Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 3 of 3
EC Number General Information Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 3.6.1.52malfunction the content of acid-soluble and acid-insoluble polyphosphates under DDP1 overexpression decreases by 9 and 28%, respectively. The average chain length of salt-soluble and alkali-soluble fractions does not change in the overexpressing strain, and that of acid-soluble polyphosphate increases under phosphate excess. At the initial stage of polyphosphate recovery after phosphorus starvation, the chain length of the acid-soluble fraction in transformed cells is lower compared to the recipient strain. In DDP1 deletion mutant, the level of inositol pyrophosphate is twice higher, while the level of polyphosphate is reduced. The overexpression of DDP1 probably leads to a decrease in the level of diphosphoinositol pentakisphosphate and bis(diphosphoinositol) tetrakisphosphate in the cell. These compounds seem to be involved in the regulation of polyphosphate synthesis and degradation -, 756069
Display the word mapDisplay the reaction diagram Show all sequences 3.6.1.52metabolism diphosphoinositol polyphosphate phosphohydrolase (DDP1, EC 3.6.1.52) is also a diadenosine hexaphosphate hydrolase (AMP-forming) (EC 3.6.1.60) and shows endopolyphosphatase (EC 3.6.1.10) activity. The relationship between inositol pyrophosphate and polyphosphate metabolisms seems to be complicated 756069
Display the word mapDisplay the reaction diagram Show all sequences 3.6.1.52physiological function yeast diphosphoinositol polyphosphate phosphohydrolase (DDP1) having endopolyphosphatase activity on inorganic polyphosphate metabolism in Saccharomyces cerevisiae. Complex nature of DDP1 involvement in the regulation of polyphosphate content and chain length in yeasts -, 756069
Results 1 - 3 of 3