Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary extracted from

  • Enugala, T.; Morato, M.; Kamerlin, S.; Widersten, M.
    The role of substrate-coenzyme crosstalk in determining turnover rates in Rhodococcus ruber alcohol dehydrogenase (2020), ACS Catal., 10, 9115-9128 .
No PubMed abstract available

Protein Variants

EC Number Protein Variants Comment Organism
1.1.1.1 F43H site-directed mutagenesis, mutant C1 variant Rhodococcus ruber
1.1.1.1 F43H/Y54L site-directed mutagenesis, mutant C1B1 variant Rhodococcus ruber
1.1.1.1 F43T/Y54G/L119Y/F282W site-directed mutagenesis, mutant B1F4 variant Rhodococcus ruber
1.1.1.1 H39Y/F43H/Y54F/Y294F/W295A site-directed mutagenesis, mutant A2C2B1 variant Rhodococcus ruber
1.1.1.1 H39Y/F43S/Y294F/W295A site-directed mutagenesis, mutant A2C3 variant Rhodococcus ruber
1.1.1.1 additional information generation of A2C2B1 variant, A2C3 variant, B1 variant, B1F4 variant, C1 variant, and C1B1 variant, crystal structure comparisons with the wild-type enzyme, overview Rhodococcus ruber
1.1.1.1 W295A site-directed mutagenesis, mutant A1 variant Rhodococcus ruber
1.1.1.1 Y294F/W295A site-directed mutagenesis, compared to the wild-type enzyme, a shift in enantioselectivity and differences in catalytic activity with 4-phenyl-2-butanol are observed Rhodococcus ruber
1.1.1.1 Y294F/W295A site-directed mutagenesis, mutant A2 variant Rhodococcus ruber
1.1.1.1 Y54G/L119Y site-directed mutagenesis, mutant B1 variant Rhodococcus ruber

KM Value [mM]

EC Number KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
1.1.1.1 additional information
-
additional information pre-steady-state and Michaelis-Menten steady-state kinetics, molecular dynamics simulations of enzyme-substrate interactions in the Michaelis complexes of wild-type ADH-A and Y294F/W295A double mutant. Interdependency between substrate/product and the cofactor in the ternary complex is determined, which directly affects the NADH dissociation rates, therefore, this substrate-coenzyme crosstalk plays a direct role in determining the turnover rates. Model of the kinetic mechanism of ADH-A, overview Rhodococcus ruber

Metals/Ions

EC Number Metals/Ions Comment Organism Structure
1.1.1.1 Zn2+ two essential zinc ions Rhodococcus ruber

Organism

EC Number Organism UniProt Comment Textmining
1.1.1.1 Rhodococcus ruber
-
-
-
1.1.1.1 Rhodococcus ruber DSM 44541
-
-
-

Substrates and Products (Substrate)

EC Number Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
1.1.1.1 (R)-1-phenyl-1-butanol + NAD+ no substrate of mutant B1 Rhodococcus ruber 1-phenylbutan-1-one + NADH + H+
-
r
1.1.1.1 (R)-1-phenyl-1-butanol + NAD+ no substrate of mutant B1 Rhodococcus ruber DSM 44541 1-phenylbutan-1-one + NADH + H+
-
r
1.1.1.1 (R)-1-phenyl-1-propanol + NAD+
-
Rhodococcus ruber 1-phenyl-1-propanone + NADH + H+
-
r
1.1.1.1 (R)-1-phenyl-2-butanol + NAD+
-
Rhodococcus ruber 1-phenylbutan-2-one + NADH + H+
-
r
1.1.1.1 (R)-1-phenylethanol + NAD+
-
Rhodococcus ruber acetophenone + NADH + H+
-
r
1.1.1.1 (R)-1-phenylethanol + NAD+
-
Rhodococcus ruber DSM 44541 acetophenone + NADH + H+
-
r
1.1.1.1 (R)-4-phenyl-2-butanol + NAD+
-
Rhodococcus ruber 4-phenylbutan-2-one + NADH + H+
-
r
1.1.1.1 (S)-1-phenyl-1-butanol + NAD+ no substrate of mutant B1 Rhodococcus ruber 1-phenylbutan-1-one + NADH + H+
-
r
1.1.1.1 (S)-1-phenyl-1-propanol + NAD+
-
Rhodococcus ruber 1-phenyl-1-propanone + NADH + H+
-
r
1.1.1.1 (S)-1-phenyl-2-butanol + NAD+
-
Rhodococcus ruber 1-phenylbutan-2-one + NADH + H+
-
r
1.1.1.1 (S)-1-phenylethanol + NAD+
-
Rhodococcus ruber acetophenone + NADH + H+
-
r
1.1.1.1 (S)-1-phenylethanol + NAD+
-
Rhodococcus ruber DSM 44541 acetophenone + NADH + H+
-
r
1.1.1.1 (S)-4-phenyl-2-butanol + NAD+
-
Rhodococcus ruber 4-phenylbutan-2-one + NADH + H+
-
r
1.1.1.1 2-butanol + NAD+
-
Rhodococcus ruber 2-butanone + NADH + H+
-
r
1.1.1.1 2-butanol + NAD+
-
Rhodococcus ruber DSM 44541 2-butanone + NADH + H+
-
r
1.1.1.1 additional information substrate specificities and enantioselectivities of wild-type and mutant enzymes, overview. Molecular dynamics of wild-type ADH-A (PDB ID 3jv7) and the A2 variant (PDB ID 5o8q) in complex with alcohols (R)- and (S)-4-phenyl-2-butanol Rhodococcus ruber ?
-
-
1.1.1.1 additional information substrate specificities and enantioselectivities of wild-type and mutant enzymes, overview. Molecular dynamics of wild-type ADH-A (PDB ID 3jv7) and the A2 variant (PDB ID 5o8q) in complex with alcohols (R)- and (S)-4-phenyl-2-butanol Rhodococcus ruber DSM 44541 ?
-
-

Subunits

EC Number Subunits Comment Organism
1.1.1.1 dimer
-
Rhodococcus ruber

Synonyms

EC Number Synonyms Comment Organism
1.1.1.1 ADH
-
Rhodococcus ruber
1.1.1.1 ADH-A
-
Rhodococcus ruber
1.1.1.1 SADH
-
Rhodococcus ruber

Temperature Optimum [°C]

EC Number Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
1.1.1.1 30
-
assay at Rhodococcus ruber

pH Optimum

EC Number pH Optimum Minimum pH Optimum Maximum Comment Organism
1.1.1.1 8
-
assay at Rhodococcus ruber

Cofactor

EC Number Cofactor Comment Organism Structure
1.1.1.1 NAD+
-
Rhodococcus ruber
1.1.1.1 NADH cofactor binding analysis with wild-type and mutant enzymes, crystal structure analysis, overview Rhodococcus ruber

General Information

EC Number General Information Comment Organism
1.1.1.1 additional information molecular dynamics simulations of enzyme-substrate interactions in the Michaelis complexes of wild-type ADH-A and Y294F/W295A double mutant. Interdependency between substrate/product and the cofactor in the ternary complex is determined, which directly affects the NADH dissociation rates, therefore, this substrate-coenzyme crosstalk plays a direct role in determining the turnover rates. Molecular dynamics of wild-type ADH-A (PDB ID 3jv7) and the A2 variant (PDB ID 5o8q) in complex with alcohols (R)- and (S)-4-phenyl-2-butanol Rhodococcus ruber