We're sorry, but BRENDA doesn't work properly without JavaScript. Please make sure you have JavaScript enabled in your browser settings.
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
EC Tree
IUBMB Comments The enzyme from Chlamydia psittaci transfers four KDO residues to lipid A, forming a branched tetrasaccharide with the structure alpha-KDO-(2,8)-[alpha-KDO-(2,4)]-alpha-KDO-(2,4)-alpha-KDO (cf. EC 2.4.99.12 [lipid IVA 3-deoxy-D-manno-octulosonic acid transferase], EC 2.4.99.13 [(KDO)-lipid IVA 3-deoxy-D-manno-octulosonic acid transferase], and EC 2.4.99.14 [(KDO)2-lipid IVA (2-8) 3-deoxy-D-manno-octulosonic acid transferase]).
The enzyme appears in viruses and cellular organisms
Synonyms
3-deoxy-D-manno-oct-2-ulosonic acid transferases, Kdo transferase,
more
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
3-deoxy-D-manno-oct-2-ulosonic acid transferases
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
alpha-Kdo-(2->8)-alpha-Kdo-(2->4)-alpha-Kdo-(2->6)-lipid IVA + CMP-beta-Kdo = alpha-Kdo-(2->8)-[alpha-Kdo-(2->4)]-alpha-Kdo-(2->4)-alpha-Kdo-(2->6)-lipid IVA + CMP
alpha-Kdo-(2->8)-alpha-Kdo-(2->4)-alpha-Kdo-(2->6)-lipid IVA + CMP-beta-Kdo = alpha-Kdo-(2->8)-[alpha-Kdo-(2->4)]-alpha-Kdo-(2->4)-alpha-Kdo-(2->6)-lipid IVA + CMP
(KDO)3-lipid IV(A) = 3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxypentadecanoyl]amino]-3-O[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose. (KDO)4-lipid IV(A) = 3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-[3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)]-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxypentadecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose
-
alpha-Kdo-(2->8)-alpha-Kdo-(2->4)-alpha-Kdo-(2->6)-lipid IVA + CMP-beta-Kdo = alpha-Kdo-(2->8)-[alpha-Kdo-(2->4)]-alpha-Kdo-(2->4)-alpha-Kdo-(2->6)-lipid IVA + CMP
-
-
-
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
CMP-3-deoxy-D-manno-oct-2-ulosonate:(KDO)3-lipid IVA 3-deoxy-D-manno-oct-2-ulosonate transferase [(2->4) glycosidic bond-forming]
The enzyme from Chlamydia psittaci transfers four KDO residues to lipid A, forming a branched tetrasaccharide with the structure alpha-KDO-(2,8)-[alpha-KDO-(2,4)]-alpha-KDO-(2,4)-alpha-KDO (cf. EC 2.4.99.12 [lipid IVA 3-deoxy-D-manno-octulosonic acid transferase], EC 2.4.99.13 [(KDO)-lipid IVA 3-deoxy-D-manno-octulosonic acid transferase], and EC 2.4.99.14 [(KDO)2-lipid IVA (2-8) 3-deoxy-D-manno-octulosonic acid transferase]).
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP-3-deoxy-D-manno-octulosonate
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-[3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)]-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP-3-deoxy-D-manno-octulosonate
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-[3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)]-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP
-
-
-
-
?
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP-3-deoxy-D-manno-octulosonate
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-[3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)]-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP
-
chlamydial Kdo transferases can replace in Escherichia coli K-12 the host's KDO transferase and retain the product specificities described in their natural background. WaaA from Chlamydia psittaci transfers predominantly four KDO residues to lipid A, forming a branched tetrasaccharide with the structure alpha-KDO-(2,8)-[alpha-KDO-(2,4)]-alpha-KDO-(2,4)-alpha-KDO
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP-3-deoxy-D-manno-octulosonate
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-[3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)]-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP-3-deoxy-D-manno-octulosonate
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-[3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)]-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP
-
-
-
-
?
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP-3-deoxy-D-manno-octulosonate
3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->8)-[3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)]-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->4)-3-deoxy-alpha-D-manno-oct-2-ulopyranosyl-(2->6)-2-deoxy-2-[[(3R)-3-hydroxytetradecanoyl]amino]-3-O-[(3R)-3-hydroxytetradecanoyl]-4-O-phosphono-beta-D-glucopyranosyl-(1->6)-2-deoxy-3-O-[(3R)-3-hydroxytetradecanoyl]-2-[[(3R)-3-hydroxytetradecanoyl]amino]-1-O-phosphono-alpha-D-glucopyranose + CMP
-
chlamydial Kdo transferases can replace in Escherichia coli K-12 the host's KDO transferase and retain the product specificities described in their natural background. WaaA from Chlamydia psittaci transfers predominantly four KDO residues to lipid A, forming a branched tetrasaccharide with the structure alpha-KDO-(2,8)-[alpha-KDO-(2,4)]-alpha-KDO-(2,4)-alpha-KDO
-
-
?
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
-
-
-
brenda
-
-
-
brenda
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
physiological function
-
chlamydial Kdo transferases can replace in Escherichia coli K-12 the host's KDO transferase and retain the product specificities described in their natural background. WaaA from Chlamydia psittaci transfers predominantly four KDO residues to lipid A, forming a branched tetrasaccharide with the structure alpha-KDO-(2,8)-[alpha-KDO-(2,4)-alpha-KDO-(2,4)-alpha-KDO]
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
expression in Escherichia coli
-
expression in Escherichia coli. Chlamydial KDO transferases can replace in Escherichia coli K-12 the host's KDO transferase and retain the product specificities described in their natural background. WaaA from Chlamydia psittaci transfers predominantly four KDOo residues to lipid A, forming a branched tetrasaccharide with the structure alpha-KDO-(2,8)-[alpha-KDO-(2,4)]-alpha-KDO-(2,4)-alpha-KDO
-
Please wait a moment until the data is sorted. This message will disappear when the data is sorted.
Holst, O.; Bock, K.; Brade, L.; Brade, H.
The structures of oligosaccharide bisphosphates isolated from the lipopolysaccharide of a recombinant Escherichia coli strain expressing the gene gseA [3-deoxy-D-manno-octulopyranosonic acid (Kdo) transferase] of Chlamydia psittaci 6BC
Eur. J. Biochem.
229
194-200
1995
Chlamydia psittaci, Chlamydia psittaci 6BC
brenda
Brabetz, W.; Lindner, B.; Brade, H.
Comparative analyses of secondary gene products of 3-deoxy-D-manno-oct-2-ulosonic acid transferases from Chlamydiaceae in Escherichia coli K-12
Eur. J. Biochem.
267
5458-5465
2000
Chlamydia psittaci
brenda
Select items on the left to see more content.
html completed