Refine search

Search Engineering

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 5 of 5
EC Number
Amino acid exchange
Commentary
Reference
G160R
site-directed mutagenesis, the mutant shows reduced catalytic activity compared to the wild-type enzyme
G165D
site-directed mutagenesis, the mutant shows reduced catalytic activity compared to the wild-type enzyme
M322R
site-directed mutagenesis, the mutant shows reduced catalytic activity compared to the wild-type enzyme
R302C
site-directed mutagenesis, the mutant shows reduced catalytic activity compared to the wild-type enzyme
more
construction of hpr1 knockout and hpr2 knockout. Deletion of HPR2 results in elevated levels of hydroxypyruvate and other metabolites in leaves, photosynthetic gas exchange is slightly altered, especially under long-day conditions. Deletion of HPR1 does not show a severe phenotype, overview. The combined deletion of HPR1 and HPR2 is detrimental to air-grown mutants and alters steady state metabolite profiles, phenotypes, overview. The most prominent naturally occuring mutation causes the decrease in Ala content coupled with enhanced levels of Arg, Asn, and Asp in the hpr1 mutant and the double knockout plant; HPR1 knockout plants show slight visually noticeable impairments in air. Under shorter daylengths of 8 h, somewhat slower growth of the hpr1 mutants than of the wild-type, in combination with an approximately 4-week delay in bolting. Combined deletion of both HPR1 and HPR2 (EC 1.1.1.81) results in distinct air-sensitivity and a dramatic reduction in photosynthetic performance
Results 1 - 5 of 5