EC Number |
Substrates |
Products |
Reversibility |
---|
4.1.2.10 | (R)-4-hydroxymandelonitrile |
- |
cyanide + 4-hydroxybenzaldehyde |
- |
r |
4.1.2.10 | (R)-mandelonitrile |
- |
cyanide + benzaldehyde |
- |
? |
4.1.2.10 | (R)-mandelonitrile |
- |
cyanide + benzaldehyde |
- |
r |
4.1.2.10 | (R)-mandelonitrile |
in a large number of plant species hydroxynitrile lyases catalyzes the decomposition of cyanohydrins in order to generate hydrogen cyanide upon tissue damage. Hydrogen cyanide serves as a deterrent against herbivores and fungi |
cyanide + benzaldehyde |
- |
r |
4.1.2.10 | (R)-mandelonitrile |
in Prunus serotina Ehrh. macerates, the cyanogenic diglucoside (R)-amygdalin undergoes stepwise degradation to HCN catalyzed by amygdalin hydrolase, prunasin hydrolase, and (R)-(+)-mandelonitrile lyase |
cyanide + benzaldehyde |
- |
? |
4.1.2.10 | (R)-mandelonitrile |
modeling studies provide insights into the mechanism of cyanogenesis |
cyanide + benzaldehyde |
- |
r |
4.1.2.10 | 2-chlorobenzaldehyde + HCN |
- |
(R)-2-chloromandelonitrile |
after 96 h, 100% yield, 21% enantiomeric excess |
? |
4.1.2.10 | 2-chlorobenzaldehyde + nitromethane |
- |
1-(2-chlorophenyl)-2-nitroethanol |
34% yield after 2 h |
? |
4.1.2.10 | 2-heptanone + HCN |
needs long reaction time (26 h), providing low enantiomeric exess (14%), which supports the fact that methyl ketones of long aliphatic chain are poor substrates |
(R)-2-heptanone cyanohydrin |
- |
? |
4.1.2.10 | 2-methoxybenzaldehyde + nitromethane |
- |
1-(2-methoxyphenyl)-2-nitroethanol |
13% yield after 2 h |
? |