Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 8 of 8
EC Number General Information Commentary Reference
Show all pathways known for 1.5.1.43Display the word mapDisplay the reaction diagram Show all sequences 1.5.1.43malfunction accumulation of the precursor putrescine in the CASDH mutant The mutant accumulates homospermidine, which requires a homospermidine synthase (hss) homologue. Agrobacterium tumefaciens mutants with diminished levels of the polyamine spermidine are stimulated for biofilm formation, and exogenous provision of spermidine decreases biofilm formation. Spermidine is also essential for Agrobacterium tumefaciens growth, but the related polyamine norspermidine exogenously rescues growth and does not diminish biofilm formation, the growth requirement and biofilm control are separable. Exogenous spermidine and norspermidine restore prototrophic growth for CASDH and CASDC mutants, but only spermidine inhibits biofilm formation. CASDH and CASDC mutants accumulate homospermidine via a homospermidine synthase homologue 742792
Show all pathways known for 1.5.1.43Display the word mapDisplay the reaction diagram Show all sequences 1.5.1.43malfunction deletion of the enzyme leads to a 50-60% reduction in growth rate of planktonic cells and severely reduced biofilm formation -, 704647
Show all pathways known for 1.5.1.43Display the word mapDisplay the reaction diagram Show all sequences 1.5.1.43malfunction exogenous spermidine and norspermidine restore prototrophic growth for DELTA(CASDH) carboxynorspermidine synthase and DELTA(CASDC) carboxynorspermidine decarboxylase mutants -, 742792
Show all pathways known for 1.5.1.43Display the word mapDisplay the reaction diagram Show all sequences 1.5.1.43malfunction the DELTACASDH (Atu4170) mutant strain accumulates putrescine and homospermidine but lacks spermidine. The DELTA4170 strain contains endogenously produced putrescine and homospermidine, but there is no growth of this strain in the absence of exogenously supplied polyamines. Homospermidine biosynthesis is induced only after spermidine depletion. The DELTACASDH strain grows well in medium with added exogenous N8-acetylspermidine -, 741488
Show all pathways known for 1.5.1.43Display the word mapDisplay the reaction diagram Show all sequences 1.5.1.43metabolism in an alternative pathway (alternate to the pathway via S-adenosyl-L-methionine), putrescine is first converted into carboxyspermidine with the precursor L-aspartate beta-semialdehyde by the enzyme carboxyspermidine dehydrogenase (CASDH), and then carboxyspermidine is converted to spermidine by carboxyspermidine decarboxylase (CASDC). Spermidine is an essential metabolite in Agrobacterium tumefaciens and is synthesized from putrescine via the stepwise actions of carboxyspermidine dehydrogenase (CASDH) and carboxyspermidine decarboxylase (CASDC) 742792
Show all pathways known for 1.5.1.43Display the word mapDisplay the reaction diagram Show all sequences 1.5.1.43metabolism when spermidine levels are pharmacologically decreased, synthesis of spermine from spermidine is induced via the same biosynthetic enzymes, carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase that produce spermidine from putrescine. Spermidine represses spermine biosynthesis, but when spermidine levels decrease, it is then converted by carboxyspermidine dehydrogenase and decarboxylase enzymes to spermine, which is resistant to retroconversion and constitutes a sequestered pool of protected 1,3-diaminopropane modules required for growth. Polyamine biosynthesis in Agrobacterium tumefaciens strain C58, overview -, 741488
Show all pathways known for 1.5.1.43Display the word mapDisplay the reaction diagram Show all sequences 1.5.1.43physiological function spermidine is an essential metabolite in Agrobacterium tumefaciens and is synthesized from putrescine via the stepwise actions of carboxyspermidine dehydrogenase (CASDH) and carboxyspermidine decarboxylase (CASDC). Spermidine is essential for Agrobacterium tumefaciens growth, growth requirement and biofilm control are separable. Polyamine control of biofilm formation appears to function via effects on the cellular second messenger cyclic diguanylate monophosphate, regulating the transition from a freeliving to a surface-attached lifestyle 742792
Show all pathways known for 1.5.1.43Display the word mapDisplay the reaction diagram Show all sequences 1.5.1.43physiological function when spermidine levels are pharmacologically decreased, synthesis of spermine from spermidine is induced via the same biosynthetic enzymes, carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase that produce spermidine from putrescine. Essential role of a terminal 1,3-diaminopropane moiety in growth of Agrobacterium tumefaciens -, 741488
Results 1 - 8 of 8