Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 10 of 43 > >>
EC Number General Information Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 1.3.7.12evolution evolutionary tree of vascular plants based on analysis of several molecular data sets for enzymes RCCR, overview. RCCR-1 appears to have evolved independently in some unrelated lineages. It has a restricted phylogenetic distribution and most likely represents recent derivations from RCC-2. Two forms of primary fluorescent chlorophyll catabolite, pFCC, are found in plants, the slightly more polar pFCC-1 or the less polar pFCC-2. A third form, pFCC-3 is found only in basal pteridophytes and in some gymnosperms, it seems to be produced by an ancestral type of RCCR. RCCR-1 appears to have evolved independently in some unrelated lineages. It has a restricted phylogenetic distribution and most likely represents recent derivations from RCCR-2. The situation within monocots appears to be quite clear cut. All the grasses and Carex tested are characterized by type 1 of RCCR, all other monocots produce pFCC-2 676395
Display the word mapDisplay the reaction diagram Show all sequences 1.3.7.12evolution evolutionary tree of vascular plants based on analysis of several molecular data sets for enzymes RCCR, overview. Two forms of primary fluorescent chlorophyll catabolite, pFCC, are found in plants, the slightly more polar pFCC-1 or the less polar pFCC-2. A third form, pFCC-3 is found only in basal pteridophytes and in some gymnosperms, it seems to be produced by an ancestral type of RCCR. RCCR-1 appears to have evolved independently in some unrelated lineages. It has a restricted phylogenetic distribution and most likely represents recent derivations from RCCR-2. The situation within monocots appears to be quite clear cut. All the grasses and Carex tested are characterized by type 1 of RCCR, all other monocots produce pFCC-2 676395
Display the word mapDisplay the reaction diagram Show all sequences 1.3.7.12evolution in chlorophyll breakdown, the basic mechanism of macrocycle cleavage appears to be the same in green algae and in angiosperms 676395
Display the word mapDisplay the reaction diagram Show all sequences 1.3.7.12evolution RCC reductase activity can be demonstrated in mono- as well as in dicotyledons, and is also found in pteridophytes and gymnosperms. Within a plant family RCC reductases from different genera and species have the same stereospecificity 735913
Display the word mapDisplay the reaction diagram Show all sequences 1.3.7.12evolution RCCR is distantly related to a family of bilin reductases 735438
Display the word mapDisplay the reaction diagram Show all sequences 1.3.7.12evolution red chlorophyll catabolite reductases appear to represent a phylogenetically early addition to the chlorophyll catabolic pathway. Two types of red chlorophyll-catabolite reductases (RCCR), named RCCR-type 1 and RCCR-type 2, appear to have evolved in higher plants. Chlorophyll catabolism in higher plants differs remarkably from that in the green alga by the formation of FCCs and NCCs 736215
Display the word mapDisplay the reaction diagram Show all sequences 1.3.7.12evolution red chlorophyll catabolite reductases appear to represent a phylogenetically early addition to the chlorophyll catabolic pathway. Two types of red chlorophyll-catabolite reductases (RCCR), named RCCR-type 1 and RCCR-type 2, appear to have evolved in higher plants. Chlorophyll catabolism in higher plants differs remarkably from that in the green algae by the formation of FCCs and NCCs 736215
Display the word mapDisplay the reaction diagram Show all sequences 1.3.7.12evolution the enzyme belongs to the ferredoxin-dependent bilin reductase (FDBR) family, which synthesizes a variety of phytobilin pigments, on the basis of sequence similarity, ferredoxin dependency, and the common tetrapyrrole skeleton of their substrates. The tertiary structure of RCCR is similar to those of FDBRs, strongly supporting that these enzymes evolved from a common ancestor 699585
Display the word mapDisplay the reaction diagram Show all sequences 1.3.7.12evolution the enzyme belongs to the ferredoxin-dependent bilin reductase (FDBR) family. RCC is bound to the pocket between the beta-sheet and the C-terminal alpha-helices, as seen in substrate-bound FDBRs, but RCC binding to RCCR is much looser than substrate binding to FDBRs 712769
Display the word mapDisplay the reaction diagram Show all sequences 1.3.7.12evolution the enzyme belongs to the ferredoxin-dependent bilin reductase family, FDBR, and contains two conserved acidic residue sites (Glu151 and Asp288), which are involved in catalysis and/or substrate binding 736190
Results 1 - 10 of 43 > >>