BRENDA - Enzyme Database show
show all sequences of 1.12.5.1

Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2

Gross, R.; Simon, J.; Lancaster, R.D.; Kröger, A.; Mol. Microbiol. 30, 639-646 (1998)

Data extracted from this reference:

Engineering
Amino acid exchange
Commentary
Organism
H122A
mutation in HydC subunit results in an enzyme with wild-type properties
Wolinella succinogenes
H158A
mutation in HydC subunit results in an enzyme with wild-type properties
Wolinella succinogenes
H186A
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H186M
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H187A
mutation in HydC subunit results in an enzyme with wild-type properties
Wolinella succinogenes
H188A
mutation in hydA subuni causes loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H25A
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H25M
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H305M
mutation in hydA subuni causes loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H67A
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H67M
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
Metals/Ions
Metals/Ions
Commentary
Organism
Structure
Fe
the enzyme contain 0.096 mM Fe per g of enzyme
Wolinella succinogenes
Ni
contains 0.0077 mM Ni per g of enzyme
Wolinella succinogenes
Organism
Organism
Primary Accession No. (UniProt)
Commentary
Textmining
Wolinella succinogenes
-
-
-
Substrates and Products (Substrate)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
H2 + 2,3-dimethyl-1,4-naphthoquinone
-
676044
Wolinella succinogenes
reduced 2,3-dimethyl-1,4-naphthoquinone
-
-
-
?
H2 + benzyl viologen
-
676044
Wolinella succinogenes
reduced benzyl viologen
-
-
-
?
H2 + menaquinone
-
676044
Wolinella succinogenes
menaquinol
-
-
-
?
Cofactor
Cofactor
Commentary
Organism
Structure
heme
the cytochrome b subunit of Wolinella succinogenes hydrogenase binds two heme B groups, HydABC contains 0.0121 mM heme per g of protein
Wolinella succinogenes
pI Value
Organism
Commentary
pI Value Maximum
pI Value
Wolinella succinogenes
-
-
7.9
Cofactor (protein specific)
Cofactor
Commentary
Organism
Structure
heme
the cytochrome b subunit of Wolinella succinogenes hydrogenase binds two heme B groups, HydABC contains 0.0121 mM heme per g of protein
Wolinella succinogenes
Engineering (protein specific)
Amino acid exchange
Commentary
Organism
H122A
mutation in HydC subunit results in an enzyme with wild-type properties
Wolinella succinogenes
H158A
mutation in HydC subunit results in an enzyme with wild-type properties
Wolinella succinogenes
H186A
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H186M
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H187A
mutation in HydC subunit results in an enzyme with wild-type properties
Wolinella succinogenes
H188A
mutation in hydA subuni causes loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H25A
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H25M
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H305M
mutation in hydA subuni causes loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H67A
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
H67M
mutation in the HydC subunit causes the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction is retained. The corresponding mutants do not grow with H2 as electron donor and either fumarate or polysulfide as terminal electron acceptor. The mutants grown with formate and fumarate do not catalyse electron transport from H2 to fumarate or to polysulfide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b is not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contains wild-type amounts of the mutated HydC protein
Wolinella succinogenes
Metals/Ions (protein specific)
Metals/Ions
Commentary
Organism
Structure
Fe
the enzyme contain 0.096 mM Fe per g of enzyme
Wolinella succinogenes
Ni
contains 0.0077 mM Ni per g of enzyme
Wolinella succinogenes
Substrates and Products (Substrate) (protein specific)
Substrates
Commentary Substrates
Literature (Substrates)
Organism
Products
Commentary (Products)
Literature (Products)
Organism (Products)
Reversibility
H2 + 2,3-dimethyl-1,4-naphthoquinone
-
676044
Wolinella succinogenes
reduced 2,3-dimethyl-1,4-naphthoquinone
-
-
-
?
H2 + benzyl viologen
-
676044
Wolinella succinogenes
reduced benzyl viologen
-
-
-
?
H2 + menaquinone
-
676044
Wolinella succinogenes
menaquinol
-
-
-
?
pI Value (protein specific)
Organism
Commentary
pI Value Maximum
pI Value
Wolinella succinogenes
-
-
7.9
Other publictions for EC 1.12.5.1
No.
1st author
Pub Med
title
organims
journal
volume
pages
year
Activating Compound
Application
Cloned(Commentary)
Crystallization (Commentary)
Engineering
General Stability
Inhibitors
KM Value [mM]
Localization
Metals/Ions
Molecular Weight [Da]
Natural Substrates/ Products (Substrates)
Organic Solvent Stability
Organism
Oxidation Stability
Posttranslational Modification
Purification (Commentary)
Reaction
Renatured (Commentary)
Source Tissue
Specific Activity [micromol/min/mg]
Storage Stability
Substrates and Products (Substrate)
Subunits
Temperature Optimum [°C]
Temperature Range [°C]
Temperature Stability [°C]
Turnover Number [1/s]
pH Optimum
pH Range
pH Stability
Cofactor
Ki Value [mM]
pI Value
IC50 Value
Activating Compound (protein specific)
Application (protein specific)
Cloned(Commentary) (protein specific)
Cofactor (protein specific)
Crystallization (Commentary) (protein specific)
Engineering (protein specific)
General Stability (protein specific)
IC50 Value (protein specific)
Inhibitors (protein specific)
Ki Value [mM] (protein specific)
KM Value [mM] (protein specific)
Localization (protein specific)
Metals/Ions (protein specific)
Molecular Weight [Da] (protein specific)
Natural Substrates/ Products (Substrates) (protein specific)
Organic Solvent Stability (protein specific)
Oxidation Stability (protein specific)
Posttranslational Modification (protein specific)
Purification (Commentary) (protein specific)
Renatured (Commentary) (protein specific)
Source Tissue (protein specific)
Specific Activity [micromol/min/mg] (protein specific)
Storage Stability (protein specific)
Substrates and Products (Substrate) (protein specific)
Subunits (protein specific)
Temperature Optimum [°C] (protein specific)
Temperature Range [°C] (protein specific)
Temperature Stability [°C] (protein specific)
Turnover Number [1/s] (protein specific)
pH Optimum (protein specific)
pH Range (protein specific)
pH Stability (protein specific)
pI Value (protein specific)
Expression
General Information
General Information (protein specific)
Expression (protein specific)
KCat/KM [mM/s]
KCat/KM [mM/s] (protein specific)
676044
Gross
Identification of histidine re ...
Wolinella succinogenes
Mol. Microbiol.
30
639-646
1998
-
-
-
-
11
-
-
-
-
2
-
-
-
1
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
1
-
-
-
-
1
-
11
-
-
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
3
-
-
-
-
-
-
-
-
1
-
-
-
-
-
-
394193
Dross
Erratum ...
Wolinella succinogenes
Eur. J. Biochem.
214
949-950
1993
-
-
1
-
-
-
-
-
1
-
3
-
-
1
-
-
1
-
-
-
1
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
3
-
-
-
-
1
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
673710
Ferber
Hydrogen-ubiquinone oxidoreduc ...
Bradyrhizobium japonicum, Bradyrhizobium japonicum SR473
FEMS Microbiol. Lett.
110
257-264
1993
-
-
-
-
-
-
2
-
-
2
3
-
-
2
-
-
1
-
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
2
3
-
-
-
-
1
-
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
394192
Dross
The quinone-reactive Ni/Fe-hyd ...
Wolinella succinogenes
Eur. J. Biochem.
206
93-102
1992
-
-
1
-
-
-
-
-
1
-
6
-
-
1
-
-
1
-
-
-
1
-
2
1
-
-
-
-
-
-
-
1
-
-
-
-
-
1
1
-
-
-
-
-
-
-
1
-
6
-
-
-
-
1
-
-
1
-
2
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-