BRENDA - Enzyme Database show
show all sequences of 1.14.13.29

In silico approach to support that p-nitrophenol monooxygenase from Arthrobacter sp. strain JS443 catalyzes the initial two sequential monooxygenations

Kallubai, M.; Amineni, U.; Mallavarapu, M.; Kadiyala, V.; Interdiscip. Sci. Comput. Life Sci. 7, 157-167 (2015)

Data extracted from this reference:

Natural Substrates/ Products (Substrates)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
4-nitrophenol + NAD(P)H + H+ + O2
Lysinibacillus sphaericus
-
4-nitrocatechol + NAD(P)+ + H2O
-
-
?
4-nitrophenol + NAD(P)H + H+ + O2
Lysinibacillus sphaericus JS905
-
4-nitrocatechol + NAD(P)+ + H2O
-
-
?
4-nitrophenol + NADH + H+ + O2
Arthrobacter sp.
-
4-nitrocatechol + NAD+ + H2O
-
-
?
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Arthrobacter sp.
A7YVV2
-
-
Lysinibacillus sphaericus
-
-
-
Lysinibacillus sphaericus JS905
-
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
4-nitrophenol + NAD(P)H + H+ + O2
-
745126
Lysinibacillus sphaericus
4-nitrocatechol + NAD(P)+ + H2O
-
-
-
?
4-nitrophenol + NAD(P)H + H+ + O2
-
745126
Lysinibacillus sphaericus JS905
4-nitrocatechol + NAD(P)+ + H2O
-
-
-
?
4-nitrophenol + NADH + H+ + O2
-
745126
Arthrobacter sp.
4-nitrocatechol + NAD+ + H2O
-
-
-
?
Cofactor
Cofactor
Commentary
Organism
Structure
FAD
-
Arthrobacter sp.
FAD
-
Lysinibacillus sphaericus
NADH
-
Arthrobacter sp.
NADH
-
Lysinibacillus sphaericus
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
FAD
-
Arthrobacter sp.
FAD
-
Lysinibacillus sphaericus
NADH
-
Arthrobacter sp.
NADH
-
Lysinibacillus sphaericus
Natural Substrates/ Products (Substrates) (protein specific)
Natural Substrates
Organism
Commentary (Nat. Sub.)
Natural Products
Commentary (Nat. Pro.)
Organism (Nat. Pro.)
Reversibility
4-nitrophenol + NAD(P)H + H+ + O2
Lysinibacillus sphaericus
-
4-nitrocatechol + NAD(P)+ + H2O
-
-
?
4-nitrophenol + NAD(P)H + H+ + O2
Lysinibacillus sphaericus JS905
-
4-nitrocatechol + NAD(P)+ + H2O
-
-
?
4-nitrophenol + NADH + H+ + O2
Arthrobacter sp.
-
4-nitrocatechol + NAD+ + H2O
-
-
?
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
4-nitrophenol + NAD(P)H + H+ + O2
-
745126
Lysinibacillus sphaericus
4-nitrocatechol + NAD(P)+ + H2O
-
-
-
?
4-nitrophenol + NAD(P)H + H+ + O2
-
745126
Lysinibacillus sphaericus JS905
4-nitrocatechol + NAD(P)+ + H2O
-
-
-
?
4-nitrophenol + NADH + H+ + O2
-
745126
Arthrobacter sp.
4-nitrocatechol + NAD+ + H2O
-
-
-
?
General Information
General Information
Commentary
Organism
evolution
PNP monooxygenase belongs to a two-component flavin-diffusible monooxygenase family
Lysinibacillus sphaericus
metabolism
the enzyme PNP monoxygenase is involved in the degradation of 4-nitrophenol, proposed pathway, overview. 4-Nitrophenol is converted to 4-nitrocatechol by a 4-nitrophenol 2-monooxygenase, EC 1.14.13.29, of the enzyme, which is subsequently converted to 2-hydroxy-1,4-benzoquinone, EC 1.14.13.166
Arthrobacter sp.
metabolism
the enzyme PNP monoxygenase is involved in the degradation of 4-nitrophenol, proposed pathway, overview. 4-Nitrophenol is converted to 4-nitrocatechol by a 4-nitrophenol 2-monooxygenase, EC 1.14.13.29, of the enzyme, which is subsequently converted to 2-hydroxy-1,4-benzoquinone, EC 1.14.13.166
Lysinibacillus sphaericus
additional information
enzyme structure homology model for PNP monooxygenase using crystal structure of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100, PDB IS 3HWC, as template. Molecular dynamics simulations performed for docking complexes show the stable interaction between enzyme and substrate 4-nitrocatechol of substrates into the active site of PNP monooxygenase, overview
Arthrobacter sp.
additional information
enzyme structure homology model for PNP monooxygenase using crystal structure of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100, PDB IS 3HWC, as template. Molecular dynamics simulations performed for docking complexes show the stable interaction between enzyme and substrate 4-nitrocatechol. Docking of substrates into the active site of PNP monooxygenase, Arg100, Gln158 and Thr193 are the key catalytic residues, overview
Lysinibacillus sphaericus
physiological function
the enzyme comprises two components, a flavoprotein reductase and an oxygenase, catalyzes the initial two sequential monooxygenations to convert 4-nitrophenol to trihydroxybenzene, EC 1.14.13.29 and EC 1.14.13.166
Arthrobacter sp.
physiological function
the enzyme comprises two components, a flavoprotein reductase and an oxygenase, catalyzes the initial two sequential monooxygenations to convert PNP to trihydroxybenzene, EC 1.14.13.29 and EC 1.14.13.166
Lysinibacillus sphaericus
General Information (protein specific)
General Information
Commentary
Organism
evolution
PNP monooxygenase belongs to a two-component flavin-diffusible monooxygenase family
Lysinibacillus sphaericus
metabolism
the enzyme PNP monoxygenase is involved in the degradation of 4-nitrophenol, proposed pathway, overview. 4-Nitrophenol is converted to 4-nitrocatechol by a 4-nitrophenol 2-monooxygenase, EC 1.14.13.29, of the enzyme, which is subsequently converted to 2-hydroxy-1,4-benzoquinone, EC 1.14.13.166
Arthrobacter sp.
metabolism
the enzyme PNP monoxygenase is involved in the degradation of 4-nitrophenol, proposed pathway, overview. 4-Nitrophenol is converted to 4-nitrocatechol by a 4-nitrophenol 2-monooxygenase, EC 1.14.13.29, of the enzyme, which is subsequently converted to 2-hydroxy-1,4-benzoquinone, EC 1.14.13.166
Lysinibacillus sphaericus
additional information
enzyme structure homology model for PNP monooxygenase using crystal structure of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100, PDB IS 3HWC, as template. Molecular dynamics simulations performed for docking complexes show the stable interaction between enzyme and substrate 4-nitrocatechol of substrates into the active site of PNP monooxygenase, overview
Arthrobacter sp.
additional information
enzyme structure homology model for PNP monooxygenase using crystal structure of chlorophenol 4-monooxygenase from Burkholderia cepacia AC1100, PDB IS 3HWC, as template. Molecular dynamics simulations performed for docking complexes show the stable interaction between enzyme and substrate 4-nitrocatechol. Docking of substrates into the active site of PNP monooxygenase, Arg100, Gln158 and Thr193 are the key catalytic residues, overview
Lysinibacillus sphaericus
physiological function
the enzyme comprises two components, a flavoprotein reductase and an oxygenase, catalyzes the initial two sequential monooxygenations to convert 4-nitrophenol to trihydroxybenzene, EC 1.14.13.29 and EC 1.14.13.166
Arthrobacter sp.
physiological function
the enzyme comprises two components, a flavoprotein reductase and an oxygenase, catalyzes the initial two sequential monooxygenations to convert PNP to trihydroxybenzene, EC 1.14.13.29 and EC 1.14.13.166
Lysinibacillus sphaericus
Other publictions for EC 1.14.13.29
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
742710
Kallubai
In silico approach to support ...
Arthrobacter sp. JS443
Interdiscip. Sci.
7
157-167
2015
-
-
-
-
-
-
-
-
-
-
-
-
-
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
745126
Kallubai
In silico approach to support ...
Arthrobacter sp., Lysinibacillus sphaericus, Lysinibacillus sphaericus JS905
Interdiscip. Sci. Comput. Life Sci.
7
157-167
2015
-
-
-
-
-
-
-
-
-
-
-
3
-
8
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
7
7
-
-
-
741687
Min
The gene cluster for para-nit ...
Rhodococcus imtechensis, Rhodococcus imtechensis RKJ300
Appl. Environ. Microbiol.
80
6212-6222
2014
-
-
-
-
-
-
-
-
-
-
-
2
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
725938
Wagner
In vitro inhibition of 7-ethox ...
Cyprinus carpio, Salmo salar
Mol. Biol. Rep.
40
457-462
2013
-
-
-
-
-
-
2
-
2
-
-
-
-
6
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
4
2
-
-
2
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
695586
Zamaratskaia
Modulation of porcine cytochro ...
Sus scrofa
Animal
3
1124-1132
2009
-
-
-
-
-
-
1
-
1
-
-
1
-
3
-
-
1
-
-
1
3
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
1
-
-
-
1
-
1
3
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
697776
Carvalho
Malaria downmodulates mRNA exp ...
Mus musculus
Eur. J. Pharmacol.
616
265-269
2009
-
1
-
-
-
-
-
-
1
-
-
1
-
4
-
-
-
-
-
1
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
1
2
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
698597
Takeo
Mechanism of 4-nitrophenol oxi ...
Rhodococcus sp. PN1
J. Bacteriol.
190
7367-7374
2008
2
-
1
-
-
-
1
-
-
-
3
1
1
5
-
-
1
-
-
-
2
-
7
1
-
-
-
-
1
-
-
1
-
-
-
2
-
1
1
-
-
-
-
1
-
-
-
-
3
1
1
-
-
1
-
-
2
-
7
1
-
-
-
-
1
-
-
-
-
1
1
-
-
-
684593
Pakala
Biodegradation of methyl parat ...
Serratia sp. DS001
Appl. Microbiol. Biotechnol.
73
1452-1462
2007
-
-
1
-
-
-
-
-
-
-
-
1
-
5
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
673929
Vences-Mejia
The effect of aspartame on rat ...
Rattus norvegicus
Hum. Exp. Toxicol.
25
453-459
2006
1
-
-
-
-
-
-
-
1
-
-
1
-
4
-
-
-
-
-
5
-
-
2
-
1
-
-
-
1
-
-
1
-
-
-
1
-
-
1
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
5
-
-
2
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
438907
Hanioka
Effect of alachlor on hepatic ...
Rattus norvegicus
Drug Chem. Toxicol.
25
25-37
2002
-
-
-
-
-
-
-
-
1
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
438906
Allis
A kinetic assay for p-nitrophe ...
Rattus norvegicus
Anal. Biochem.
219
49-52
1994
-
-
-
-
-
-
1
-
1
-
-
-
-
2
-
-
-
-
-
2
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
2
-
-
1
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-
438908
Tassaneeyakul
Validation of 4-nitrophenol as ...
Homo sapiens
Biochem. Pharmacol.
46
1975-1981
1993
1
-
1
-
-
-
9
2
1
-
1
-
-
1
-
-
1
-
-
1
-
-
2
-
-
-
-
-
-
-
-
-
2
-
-
1
-
1
-
-
-
-
-
9
2
2
1
-
1
-
-
-
-
1
-
1
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
438904
Arinc
Lung microsomal p-nitrophenol ...
Ovis aries
Comp. Biochem. Physiol. B
97
455-460
1990
-
-
-
-
-
-
-
1
1
-
-
-
-
2
-
-
-
-
-
1
1
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
1
1
-
-
-
-
-
-
-
-
1
1
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
438903
Koop
Hydroxylation of p-nitrophenol ...
Oryctolagus cuniculus
Mol. Pharmacol.
29
399-404
1986
-
-
-
-
-
-
1
-
1
-
-
-
-
2
-
-
1
-
-
1
-
-
1
-
-
-
-
1
1
-
-
1
-
-
-
-
-
-
1
-
-
-
-
1
-
-
1
-
-
-
-
-
-
1
-
1
-
-
1
-
-
-
-
1
1
-
-
-
-
-
-
-
-
-
438905
Reinke
p-Nitrophenol hydroxylation. A ...
Rattus norvegicus
Drug Metab. Dispos.
13
548-552
1985
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
438902
Mitra
A new 4-nitrophenol 2-hydroxyl ...
Nocardia sp.
Biochem. Int.
8
609-615
1984
-
-
-
-
-
1
12
1
1
-
-
-
-
1
-
-
-
-
-
-
-
2
4
-
1
-
-
-
1
-
-
3
-
-
-
-
-
-
3
-
-
1
-
12
-
1
1
-
-
-
-
-
-
-
-
-
-
2
4
-
1
-
-
-
1
-
-
-
-
-
-
-
-
-