FAD + H2O
-
-
-
-
?
methyl (2E)-3-phenylprop-2-enoate + FADH2 + O2
methyl 3-phenyloxirane-2-carboxylate + methyl 2,3-dihydroxy-3-phenylpropanoate + FAD + H2O
-
-
-
-
?
naphthalene + FADH2 + O2
(1R,2R)-1,2-dihydronaphthalene-1,2-diol + FAD + H2O
-
-
trace amount
-
?
phenyl vinyl sulfide + FADH2 + O2
(S)-phenyl vinyl sulfoxide + FAD + H2O
prop-1-en-2-ylbenzene + FADH2 + O2
2-phenylpropane-1,2-diol + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
styrene + FADH2 + O2
(S)-7,8-styrene oxide + FAD + H2O
styrene + FADH2 + O2
(S)-styrene oxide + FAD + H2O
styrene + FADH2 + O2
styrene oxide + FAD + H2O
thioanisole + FADH2 + O2
?
-
best substrate
-
-
?
additional information
?
-
(1E)-prop-1-en-1-ylbenzene + FADH2 + O2

(2R,3S)-2-methyl-3-phenyloxirane + FAD + H2O
-
-
-
-
?
(1E)-prop-1-en-1-ylbenzene + FADH2 + O2
(2R,3S)-2-methyl-3-phenyloxirane + FAD + H2O
-
-
-
-
?
(2E)-3-phenylprop-2-en-1-ol + FADH2 + O2

(3-phenyloxiran-2-yl)methanol + 1-phenylpropane-1,2,3-triol + FAD + H2O
-
-
-
-
?
(2E)-3-phenylprop-2-en-1-ol + FADH2 + O2
(3-phenyloxiran-2-yl)methanol + 1-phenylpropane-1,2,3-triol + FAD + H2O
-
-
-
-
?
(2E)-3-phenylprop-2-en-1-yl acetate + FADH2 + O2

(3-phenyloxiran-2-yl)methyl acetate + 2,3-dihydroxy-3-phenylpropyl acetate + FAD + H2O
-
-
-
-
?
(2E)-3-phenylprop-2-en-1-yl acetate + FADH2 + O2
(3-phenyloxiran-2-yl)methyl acetate + 2,3-dihydroxy-3-phenylpropyl acetate + FAD + H2O
-
-
-
-
?
1,2-dihydronaphthalene + FADH2 + O2

(1R,2R)-1,2,3,4-tetrahydronaphthalene-1,2-diol + FAD + H2O
-
-
-
-
?
1,2-dihydronaphthalene + FADH2 + O2
(1R,2R)-1,2,3,4-tetrahydronaphthalene-1,2-diol + FAD + H2O
-
-
-
-
?
1,2-dihydronaphthalene + FADH2 + O2

(1R,2R)-1,2-dihydronaphthalene-1,2-diol + FAD + H2O
-
-
-
-
?
1,2-dihydronaphthalene + FADH2 + O2
(1R,2R)-1,2-dihydronaphthalene-1,2-diol + FAD + H2O
-
-
-
-
?
1-hexene + FADH2 + O2

?
-
-
-
?
1-hexene + FADH2 + O2
?
highest activity
-
-
?
1-hexene + FADH2 + O2
?
-
-
-
?
1-octene + FADH2 + O2

?
-
-
-
?
1-octene + FADH2 + O2
?
-
-
-
?
1H-indene + FADH2 + O2

(1aS,6aR)-6,6a-dihydro-1aH-indeno[1,2-b]oxirene + FAD + H2O
-
-
-
-
?
1H-indene + FADH2 + O2
(1aS,6aR)-6,6a-dihydro-1aH-indeno[1,2-b]oxirene + FAD + H2O
-
-
-
-
?
2-bromothioanisole + FADH2 + O2

?
-
-
-
-
?
2-bromothioanisole + FADH2 + O2
?
-
-
-
-
?
2-chlorostyrene + FADH2 + O2

(2S)-2-(2-chlorophenyl)oxirane + FAD + H2O
-
-
-
?
2-chlorostyrene + FADH2 + O2
(2S)-2-(2-chlorophenyl)oxirane + FAD + H2O
-
-
-
?
2-chlorostyrene + FADH2 + O2
(2S)-2-(2-chlorophenyl)oxirane + FAD + H2O
2-chloro-(S)-styrene oxide is formed with 94% enantiomeric excess
-
-
?
2-chlorostyrene + FADH2 + O2

?
-
-
-
?
2-chlorostyrene + FADH2 + O2
?
-
-
-
?
2-chlorothioanisole + FADH2 + O2

?
-
-
-
-
?
2-chlorothioanisole + FADH2 + O2
?
-
-
-
-
?
2-ethylstyrene + FADH2 + O2

(S)-2-ethyl-2-phenyloxirane + FAD + H2O
about 30% of the activity with styrene
-
-
?
2-ethylstyrene + FADH2 + O2
(S)-2-ethyl-2-phenyloxirane + FAD + H2O
about 30% of the activity with styrene
-
-
?
2-methylbenzo[b]thiophene + FADH2 + O2

?
-
worst substrate
-
-
?
2-methylbenzo[b]thiophene + FADH2 + O2
?
-
worst substrate
-
-
?
2-methylstyrene + FADH2 + O2

(S)-2-methyl-2-phenyloxirane + FAD + H2O
about 70% of the activity with styrene
-
-
?
2-methylstyrene + FADH2 + O2
(S)-2-methyl-2-phenyloxirane + FAD + H2O
about 70% of the activity with styrene
-
-
?
2-methylthioanisole + FADH2 + O2

?
-
-
-
-
?
2-methylthioanisole + FADH2 + O2
?
-
-
-
-
?
3-chlorostyrene + FADH2 + O2

(2S)-2-(3-chlorophenyl)oxirane + FAD + H2O
-
-
-
-
?
3-chlorostyrene + FADH2 + O2
(2S)-2-(3-chlorophenyl)oxirane + FAD + H2O
-
-
-
?
3-chlorostyrene + FADH2 + O2
(2S)-2-(3-chlorophenyl)oxirane + FAD + H2O
-
-
-
?
3-chlorostyrene + FADH2 + O2
(2S)-2-(3-chlorophenyl)oxirane + FAD + H2O
2-chloro-(S)-styrene oxide is formed with more than 99% enantiomeric excess
-
-
?
3-chlorostyrene + FADH2 + O2

?
-
-
-
?
3-chlorostyrene + FADH2 + O2
?
-
-
-
?
4-chlorostyrene + FADH2 + O2

(2S)-2-(4-chlorophenyl)oxirane + FAD + H2O
-
-
-
-
?
4-chlorostyrene + FADH2 + O2
(2S)-2-(4-chlorophenyl)oxirane + FAD + H2O
-
-
-
?
4-chlorostyrene + FADH2 + O2
(2S)-2-(4-chlorophenyl)oxirane + FAD + H2O
-
-
-
?
4-chlorostyrene + FADH2 + O2
(2S)-2-(4-chlorophenyl)oxirane + FAD + H2O
2-chloro-(S)-styrene oxide is formed with more than 99% enantiomeric excess
-
-
?
4-chlorostyrene + FADH2 + O2

?
-
-
-
?
4-chlorostyrene + FADH2 + O2
?
highest activity
-
-
?
indene + FADH2 + O2

(1S,2R)-indene oxide + FAD + H2O
the average yield of indene oxide is 90%
-
-
?
indene + FADH2 + O2
(1S,2R)-indene oxide + FAD + H2O
the average yield of indene oxide is 90%
-
-
?
phenyl vinyl sulfide + FADH2 + O2

(S)-phenyl vinyl sulfoxide + FAD + H2O
-
-
-
?
phenyl vinyl sulfide + FADH2 + O2
(S)-phenyl vinyl sulfoxide + FAD + H2O
-
-
-
?
styrene + FADH2 + O2

(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
coupling of NADH and styrene oxidation can be best explained by a model, which includes both the direct transfer and passive diffusion of reduced FAD from NADH-specific flavin reductase (SMOB) to FAD-specific styrene epoxidase (SMOA)
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
mechanism: molecular oxygen first reacts with NSMOA(FADred) to yield an FAD C(4a)-peroxide intermediate. This species is nonfluorescent and has an absorbance maximum of 382 nm. Styrene then reacts with the peroxide intermediate to yield a fluorescent intermediate (FAD C(4a)-hydroxide) with an absorbance maximum of 368 nm
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
preferred reaction order in which flavin reduction and reaction with oxygen precede the binding of styrene
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
the average yield of styrene oxide is 65%
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
the average yield of styrene oxide is 65%
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
coupling of NADH and styrene oxidation can be best explained by a model, which includes both the direct transfer and passive diffusion of reduced FAD from NADH-specific flavin reductase (SMOB) to FAD-specific styrene epoxidase (SMOA)
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
preferred reaction order in which flavin reduction and reaction with oxygen precede the binding of styrene
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
the epoxidation of the vinyl side chain of styrene catalyzed by a monooxygenase is the initial reaction in one microbial aerobic styrene degradation pathway
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
(S)-styrene oxide is produced with an enantiomeric excess of more than 99%
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
FADH2-dependent monooxygenase (in this case StyA) can be regenerated directly by means of non-native redox catalysts such as [Cp*Rh(bpy)-(H2O)]2+. This cell-free chemoenzymatic approach can be used for the production of enantiopure epoxides via asymmetric synthesis
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
production of (S)-styrene oxide in an enantiomeric excess larger than 99%
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
production of (S)-styrene oxide with 98.5% enantiomeric excess. Direct electrochemical regeneration of FADH2 to substitute for the complex native regeneration cycle including StyB and NADH
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
styrene is exclusively converted to S-styrene oxide. During the epoxidation reaction, no formation of a complex of StyA and StyB is observed, suggesting that electron transport between reductase and oxygenase occurs via a diffusing flavin. StyA activity was strongly influenced by the amount of StyB added. No epoxidation activity is observed for the StyAB system when FAD is replaced by FMN or riboflavin
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
(S)-styrene oxide is produced with an enantiomeric excess of more than 99%
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
production of (S)-styrene oxide in an enantiomeric excess larger than 99%
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
FADH2-dependent monooxygenase (in this case StyA) can be regenerated directly by means of non-native redox catalysts such as [Cp*Rh(bpy)-(H2O)]2+. This cell-free chemoenzymatic approach can be used for the production of enantiopure epoxides via asymmetric synthesis
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
production of (S)-styrene oxide with 98.5% enantiomeric excess. Direct electrochemical regeneration of FADH2 to substitute for the complex native regeneration cycle including StyB and NADH
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
the epoxidation of the vinyl side chain of styrene catalyzed by a monooxygenase is the initial reaction in one microbial aerobic styrene degradation pathway
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
styrene is exclusively converted to S-styrene oxide. During the epoxidation reaction, no formation of a complex of StyA and StyB is observed, suggesting that electron transport between reductase and oxygenase occurs via a diffusing flavin. StyA activity was strongly influenced by the amount of StyB added. No epoxidation activity is observed for the StyAB system when FAD is replaced by FMN or riboflavin
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
StyA1 is not active with free FADH2 and recognizes StyA2B as its natural partner. FADH2-induced activation of StyA1 requires interprotein communication with StyA2B. StyA1/StyA2B is a member of the family of two-component flavin-dependent monooxygenases. StyA1 is the major monooxygenase, and StyA2B functions mainly as a FAD reductase with little oxygenating side activity
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
StyA1 is not active with free FADH2 and recognizes StyA2B as its natural partner. FADH2-induced activation of StyA1 requires interprotein communication with StyA2B. StyA1/StyA2B is a member of the family of two-component flavin-dependent monooxygenases. StyA1 is the major monooxygenase, and StyA2B functions mainly as a FAD reductase with little oxygenating side activity
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-2-phenyloxirane + FAD + H2O
(S)-styrene oxide is formed with more than 99% enantiomeric excess
-
-
?
styrene + FADH2 + O2

(S)-7,8-styrene oxide + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-7,8-styrene oxide + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2

(S)-styrene oxide + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-styrene oxide + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-styrene oxide + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-styrene oxide + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
(S)-styrene oxide + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-styrene oxide + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-styrene oxide + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-styrene oxide + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-styrene oxide + FAD + H2O
-
-
-
?
styrene + FADH2 + O2
(S)-styrene oxide + FAD + H2O
-
-
-
?
styrene + FADH2 + O2

styrene oxide + FAD + H2O
-
-
-
-
?
styrene + FADH2 + O2
styrene oxide + FAD + H2O
-
-
-
-
?
additional information

?
-
-
the enzyme is not able to convert styrene oxide
-
-
?
additional information
?
-
-
the enzyme is not able to convert styrene oxide
-
-
?
additional information
?
-
-
no product with 2H-chromen-2-one
-
-
?
additional information
?
-
-
no product with 2H-chromen-2-one
-
-
?
additional information
?
-
-
feasibility of direct electrochemical regeneration of a flavin-dependent monooxygenase for catalysis. Driven only by electrical power, optically pure epoxides are synthesized from corresponding vinyl aromatic compounds. The complicated native enzyme system consisting of three enzymes (StyA, StyB, and an NADH regenerating enzyme) and two cofactors (NADH and FAD) is minimized to the oxygenase component and its flavin prosthetic group
-
-
?
additional information
?
-
-
the wild-type enzyme catalyzes the epoxidation of p-, alpha-, and beta-methylstyrene, 1,2-dihydronaphthalene, methyl phenyl sulfide, and 3-chlorostyrene at rates comparable to those achieved with the recombinant form of the enzyme
-
-
?
additional information
?
-
-
the enzyme is not able to convert styrene oxide
-
-
?
additional information
?
-
-
feasibility of direct electrochemical regeneration of a flavin-dependent monooxygenase for catalysis. Driven only by electrical power, optically pure epoxides are synthesized from corresponding vinyl aromatic compounds. The complicated native enzyme system consisting of three enzymes (StyA, StyB, and an NADH regenerating enzyme) and two cofactors (NADH and FAD) is minimized to the oxygenase component and its flavin prosthetic group
-
-
?
additional information
?
-
-
the wild-type enzyme catalyzes the epoxidation of p-, alpha-, and beta-methylstyrene, 1,2-dihydronaphthalene, methyl phenyl sulfide, and 3-chlorostyrene at rates comparable to those achieved with the recombinant form of the enzyme
-
-
?
additional information
?
-
-
the enzyme is not able to convert styrene oxide
-
-
?
additional information
?
-
upon reaction in an organic solvent-water biphasic reaction system, the highest production level (246.5 mM) is achieved for 6-chloro-1-hexene, followed by styrene, 6-bromo-1-hexene, 2-methyl-1-hexene, 1-heptene, and 5-hexenenitrile in decreasing order
-
-
?
additional information
?
-
the enzyme also catalyzes sulfoxidation of aromatic sulfides
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.