Any feedback?
Please rate this page
(literature.php)
(0/150)

BRENDA support

Literature summary for 3.5.3.6 extracted from

  • Li, L.; Li, Z.; Chen, D.; Lu, X.; Feng, X.; Wright, E.C.; Solberg, N.O.; Dunaway-Mariano, D.; Mariano, P.S.; Galkin, A.; Kulakova, L.; Herzberg, O.; Green-Church, K.B.; Zhang, L.
    Inactivation of microbial arginine deiminases by L-canavanine (2008), J. Am. Chem. Soc., 130, 1918-1931.
    View publication on PubMed

Crystallization (Commentary)

Crystallization (Comment) Organism
X-ray crystallographic coordinates for the structure of the C406A ADI -L-arginine complex, overview Pseudomonas aeruginosa

Inhibitors

Inhibitors Comment Organism Structure
L-canavanine two competing pathways, slow substrate inhibition or irreversible inhibition, branch at the Cys-alkylthiouronium ion intermediate: one pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, a Cys-alkylisothiourea adduct, mechanism and structure, overview Bacillus cereus
L-canavanine two competing pathways, slow substrate inhibition or irreversible inhibition, branch at the Cys-alkylthiouronium ion intermediate: one pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, a Cys-alkylisothiourea adduct, mechanism and structure, overview Burkholderia mallei
L-canavanine two competing pathways, slow substrate inhibition or irreversible inhibition, branch at the Cys-alkylthiouronium ion intermediate: one pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, a Cys-alkylisothiourea adduct, mechanism and structure, overview Escherichia coli
L-canavanine two competing pathways, slow substrate inhibition or irreversible inhibition, branch at the Cys-alkylthiouronium ion intermediate: one pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, a Cys-alkylisothiourea adduct, mechanism and structure, overview Giardia intestinalis
L-canavanine competitive; two competing pathways, slow substrate inhibition or irreversible inhibition, branch at the Cys-alkylthiouronium ion intermediate: one pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, a Cys-alkylisothiourea adduct, mechanism and structure, overview Pseudomonas aeruginosa

KM Value [mM]

KM Value [mM] KM Value Maximum [mM] Substrate Comment Organism Structure
0.09
-
L-arginine pH 7.0, 25°C Bacillus cereus
0.09
-
L-arginine pH 5.6, 25°C Burkholderia mallei
0.14
-
L-arginine pH 5.6, 25°C Pseudomonas aeruginosa
0.16
-
L-arginine pH 7.5, 25°C Giardia intestinalis
0.32
-
L-arginine pH 6.0, 25°C Escherichia coli
0.7
-
L-canavanine pH 5.6, 25°C Pseudomonas aeruginosa
1.2
-
L-canavanine pH 5.6, 25°C Burkholderia mallei
1.9
-
L-canavanine pH 7.5, 25°C Giardia intestinalis
2.1
-
L-canavanine pH 6.0, 25°C Escherichia coli
2.3
-
L-canavanine pH 7.0, 25°C Bacillus cereus

Metals/Ions

Metals/Ions Comment Organism Structure
Mg2+
-
Escherichia coli
Mg2+
-
Pseudomonas aeruginosa

Natural Substrates/ Products (Substrates)

Natural Substrates Organism Comment (Nat. Sub.) Natural Products Comment (Nat. Pro.) Rev. Reac.
L-arginine + H2O Escherichia coli
-
L-citrulline + NH3
-
?
L-arginine + H2O Giardia intestinalis
-
L-citrulline + NH3
-
?
L-arginine + H2O Pseudomonas aeruginosa
-
L-citrulline + NH3
-
?
L-arginine + H2O Bacillus cereus
-
L-citrulline + NH3
-
?
L-arginine + H2O Burkholderia mallei
-
L-citrulline + NH3
-
?

Organism

Organism UniProt Comment Textmining
Bacillus cereus
-
-
-
Burkholderia mallei
-
-
-
Escherichia coli
-
-
-
Giardia intestinalis
-
-
-
Pseudomonas aeruginosa
-
-
-
Pseudomonas aeruginosa P13981
-
-

Reaction

Reaction Comment Organism Reaction ID
L-arginine + H2O = L-citrulline + NH3 the chemical mechanism for ADI catalysis involves initial formation and subsequent hydrolysis of a Cys-alkylthiouronium ion intermediate Escherichia coli
L-arginine + H2O = L-citrulline + NH3 the chemical mechanism for ADI catalysis involves initial formation and subsequent hydrolysis of a Cys-alkylthiouronium ion intermediate Giardia intestinalis
L-arginine + H2O = L-citrulline + NH3 the chemical mechanism for ADI catalysis involves initial formation and subsequent hydrolysis of a Cys-alkylthiouronium ion intermediate Pseudomonas aeruginosa
L-arginine + H2O = L-citrulline + NH3 the chemical mechanism for ADI catalysis involves initial formation and subsequent hydrolysis of a Cys-alkylthiouronium ion intermediate Bacillus cereus
L-arginine + H2O = L-citrulline + NH3 the chemical mechanism for ADI catalysis involves initial formation and subsequent hydrolysis of a Cys-alkylthiouronium ion intermediate Burkholderia mallei
L-arginine + H2O = L-citrulline + NH3 chemical mechanism for ADI catalysis involves initial formation and subsequent hydrolysis of a Cys-alkylthiouronium ion intermediate, PaADI employs an active site Cys in nucleophilic catalysis Pseudomonas aeruginosa

Substrates and Products (Substrate)

Substrates Comment Substrates Organism Products Comment (Products) Rev. Reac.
L-arginine + H2O
-
Escherichia coli L-citrulline + NH3
-
?
L-arginine + H2O
-
Giardia intestinalis L-citrulline + NH3
-
?
L-arginine + H2O
-
Pseudomonas aeruginosa L-citrulline + NH3
-
?
L-arginine + H2O
-
Bacillus cereus L-citrulline + NH3
-
?
L-arginine + H2O
-
Burkholderia mallei L-citrulline + NH3
-
?
L-canavanine + H2O two competing pathways, slow substrate inhibition or irreversible inhibition, branch at the Cys-alkylthiouronium ion intermediate: one pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, a Cys-alkylisothiourea adduct, mechanism and structure, overview Escherichia coli O-ureido-L-homoserine + NH3
-
?
L-canavanine + H2O two competing pathways, slow substrate inhibition or irreversible inhibition, branch at the Cys-alkylthiouronium ion intermediate: one pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, a Cys-alkylisothiourea adduct, mechanism and structure, overview Giardia intestinalis O-ureido-L-homoserine + NH3
-
?
L-canavanine + H2O two competing pathways, slow substrate inhibition or irreversible inhibition, branch at the Cys-alkylthiouronium ion intermediate: one pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, a Cys-alkylisothiourea adduct, mechanism and structure, overview Pseudomonas aeruginosa O-ureido-L-homoserine + NH3
-
?
L-canavanine + H2O two competing pathways, slow substrate inhibition or irreversible inhibition, branch at the Cys-alkylthiouronium ion intermediate: one pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, a Cys-alkylisothiourea adduct, mechanism and structure, overview Bacillus cereus O-ureido-L-homoserine + NH3
-
?
L-canavanine + H2O two competing pathways, slow substrate inhibition or irreversible inhibition, branch at the Cys-alkylthiouronium ion intermediate: one pathway leads to direct formation of O-ureido-L-homoserine via a reactive thiouronium intermediate. The other pathway leads to an inactive form of the enzyme, a Cys-alkylisothiourea adduct, mechanism and structure, overview Burkholderia mallei O-ureido-L-homoserine + NH3
-
?
L-canavanine + H2O slow substrate, reaction via Cys-alkylthiouronium ion intermediate, two competing pathways follow that branch at the Cys-alkylthiouronium ion intermediate, overview Pseudomonas aeruginosa O-ureido-L-homoserine + NH3
-
?

Subunits

Subunits Comment Organism
More structure of the ADI-L-arginine complex, overview Pseudomonas aeruginosa

Synonyms

Synonyms Comment Organism
ADI
-
Escherichia coli
ADI
-
Giardia intestinalis
ADI
-
Pseudomonas aeruginosa
ADI
-
Bacillus cereus
ADI
-
Burkholderia mallei

Temperature Optimum [°C]

Temperature Optimum [°C] Temperature Optimum Maximum [°C] Comment Organism
25
-
assay at Escherichia coli
25
-
assay at Giardia intestinalis
25
-
assay at Pseudomonas aeruginosa
25
-
assay at Bacillus cereus
25
-
assay at Burkholderia mallei

Turnover Number [1/s]

Turnover Number Minimum [1/s] Turnover Number Maximum [1/s] Substrate Comment Organism Structure
0.09
-
L-canavanine pH 5.6, 25°C Burkholderia mallei
0.32
-
L-canavanine pH 7.5, 25°C Giardia intestinalis
0.42
-
L-canavanine pH 6.0, 25°C Escherichia coli
0.46
-
L-canavanine pH 7.0, 25°C Bacillus cereus
0.62
-
L-canavanine pH 5.6, 25°C Pseudomonas aeruginosa
1.3
-
L-arginine pH 5.6, 25°C Burkholderia mallei
2.6
-
L-arginine pH 7.5, 25°C Giardia intestinalis
3.2
-
L-arginine pH 6.0, 25°C Escherichia coli
4.4
-
L-arginine pH 7.0, 25°C Bacillus cereus
6.3
-
L-arginine pH 5.6, 25°C Pseudomonas aeruginosa

pH Optimum

pH Optimum Minimum pH Optimum Maximum Comment Organism
5.6
-
-
Pseudomonas aeruginosa
5.6
-
-
Burkholderia mallei
5.6
-
assay at Pseudomonas aeruginosa
6
-
-
Escherichia coli
7
-
-
Bacillus cereus
7.5
-
-
Giardia intestinalis

Ki Value [mM]

Ki Value [mM] Ki Value maximum [mM] Inhibitor Comment Organism Structure
1.7
-
L-canavanine pH 5.6, 25°C Pseudomonas aeruginosa