Any feedback?
Please rate this page
(enzyme.php)
(0/150)

BRENDA support

Reference on EC 2.4.1.7 - sucrose phosphorylase

Please use the Reference Search for a specific query.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
REF.
AUTHORS
TITLE
JOURNAL
VOL.
PAGES
YEAR
ORGANISM (UNIPROT)
PUBMED ID
SOURCE
Arguello-Morales, M.A.; Remaud-Simeon, M.; Pizzut, S.; Sarcabal, P.; Willemot, R.M.; Monsan, P.
Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355
FEMS Microbiol. Lett.
182
81-85
2000
Leuconostoc mesenteroides NRRL B-1355, Escherichia coli
Automatic Mining of ENzyme DAta
Doudoroff, M.
Disaccharide phosphorylases
The Enzymes, 2nd. Ed. (Boyer, P. D. , Lardy, H. , Myrbaeck, K. , eds. )
5
229-236
1961
Leuconostoc mesenteroides, Shewanella putrefaciens, Pelomonas saccharophila
-
Manually annotated by BRENDA team
Silverstein, R.; Voet, J.; Reed, D.; Abeles, R.H.
Purification and mechanism of action of sucrose phosphorylase
J. Biol. Chem.
242
1338-1346
1967
Pelomonas saccharophila
Manually annotated by BRENDA team
Mieyal, J.J.; Simon, M.; Abeles, R.H.
Mechanism of action of sucrose phosphorylase. III. The reaction with water and other alcohols
J. Biol. Chem.
247
532-542
1972
Pelomonas saccharophila
Manually annotated by BRENDA team
Taylor, F.; Chen, L.; Gong, C.S.; Tsao, G.T.
Kinetics of immobilized sucrose phosphorylase
Biotechnol. Bioeng.
24
317-328
1982
Pelomonas saccharophila
Manually annotated by BRENDA team
Koga, T.; Nakamura, K.; Shirokane, Y.; Mizusawa, K.; Kitao, S.; Kikuchi, M.
Purification and some properties of sucrose phosphorylase from Leuconostoc mesenteroides
Agric. Biol. Chem.
55
1805-1810
1991
BRENDA: Leuconostoc mesenteroides
Textmining: Streptococcus mutans
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Kitao, S.; Sekine, H.
Transglucosylation catalyzed by sucrose phosphorylase from Leuconostoc mesenteroides and production of glycosyl-xylitol
Biosci. Biotechnol. Biochem.
56
2011-2014
1992
Leuconostoc mesenteroides
-
Manually annotated by BRENDA team
Kitao, S.; Nakano, E.
Cloning of the sucrose phosphorylase gene from Leuconostoc mesenteroides and its overexpression using a 'sleeper' bacteriophage vector
J. Ferment. Bioeng.
73
179-184
1992
Leuconostoc mesenteroides
-
Manually annotated by BRENDA team
Kitao, S.; Ariga, T.; Matsudo, T.; Sekine, H.
The syntheses of catechin-glucosides by transglycosylation with Leuconostoc mesenteroides sucrose phosphorylase
Biosci. Biotechnol. Biochem.
57
2010-2015
1993
Leuconostoc mesenteroides
-
Manually annotated by BRENDA team
Kitao, S.; Sekine, H.
Syntheses of two kojic acid glucosides with sucrose phosphorylase from Leuconostoc mesenteroides
Biosci. Biotechnol. Biochem.
58
419-420
1994
Leuconostoc mesenteroides
-
Manually annotated by BRENDA team
Ichikawa, M.; Schnaar, R.L.; Ichikawa, Y.
Application of sucrose phosphorylase reaction in one-pot enzymic galactosylation: scavenger of phosphate and generation of glucose 1-phosphate in situ
Tetrahedron Lett.
36
8731-8732
1995
Pelomonas saccharophila
-
Manually annotated by BRENDA team
Kawasaki, H.; Nakamura, N.; Ohmori, M.; Amari, K.; Sakai, T.
Screening for bacteria producing sucrose phosphorylase and characterization of the enzymes
Biosci. Biotechnol. Biochem.
60
319-321
1996
BRENDA: Leuconostoc mesenteroides, Leuconostoc mesenteroides AKU 1102
Textmining: Bacteria, Leuconostoc mesenteroides subsp. mesenteroides
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Tonouchi, N.; Horinouchi, S.; Tsuchida, T.; Yoshinaga, F.
Increased cellulose production from sucrose by Acetobacter after introducing the sucrose phosphorylase gene
Biosci. Biotechnol. Biochem.
62
1778-1780
1998
Leuconostoc mesenteroides
Manually annotated by BRENDA team
Kitao, S.; Matsudo, T.; Sasaki, T.; Koga, T.; Kawamura, M.
Enzymatic synthesis of stable, odorless, and powdered furanone glucosides by sucrose phosphorylase
Biosci. Biotechnol. Biochem.
64
134-141
2000
BRENDA: Leuconostoc mesenteroides
Textmining: Ananas comosus, Suidae
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
van den Broek, L.A.; van Boxtel, E.L.; Kievit, R.P.; Verhoef, R.; Beldman, G.; Voragen, A.G.
Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083
Appl. Microbiol. Biotechnol.
65
219-227
2004
BRENDA: Bifidobacterium adolescentis (Q84HQ2), Bifidobacterium adolescentis
Textmining: Escherichia coli, plasmids
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Sprogoe, D.; van den Broek, L.A.; Mirza, O.; Kastrup, J.S.; Voragen, A.G.; Gajhede, M.; Skov, L.K.
Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis
Biochemistry
43
1156-1162
2004
Bifidobacterium adolescentis (Q84HQ2), Bifidobacterium adolescentis
Manually annotated by BRENDA team
Kim, M.; Kwon, T.; Lee, H.J.; Kim, K.H.; Chung, D.K.; Ji, G.E.; Byeon, E.S.; Lee, J.H.
Cloning and expression of sucrose phosphorylase gene from Bifidobacterium longum in E. coli and characterization of the recombinant enzyme
Biotechnol. Lett.
25
1211-1217
2003
BRENDA: Bifidobacterium longum
Textmining: Escherichia coli
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Schwarz, A.; Goedl, C.; Minani, A.; Nidetzky, B.
Trehalose phosphorylase from Pleurotus ostreatus: characterization and stabilization by covalent modification, and application for the synthesis of alpha,alpha-trehalose
J. Biotechnol.
129
140-150
2007
Leuconostoc mesenteroides, Streptomyces murinus
Automatic Mining of ENzyme DAta
Kwon, T.; Kim, C.T.; Lee, J.H.
Transglucosylation of ascorbic acid to ascorbic acid 2-glucoside by a recombinant sucrose phosphorylase from Bifidobacterium longum
Biotechnol. Lett.
29
611-615
2007
Bifidobacterium longum
Manually annotated by BRENDA team
Lee, J.; Yoon, S.; Nam, S.; Moon, Y.; Moon, Y.; Kim, D.
Molecular cloning of a gene encoding the sucrose phosphorylase from Leuconostoc mesenteroides B-1149 and the expression in Escherichia coli
Enzyme Microb. Technol.
39
612-620
2006
Leuconostoc mesenteroides (Q14EH6), Leuconostoc mesenteroides B-1149 (Q14EH6)
-
Manually annotated by BRENDA team
Schwarz, A.; Nidetzky, B.
Asp-196-->Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate
FEBS Lett.
580
3905-3910
2006
Leuconostoc mesenteroides
Manually annotated by BRENDA team
Mueller, M.; Nidetzky, B.
The role of Asp-295 in the catalytic mechanism of Leuconostoc mesenteroides sucrose phosphorylase probed with site-directed mutagenesis
FEBS Lett.
581
1403-1408
2007
Leuconostoc mesenteroides
Manually annotated by BRENDA team
Fujii, K.; Iiboshi, M.; Yanase, M.; Takaha, T.; Kuriki, T.
Enhancing the thermal stability of sucrose phosphorylase from Streptococcus mutans by random mutagenesis
J. Appl. Glycosci.
53
91-97
2006
Streptococcus mutans
-
Manually annotated by BRENDA team
Mirza, O.; Skov, L.K.; Sprogoe, D.; van den Broek, L.A.; Beldman, G.; Kastrup, J.S.; Gajhede, M.
Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion
J. Biol. Chem.
281
35576-35584
2006
Bifidobacterium adolescentis (Q84HQ2), Bifidobacterium adolescentis
Manually annotated by BRENDA team
Goedl, C.; Schwarz, A.; Minani, A.; Nidetzky, B.
Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of alpha-D-glucose 1-phosphate
J. Biotechnol.
129
77-86
2007
BRENDA: Leuconostoc mesenteroides, Leuconostoc mesenteroides (Q59495)
Textmining: Escherichia coli str. K-12 substr. DH10B
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Schwarz, A.; Brecker, L.; Nidetzky, B.
Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-Gln mutant enzymes
Biochem. J.
403
441-449
2007
Leuconostoc mesenteroides
Manually annotated by BRENDA team
Nomura, K.; Sugimoto, K.; Nishiura, H.; Ohdan, K.; Nishimura, T.; Hayashi, H.; Kuriki, T.
Glucosylation of acetic acid by sucrose phosphorylase
Biosci. Biotechnol. Biochem.
72
82-87
2008
Streptococcus mutans
Manually annotated by BRENDA team
Lee, J.H.; Moon, Y.H.; Kim, N.; Kim, Y.M.; Kang, H.K.; Jung, J.Y.; Abada, E.; Kang, S.S.; Kim, D.
Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli
Biotechnol. Lett.
30
749-754
2008
BRENDA: Leuconostoc mesenteroides, Leuconostoc mesenteroides NRRL B-742
Textmining: Escherichia coli
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Goedl, C.; Schwarz, A.; Mueller, M.; Brecker, L.; Nidetzky, B.
Mechanistic differences among retaining disaccharide phosphorylases: insights from kinetic analysis of active site mutants of sucrose phosphorylase and alpha,alpha-trehalose phosphorylase
Carbohydr. Res.
343
2032-2040
2008
BRENDA: Leuconostoc mesenteroides
Textmining: Schizophyllum commune
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Mueller, M.; Nidetzky, B.
Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase
FEBS Lett.
581
3814-3818
2007
Leuconostoc mesenteroides
Manually annotated by BRENDA team
Sugimoto, K.; Nomura, K.; Nishiura, H.; Ohdan, K.; Kamasaki, H.; Nishimura, T.; Hayashi, H.; Kuriki, T.
Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds
J. Appl. Glycosci.
55
119-125
2008
Streptococcus mutans
-
Manually annotated by BRENDA team
Sugimoto, K.; Nomura, K.; Nishiura, H.; Ohdan, K.; Ohdan, K.; Hayashi, H.; Kuriki, T.
Novel transglucosylating reaction of sucrose phosphorylase to carboxylic compounds such as benzoic acid
J. Biosci. Bioeng.
104
22-29
2007
Leuconostoc mesenteroides, Streptococcus mutans
Manually annotated by BRENDA team
Shin, M.H.; Jung, M.W.; Lee, J.; Kim, M.D.; Kim, K.H.
Strategies for producing recombinant sucrose phosphorylase originating from Bifidobacterium longum in Escherichia coli JM109
Process Biochem.
43
822-828
2008
Bifidobacterium longum
-
Manually annotated by BRENDA team
Goedl, C.; Sawangwan, T.; Wildberger, P.; Nidetzky, B.
Sucrose phosphorylase: A powerful transglucosylation catalyst for synthesis of alpha-D-glucosides as industrial fine chemicals
Biocatal. Biotransform.
28
10-21
2010
Leuconostoc mesenteroides, Pelomonas saccharophila, Streptococcus mutans, Bifidobacterium adolescentis (Q84HQ2), Leuconostoc mesenteroides B-1149
-
Manually annotated by BRENDA team
Kino, K.; Satake, R.; Morimatsu, T.; Kuratsu, S.; Shimizu, Y.; Sato, M.; Kirimura, K.
A new method of synthesis of alkyl beta-glycosides using sucrose as sugar donor
Biosci. Biotechnol. Biochem.
72
2415-2417
2008
Acetivibrio thermocellus, Pelomonas saccharophila, Acetivibrio thermocellus (Q8VP44)
Automatic Mining of ENzyme DAta
Abada, E.; Osman, M.; Lee, J.; Kim, D.
Molecular cloning of the gene 1355SPase encoding a sucrose phosphorylase from the bacterium Leuconostoc mesenteroides B-1355
Biotechnology
7
463-468
2008
Leuconostoc mesenteroides (B0F411), Leuconostoc mesenteroides NRRL B-1355 (B0F411)
-
Manually annotated by BRENDA team
Nishimoto, M.; Kitaoka, M.
One-pot enzymatic production of beta-D-galactopyranosyl-(1->3)-2-acetamido-2-deoxy-D-galactose (galacto-N-biose) from sucrose and 2-acetamido-2-deoxy-D-galactose (N-acetylgalactosamine)
Carbohydr. Res.
344
2573-2576
2009
Saccharomyces cerevisiae
Automatic Mining of ENzyme DAta
Goedl, C.; Nidetzky, B.
Sucrose phosphorylase harbouring a redesigned, glycosyltransferase-like active site exhibits retaining glucosyl transfer in the absence of a covalent intermediate
ChemBioChem
10
2333-2337
2009
Leuconostoc mesenteroides
Manually annotated by BRENDA team
Shin, M.; Cheong, N.; Lee, J.; Kim, K.
Transglucosylation of caffeic acid by a recombinant sucrose phosphorylase in aqueous buffer and aqueous-supercritical CO2 media
Food Chem.
115
1028-1033
2009
Bifidobacterium longum
-
Manually annotated by BRENDA team
Kasperowicz, A.; Stan-Glasek, K.; Guczynska, W.; Piknova, M.; Pristas, P.; Nigutova, K.; Javorsky, P.; Michalowski, T.
Sucrose phosphorylase of the rumen bacterium Pseudobutyrivibrio ruminis strain A
J. Appl. Microbiol.
107
812-820
2009
BRENDA: Pseudobutyrivibrio ruminis, Pseudobutyrivibrio ruminis A
Textmining: animal, bacterium, Butyrivibrio fibrisolvens, collection, rumen bacterium
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Wildberger, P.; Todea, A.; Nidetzky, B.
Probing enzyme substrate interactions at the catalytic subsite of Leuconostoc mesenteroides sucrose phosphorylase with site-directed mutagenesis: The roles of Asp
Biocatal. Biotransform.
30
326-337
2012
Leuconostoc mesenteroides
-
Manually annotated by BRENDA team
Cerdobbel, A.; De Winter, K.; Desmet, T.; Soetaert, W.
Sucrose phosphorylase as cross-linked enzyme aggregate: improved thermal stability for industrial applications
Biotechnol. J.
5
1192-1197
2010
Bifidobacterium adolescentis
Manually annotated by BRENDA team
Luley-Goedl, C.; Sawangwan, T.; Brecker, L.; Wildberger, P.; Nidetzky, B.
Regioselective O-glucosylation by sucrose phosphorylase: a promising route for functional diversification of a range of 1,2-propanediols
Carbohydr. Res.
345
1736-1740
2010
Leuconostoc mesenteroides
Manually annotated by BRENDA team
Fraga Vidal, R.; Moulis, C.; Escalier, P.; Remaud-Simeon, M.; Monsan, P.
Isolation of a gene from Leuconostoc citreum B/110-1-2 encoding a novel dextransucrase enzyme
Curr. Microbiol.
62
1260-1266
2011
Leuconostoc citreum B/110-1-2 (D5FS20), Leuconostoc citreum B/110-1-2, Escherichia coli JM109
Automatic Mining of ENzyme DAta
Wildberger, P.; Luley-Goedl, C.; Nidetzky, B.
Aromatic interactions at the catalytic subsite of sucrose phosphorylase: their roles in enzymatic glucosyl transfer probed with Phe52->Ala and Phe52->Asn mutants
FEBS Lett.
585
499-504
2011
Leuconostoc mesenteroides
Manually annotated by BRENDA team
De Winter, K.; Soetaert, W.; Desmet, T.
An imprinted cross-linked enzyme aggregate (iCLEA) of sucrose phosphorylase: combining improved stability with altered specificity
Int. J. Mol. Sci.
13
11333-11342
2012
Bifidobacterium adolescentis
Manually annotated by BRENDA team
Wiesbauer, J.; Goedl, C.; Schwarz, A.; Brecker, L.; Nidetzky, B.
Substitution of the catalytic acid-base Glu237 by Gln suppresses hydrolysis during glucosylation of phenolic acceptors catalyzed by Leuconostoc mesenteroides sucrose phosphorylase
J. Mol. Catal. B
65
24-29
2010
Leuconostoc mesenteroides
-
Manually annotated by BRENDA team
Renirie, R.; Pukin, A.; Van Lagen, B.; Franssen, M.
Regio- and stereoselective glucosylation of diols by sucrose phosphorylase using sucrose or glucose 1-phosphate as glucosyl donor
J. Mol. Catal. B
67
219-224
2010
Leuconostoc mesenteroides
-
Manually annotated by BRENDA team
Cerdobbel, A.; De Winter, K.; Aerts, D.; Kuipers, R.; Joosten, H.; Soetaert, W.; Desmet, T.
Increasing the thermostability of sucrose phosphorylase by a combination of sequence- and structure-based mutagenesis
Protein Eng. Des. Sel.
24
829-834
2011
Bifidobacterium adolescentis
Manually annotated by BRENDA team
Kasperowicz, A.; Stan-Glasek, K.; Guczynska, W.; Pristas, P.; Javorsky, P.; Vandzurova, A.; Michalowski, T.
?-Fructofuranosidase and sucrose phosphorylase of rumen bacterium Pseudobutyrivibrio ruminis strain 3
World J. Microbiol. Biotechnol.
28
1271-1279
2012
Pseudobutyrivibrio ruminis, Pseudobutyrivibrio ruminis 3
Manually annotated by BRENDA team
Du, L.; Yang, H.; Huo, Y.; Wei, H.; Xu, Y.; Wei, Y.; Huang, R.
A novel sucrose phosphorylase from the metagenomes of sucrose-rich environment: isolation and characterization
World J. Microbiol. Biotechnol.
28
2871-2878
2012
BRENDA: uncultured bacterium (B8Y3Y0)
Textmining: metagenomes, Bifidobacterium adolescentis
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Verhaeghe, T.; Aerts, D.; Diricks, M.; Soetaert, W.; Desmet, T.
The quest for a thermostable sucrose phosphorylase reveals sucrose 6'-phosphate phosphorylase as a novel specificity
Appl. Microbiol. Biotechnol.
98
7027-7037
2014
Thermoanaerobacterium thermosaccharolyticum, Thermoanaerobacterium thermosaccharolyticum (D9TT09)
Automatic Mining of ENzyme DAta
Aerts, D.; Verhaeghe, T.; Joosten, H.J.; Vriend, G.; Soetaert, W.; Desmet, T.
Consensus engineering of sucrose phosphorylase: the outcome reflects the sequence input
Biotechnol. Bioeng.
110
2563-2572
2013
Streptococcus mutans
Manually annotated by BRENDA team
Kraus, M.; Grimm, C.; Seibel, J.
Redesign of the active site of sucrose phosphorylase through a clash-induced cascade of loop shifts
ChemBioChem
17
33-36
2016
Bifidobacterium adolescentis (Q84HQ2), Bifidobacterium adolescentis
Manually annotated by BRENDA team
Rocha, J.M.; Caseli, L.
Adsorption and enzyme activity of sucrose phosphorylase on lipid Langmuir and Langmuir-Blodgett films
Colloids Surf. B Biointerfaces
116
497-501
2014
Leuconostoc mesenteroides
Manually annotated by BRENDA team
Teixeira, J.S.; Abdi, R.; Su, M.S.; Schwab, C.; Gaenzle, M.G.
Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri
Food Microbiol.
36
432-439
2013
Limosilactobacillus reuteri (M9ZS93), Limosilactobacillus reuteri, Limosilactobacillus reuteri LTH5448 (M9ZS93)
Manually annotated by BRENDA team
De Winter, K.; Verlinden, K.; Kren, V.; WeignerovaĄ, L.; Soetaert, W.; Desmet, T.
Ionic liquids as cosolvents for glycosylation by sucrose phosphorylase: balancing acceptor solubility and enzyme stability
Green Chem.
15
1949-1955
2013
Bifidobacterium adolescentis (Q84HQ2)
-
Manually annotated by BRENDA team
Morimoto, K.; Yoshihara, A.; Furumoto, T.; Takata, G.
Production and application of a rare disaccharide using sucrose phosphorylase from Leuconostoc mesenteroides
J. Biosci. Bioeng.
119
652-656
2015
BRENDA: Leuconostoc mesenteroides
Textmining: Saccharomyces cerevisiae
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Verhaeghe, T.; Diricks, M.; Aerts, D.; Soetaert, W.; Desmet, T.
Mapping the acceptor site of sucrose phosphorylase from Bifidobacterium adolescentis by alanine scanning
J. Mol. Catal. B
96
81-88
2013
Bifidobacterium adolescentis (Q84HQ2)
-
Manually annotated by BRENDA team
Franceus, J.; Pinel, D.; Desmet, T.
Glucosylglycerate phosphorylase, an enzyme with novel specificity involved in compatible solute metabolism
Appl. Environ. Microbiol.
83
e01434-17
2017
Meiothermus silvanus, Meiothermus silvanus (D7BAR0)
Automatic Mining of ENzyme DAta
Renesteen, E.; Cahyo, F.; Malik, A.
Transglycosylation activity and characterization of recombinant sucrose phosphorylase from Leuconostoc mesenteroides MBFWRS-3(1) expressed in Escherichia coli
Int. J. App. Pharm.
12
264-267
2020
Leuconostoc mesenteroides (E2IHA5), Leuconostoc mesenteroides MBFWRS-3(1) (E2IHA5)
-
Manually annotated by BRENDA team
Bolivar, J.M.; Luley-Goedl, C.; Leitner, E.; Sawangwan, T.; Nidetzky, B.
Production of glucosyl glycerol by immobilized sucrose phosphorylase Options for enzyme fixation on a solid support and application in microscale flow format
J. Biotechnol.
257
131-138
2017
Leuconostoc mesenteroides
Manually annotated by BRENDA team
Li, Y.; Li, Z.; He, X.; Chen, L.; Cheng, Y.; Jia, H.; Yan, M.; Chen, K.
Characterisation of a Thermobacillus sucrose phosphorylase and its utility in enzymatic synthesis of 2-O-beta-D-glucopyranosyl-L-ascorbic acid
J. Biotechnol.
305
27-34
2019
BRENDA: Thermobacillus sp. ZCTH02-B1 (A0A1Y3Q6Q6)
Textmining: Thermobacillus
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Wang, M.; Wu, J.; Wu, D.
Cloning and expression of the sucrose phosphorylase gene in Bacillus subtilis and synthesis of kojibiose using the recombinant enzyme
Microb. Cell Fact.
17
23
2018
BRENDA: Bifidobacterium adolescentis
Textmining: Bacillus subtilis, Escherichia coli
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Yao, D.; Fan, J.; Han, R.; Xiao, J.; Li, Q.; Xu, G.; Dong, J.; Ni, Y.
Enhancing soluble expression of sucrose phosphorylase in Escherichia coli by molecular chaperones
Protein Expr. Purif.
169
105571
2020
BRENDA: Thermoanaerobacterium thermosaccharolyticum (WP_094046414.1), Thermoanaerobacterium thermosaccharolyticum
Textmining: Escherichia coli, Escherichia coli BL21(DE3)
Manually annotated by BRENDA teamAutomatic Mining of ENzyme DAta
Zhang, H.; Sun, X.; Li, W.; Li, T.; Li, S.; Kitaoka, M.
Expression and characterization of recombinant sucrose phosphorylase
Protein J.
37
93-100
2018
Bifidobacterium longum (A5A8M5), Bifidobacterium longum JCM1217 (A5A8M5)
Manually annotated by BRENDA team
Kobayashi, K.; Nakajima, M.; Aramasa, H.; Kimura, S.; Iwata, T.; Nakai, H.; Taguchi, H.
Large-scale preparation of beta-1,2-glucan using quite a small amount of sophorose
Biosci. Biotechnol. Biochem.
83
1867-1874
2019
Bifidobacterium longum subsp. Longum
Automatic Mining of ENzyme DAta
Nishimoto, M.
Large scale production of lacto-N-biose I, a building block of type I human milk oligosaccharides, using sugar phosphorylases
Biosci. Biotechnol. Biochem.
84
17-24
2020
Homo sapiens, Enterobacteriaceae
Automatic Mining of ENzyme DAta
Mukasa, H; Tsumori, H; Shimamura, A
Dextran acceptor reaction of Streptococcus sobrinus glucosyltransferase GTF-I as revealed by using uniformly 13C-labeled sucrose.
Carbohydr Res
333
19-26
2001
Streptococcus sobrinus
Automatic Mining of ENzyme DAta
De Bruyn, F; De Paepe, B; Maertens, J; Beauprez, J; De Cocker, P; Mincke, S; Stevens, C; De Mey, M
Development of an in vivo glucosylation platform by coupling production to growth: Production of phenolic glucosides by a glycosyltransferase of Vitis vinifera.
Biotechnol Bioeng
2015
Vitis vinifera, Escherichia coli, Escherichia coli W
Automatic Mining of ENzyme DAta
Russell, RR; Mukasa, H; Shimamura, A; Ferretti, JJ
Streptococcus mutans gtfA gene specifies sucrose phosphorylase.
Infect Immun
56
2763-5
1988
Streptococcus mutans, Escherichia coli
Automatic Mining of ENzyme DAta
Kawasaki, H; Nakamura, N; Ohmori, M; Sakai, T
Cloning and expression in Escherichia coli of sucrose phosphorylase gene from Leuconostoc mesenteroides No. 165.
Biosci Biotechnol Biochem
60
322-4
1996
Escherichia coli, Leuconostoc mesenteroides, Agrobacterium vitis, Streptococcus mutans
Automatic Mining of ENzyme DAta
Vandamme, EJ; Van Loo, J; De Laporte, A
Dynamics and regulation of sucrose phosphorylase formation in Leuconostoc mesenteroides fermentations.
Biotechnol Bioeng
29
8-15
1987
Leuconostoc mesenteroides
Automatic Mining of ENzyme DAta
Kasperowicz, A; Stan-Glasek, K; Guczynska, W; Pristas, P; Javorsky, P; Vandzurova, A; Michalowski, T
?-Fructofuranosidase and sucrose phosphorylase of rumen bacterium Pseudobutyrivibrio ruminis strain 3.
World J Microbiol Biotechnol
28
1271-9
2012
Halobacillus halophilus, Pseudobutyrivibrio ruminis, rumen bacterium, Bacteria, Phleum pratense, bacterium
Automatic Mining of ENzyme DAta
Wan, Y; Ma, J; Xu, R; He, A; Jiang, M; Chen, K; Jiang, Y
[Properties of sucrose phosphorylase from recombinant Escherichia coli and enzymatic synthesis of alpha-arbutin].
Sheng Wu Gong Cheng Xue Bao
28
1450-9
2012
Escherichia coli
Automatic Mining of ENzyme DAta
Kitao, S; Sekine, H
?-D-Glucosyl Transfer to Phenolic Compounds by Sucrose Phosphorylase from Leuconostoc mesenteroides and Production of ?-Arbutin.
Biosci Biotechnol Biochem
58
38-42
1994
Leuconostoc mesenteroides
Automatic Mining of ENzyme DAta
Tonouchi, N; Horinouchi, S; Tsuchida, T; Yoshinaga, F
Increased Cellulose Production from Sucrose by Acetobacter after Introducing the Sucrose Phosphorylase Gene.
Biosci Biotechnol Biochem
62
1778-80
1998
Acetobacter, Leuconostoc mesenteroides
Automatic Mining of ENzyme DAta
Li, X; Xia, Y; Shen, W; Yang, H; Cao, Y; Chen, X
[Characterization of a sucrose phosphorylase from Leuconostoc mesenterides for the synthesis of ?-arbutin].
Sheng Wu Gong Cheng Xue Bao
36
1546-1555
2020
Leuconostoc, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides
Automatic Mining of ENzyme DAta
He, X; Li, Y; Tao, Y; Qi, X; Ma, R; Jia, H; Yan, M; Chen, K; Hao, N
Discovering and efficiently promoting the extracellular secretory expression of Thermobacillus sp. ZCTH02-B1 sucrose phosphorylase in Escherichia coli.
Int J Biol Macromol
173
532-540
2021
Escherichia, Escherichia coli, Thermobacillus, Escherichia coli BL21(DE3)
Automatic Mining of ENzyme DAta
Teixeira JS;Abdi R;Su MSW;Schwab C;Gänzle MG
Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri
Food microbiology
36
432-439
2013
Limosilactobacillus reuteri
Automatic Mining of ENzyme DAta
Du L;Yang H;Huo Y;Wei H;Xu Y;Wei Y;Huang R
A novel sucrose phosphorylase from the metagenomes of sucrose-rich environment: isolation and characterization
World journal of microbiology & biotechnology
28
2871-2878
2012
metagenomes, Bifidobacterium adolescentis
Automatic Mining of ENzyme DAta
Kasperowicz A;Stan-Glasek K;Guczynska W;Pristas P;Javorsky P;Vandzurova A;Michalowski T
?-Fructofuranosidase and sucrose phosphorylase of rumen bacterium Pseudobutyrivibrio ruminis strain 3
World journal of microbiology & biotechnology
28
1271-1279
2012
Halobacillus halophilus, Pseudobutyrivibrio ruminis, rumen bacterium, Bacteria, Phleum pratense, bacterium
Automatic Mining of ENzyme DAta
Kwon T;Kim CT;Lee JH
Transglucosylation of ascorbic acid to ascorbic acid 2-glucoside by a recombinant sucrose phosphorylase from Bifidobacterium longum
Biotechnology letters
29
611-615
2007
Bifidobacterium longum
Automatic Mining of ENzyme DAta
Kim M;Kwon T;Lee HJ;Kim KH;Chung DK;Ji GE;Byeon ES;Lee JH
Cloning and expression of sucrose phosphorylase gene from Bifidobacterium longum in E. coli and characterization of the recombinant enzyme.
Biotechnology letters
25
1211-1217
2003
Bifidobacterium longum, Escherichia coli
Automatic Mining of ENzyme DAta
Lee JH;Moon YH;Kim N;Kim YM;Kang HK;Jung JY;Abada E;Kang SS;Kim D
Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli
Biotechnology letters
30
749-754
2008
Escherichia coli, Leuconostoc mesenteroides
Automatic Mining of ENzyme DAta
Page-Sharp, M; Behm, CA; Smith, GD
Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils.
Biochim Biophys Acta
1472
519-28
1999
Scytonema, Cyanobacteria
Automatic Mining of ENzyme DAta
Trindade, MI; Abratt, VR; Reid, SJ
Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose.
Appl Environ Microbiol
69
24-32
2003
Bifidobacterium animalis subsp. lactis, Escherichia coli
Automatic Mining of ENzyme DAta
Kasperowicz, A; Stan-Glasek, K; Guczynska, W; Piknová, M; Pristas, P; Nigutová, K; Javorský, P; Micha?owski, T
Fructanolytic and saccharolytic enzymes of the rumen bacterium Pseudobutyrivibrio ruminis strain 3--preliminary study.
Folia Microbiol (Praha)
55
329-31
2010
Bacteria, Phleum pratense, Pseudobutyrivibrio ruminis, rumen bacterium, Halobacillus halophilus, bacterium
Automatic Mining of ENzyme DAta
Bahia, FM; de Almeida, GC; de Andrade, LP; Campos, CG; Queiroz, LR; da Silva, RLV; Abdelnur, PV; Corręa, JR; Bettiga, M; Parachin, NS
Rhamnolipids production from sucrose by engineered Saccharomyces cerevisiae.
Sci Rep
8
2905
2018
Pelomonas saccharophila
Automatic Mining of ENzyme DAta
Ushiro, I; Lumb, SM; Aduse-Opoku, J; Ferretti, JJ; Russell, RR
Chromosomal deletions in melibiose-negative isolates of Streptococcus mutans.
J Dent Res
70
1422-6
1991
Streptococcus mutans, collection
Automatic Mining of ENzyme DAta
Zhong, C; Wei, P; Zhang, YP
Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons.
Biotechnol Bioeng
114
1054-1064
2017
Escherichia coli BL21(DE3), Streptomyces caatingaensis, Thermoanaerobacterium thermosaccharolyticum
Automatic Mining of ENzyme DAta
Barrangou, R; Altermann, E; Hutkins, R; Cano, R; Klaenhammer, TR
Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus.
Proc Natl Acad Sci U S A
100
8957-62
2003
Lactobacillus acidophilus
Automatic Mining of ENzyme DAta
Ogawa, Y; Noda, K; Kimura, S; Kitaoka, M; Wada, M
Facile preparation of highly crystalline lamellae of (1 ? 3)-?-D-glucan using an extract of Euglena gracilis.
Int J Biol Macromol
64
415-9
2014
Euglena gracilis
Automatic Mining of ENzyme DAta
Fournier, P; de Ruffray, P; Otten, L
Natural instability of Agrobacterium vitis Ti plasmid due to unusual duplication of a 2.3-kb DNA fragment.
Mol Plant Microbe Interact
7
164-72
0
Agrobacterium tumefaciens, Leuconostoc mesenteroides, Streptococcus mutans, Plasmid pTiC58
Automatic Mining of ENzyme DAta
Tanzer, JM; Thompson, A; Wen, ZT; Burne, RA
Streptococcus mutans: Fructose Transport, Xylitol Resistance, and Virulence.
J Dent Res
85
369-73
2006
Streptococcus mutans, Homo sapiens, Rattus
Automatic Mining of ENzyme DAta
Stan-Glasek, K; Kasperowicz, A; Guczy?ska, W; Piknová, M; Pristas, P; Nigutová, K; Javorský, P; Micha?owski, T
Phosphorolytic cleavage of sucrose by sucrose-grown ruminal bacterium Pseudobutyrivibrio ruminis strain k3.
Folia Microbiol (Praha)
55
383-5
2010
Pseudobutyrivibrio ruminis, bacterium, rumen bacterium
Automatic Mining of ENzyme DAta
Pei, J; Dong, P; Wu, T; Zhao, L; Fang, X; Cao, F; Tang, F; Yue, Y
Metabolic engineering of Escherichia coli for astragalin biosynthesis.
J Agric Food Chem
2016
Pseudomonas zeshuii
Automatic Mining of ENzyme DAta
Marques, WL; Mans, R; Henderson, RK; Marella, ER; Horst, JT; Hulster, E; Poolman, B; Daran, JM; Pronk, JT; Gombert, AK; van Maris, AJA
Combined engineering of disaccharide transport and phosphorolysis for enhanced ATP yield from sucrose fermentation in Saccharomyces cerevisiae.
Metab Eng
45
121-133
2018
Saccharomyces cerevisiae, Leuconostoc mesenteroides
Automatic Mining of ENzyme DAta
Duan, P; You, J; Xu, M; Yang, T; Shao, M; Zhang, X; Rao, Z
[Whole-cell biosynthesis of 2-O-?-D-glu-copyranosyl-sn-glycerol by recombinant Bacillus subtilis].
Sheng Wu Gong Cheng Xue Bao
36
1918-1928
2020
Leuconostoc mesenteroides, Bacillus subtilis
Automatic Mining of ENzyme DAta
Ju, JH; Heo, SY; Choi, SW; Kim, YM; Kim, MS; Kim, CH; Oh, BR
Effective bioconversion of 1,3-propanediol from biodiesel-derived crude glycerol using organic acid resistance-enhanced Lactobacillus reuteri JH83.
Bioresour Technol
337
125361
2021
Bacteria
Automatic Mining of ENzyme DAta
Teixeira, JS; McNeill, V; Gänzle, MG
Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by lactobacilli.
Food Microbiol
31
278-84
2012
Limosilactobacillus reuteri, Fructilactobacillus sanfranciscensis, Pisum sativum, Vicia faba, Sorghum
Automatic Mining of ENzyme DAta
Verhaeghe, T; De Winter, K; Berland, M; De Vreese, R; D'hooghe, M; Offmann, B; Desmet, T
Converting bulk sugars into prebiotics: semi-rational design of a transglucosylase with controlled selectivity.
Chem Commun (Camb)
52
3687-9
2016
Saccharomyces cerevisiae
Automatic Mining of ENzyme DAta
Franceus, J; Dhaene, S; Decadt, H; Vandepitte, J; Caroen, J; Van der Eycken, J; Beerens, K; Desmet, T
Rational design of an improved transglucosylase for production of the rare sugar nigerose.
Chem Commun (Camb)
55
4531-4533
2019
Bifidobacterium adolescentis
Automatic Mining of ENzyme DAta
Birnberg, PR; Brenner, ML
A one-step enzymatic assay for sucrose with sucrose phosphorylase.
Anal Biochem
142
556-61
1984
Leuconostoc mesenteroides, Zea mays subsp. mays
Automatic Mining of ENzyme DAta
Cerdobbel, A; Desmet, T; De Winter, K; Maertens, J; Soetaert, W
Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization.
J Biotechnol
150
125-30
2010
Escherichia coli, Bifidobacterium adolescentis
Automatic Mining of ENzyme DAta
Wildberger, P; Brecker, L; Nidetzky, B
Chiral resolution through stereoselective transglycosylation by sucrose phosphorylase: application to the synthesis of a new biomimetic compatible solute, (R)-2-O-?-D-glucopyranosyl glyceric acid amide.
Chem Commun (Camb)
50
436-8
2014
Transformation
Automatic Mining of ENzyme DAta
Kraus, M; Grimm, C; Seibel, J
Reversibility of a Point Mutation Induced Domain Shift: Expanding the Conformational Space of a Sucrose Phosphorylase.
Sci Rep
8
10490
2018
Bifidobacterium adolescentis
Automatic Mining of ENzyme DAta
Kruschitz, A; Peinsipp, L; Pfeiffer, M; Nidetzky, B
Continuous process technology for glucoside production from sucrose using a whole cell-derived solid catalyst of sucrose phosphorylase.
Appl Microbiol Biotechnol
105
5383-5394
2021
Escherichia coli, Bifidobacterium adolescentis
Automatic Mining of ENzyme DAta
Weyler, C; Heinzle, E
Multistep Synthesis of UDP-Glucose Using Tailored, Permeabilized Cells of E. coli.
Appl Biochem Biotechnol
2015
Leuconostoc mesenteroides, Escherichia coli
Automatic Mining of ENzyme DAta
Brecker, L; Mahut, M; Schwarz, A; Nidetzky, B
In situ proton NMR study of acetyl and formyl group migration in mono-O-acyl D-glucose.
Magn Reson Chem
47
328-32
2009
Leuconostoc mesenteroides
Automatic Mining of ENzyme DAta
Aerts, D; Verhaeghe, TF; Roman, BI; Stevens, CV; Desmet, T; Soetaert, W
Transglucosylation potential of six sucrose phosphorylases toward different classes of acceptors.
Carbohydr Res
346
1860-7
2011
Leuconostoc mesenteroides, Streptococcus mutans, Bifidobacterium adolescentis
Automatic Mining of ENzyme DAta
Dirks-Hofmeister, ME; Verhaeghe, T; De Winter, K; Desmet, T
Creating Space for Large Acceptors: Rational Biocatalyst Design for Resveratrol Glycosylation in an Aqueous System.
Angew Chem Int Ed Engl
54
9289-92
2015
Thermoanaerobacterium thermosaccharolyticum
Automatic Mining of ENzyme DAta
Kraus, M; Görl, J; Timm, M; Seibel, J
Synthesis of the rare disaccharide nigerose by structure-based design of a phosphorylase mutant with altered regioselectivity.
Chem Commun (Camb)
52
4625-7
2016
Bifidobacterium adolescentis
Automatic Mining of ENzyme DAta
Beerens, K; De Winter, K; Van de Walle, D; Grootaert, C; Kamiloglu, S; Miclotte, L; Van de Wiele, T; Van Camp, J; Dewettinck, K; Desmet, T
Biocatalytic Synthesis of the Rare Sugar Kojibiose: Process Scale-Up and Application Testing.
J Agric Food Chem
65
6030-6041
2017
Bifidobacterium adolescentis
Automatic Mining of ENzyme DAta
Schwaiger, KN; Voit, A; Dobiašová, H; Luley, C; Wiltschi, B; Nidetzky, B
Plasmid Design for Tunable Two-Enzyme Co-Expression Promotes Whole-Cell Production of Cellobiose.
Biotechnol J
e2000063
2020
Transformation
Automatic Mining of ENzyme DAta
Franceus, J; Ubiparip, Z; Beerens, K; Desmet, T
Engineering of a Thermostable Biocatalyst for the Synthesis of 2-O-Glucosylglycerol.
Chembiochem
22
2777-2782
2021
Leuconostoc mesenteroides, Bifidobacterium adolescentis
Automatic Mining of ENzyme DAta