Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search Substrates and Products (Substrate)

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

<< < Results 121 - 130 of 144 > >>
EC Number Substrates Commentary Substrates Organism Products Commentary (Products) Reversibility
Display the word mapDisplay the reaction diagram Show all sequences 2.7.11.10more hypoxia alters the cellular pool of IKKalpha and IKKbeta, and activates NFkappaB through a pathway involving activation of IkappaB kinase-beta, IKKbeta, leading to phosphorylation-dependent degradation of IkappaBalpha and liberation of NFkappaB, overview, hypoxia-induced activation of the NFkappaB pathway is independent of HIF-1alpha, prolyl hydroxylase-1 negatively regulates IKKbeta Homo sapiens ? - ?
Display the word mapDisplay the reaction diagram Show all sequences 2.7.11.10more IkappaB kinase beta plays a critical role in metallothionein-1 expression and protection against arsenic toxicity, two signaling pathways appear to be important for modulating arsenic toxicity. First, the IKK-NF-kappaB pathway is crucial for maintaining cellular metallothionein-1 levels to counteract reactive oxygen species accumulation, and second, when this pathway fails, excessive reactive oxygen species leads to activation of the MKK4-JNK pathway, resulting in apoptosis Mus musculus ? - ?
Display the word mapDisplay the reaction diagram Show all sequences 2.7.11.10more IkappaB kinase beta plays an essential role in remodeling Carma1-Bcl10-Malt1 complexes upon T cell activation, T cell receptor signaling to IkappaB kinase/NF-kappaB is controlled by PKCtheta-dependent activation of the Carma1, Bcl10, and Malt1 CBM complex, IKKbeta triggers the CBM complex formation and phosphorylation of Bcl by PMA/ionomycin or CD3/CD28, regulation, overview Mus musculus ? - ?
Display the word mapDisplay the reaction diagram Show all sequences 2.7.11.10more IkappaB kinase beta plays an essential role in remodeling Carma1-Bcl10-Malt1 complexes upon T cell activation, T cell receptor signaling to IkappaB kinase/NF-kappaB is controlled by PKCtheta-dependent activation of the Carma1, Bcl10, and Malt1 CBM complex, IKKbeta triggers the CBM complex formation and phosphorylation of Bcl by PMA/ionomycin or CD3/CD28, regulation, overview Homo sapiens ? - ?
Display the word mapDisplay the reaction diagram Show all sequences 2.7.11.10more IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9, but IKK-a is dispensable for a cytoplasmic RNA helicase RIG-I-dependent cytosolic pathway-induced production of IFN-alpha in MEF cells, overview Mus musculus ? - ?
Display the word mapDisplay the reaction diagram Show all sequences 2.7.11.10more IKK is responsible for activation of NF-kappaB by initiating the degradation of the NF-kappaB inhibitor IkappaB, subunits IKKalpha and IKKgamma/NEMO, not IKKbeta, are required for reovirus-induced NF-kappaB activation and apoptosis, overview Homo sapiens ? - ?
Display the word mapDisplay the reaction diagram Show all sequences 2.7.11.10more IKK-beta inhibition in vivo leads to reduction of rhinovirus-induced expression of CXCL8, CCL5, and IL-6, the enzyme is important in regulation of the NF-kappaB signaling pathway, overview Homo sapiens ? - ?
Display the word mapDisplay the reaction diagram Show all sequences 2.7.11.10more IKK-related kinases tank-binding kinase 1 TBK1/IKKi and cullin-based ubiquitin ligases are involved in IFN regulatory factor-3, IRF-3, phosphorylation, activation, and degradation, IRF-3 activation is induced by viral infection, e.g. by HCMV, molecular mechanisms, detailed overview Mus musculus ? - ?
Display the word mapDisplay the reaction diagram Show all sequences 2.7.11.10more IKKalpha and IKKbeta are distinctly involved in ERK1-dependent, but IkappaBalpha-P65- and p100-p52-independent, upregulation of MUC5AC mucin transcription in case of infection by Streptococcus pneumoniae, MUC5AC mucin induction also requires pneumolysin and TLR4-dependent MyD88-IRAK1-TRAF6 signaling, molecular mechanism, overview Mus musculus ? - ?
Display the word mapDisplay the reaction diagram Show all sequences 2.7.11.10more IKKalpha and IKKbeta are distinctly involved in ERK1-dependent, but IkappaBalpha-P65- and p100-p52-independent, upregulation of MUC5AC mucin transcription in case of infection by Streptococcus pneumoniae, MUC5AC mucin induction also requires pneumolysin and TLR4-dependent MyD88-IRAK1-TRAF6 signaling, molecular mechanism, overview Homo sapiens ? - ?
<< < Results 121 - 130 of 144 > >>