Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 3 of 3
EC Number General Information Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 1.21.3.6metabolism substrate specificity allows elucidation of a likely mechanism of aurone formation from 2,4,6,4-tetrahydroxychalcone or PHC involving both tyrosinase and catechol oxidase activities of the Antirrhinum majus PPO, pathway overview. Starting with THC, tyrosinase and catechol oxidase activity, EC 1.14.18.1, result in 3-hydroxylation and formation of the corresponding o-quinone. Whether aureusidine synthase PPO carries out the 3-hydroxylation reaction in vivo, or whether a cytochrome P450 chalcone 3-hydroxylase is also involved is not definitively established. Aureusidine synthase likely forms the same quinone from 2',3,4,4',6'-pentahydroxychalcone without the need for the 3-hydroxylation step. The resulting quinone is predicted to undergo a 2-step non-enzyme mediated rearrangement to form aureusidine 744988
Display the word mapDisplay the reaction diagram Show all sequences 1.21.3.6physiological function expression in Nicotiana tabacum and Lactuca sativa leads to plants that display a functionally active chalcone-flavanone biosynthetic pathway. Leaves of the resulting transgenic plants develop a yellow hue and display higher superoxide dismutase inhibiting and oxygen radical absorbance capacity activities than control leaves 720645
Display the word mapDisplay the reaction diagram Show all sequences 1.21.3.6physiological function PPOs have a role in postharvest browning, secondary reactions of PPO-generated o-quinones with cellular nucleophiles leading to the familiar discoloration of fresh products and plant materials. Aurones (aureusidin and bracteatin) are formed from 2,4,6,4-tetrahydroxychalcone or 2,4,6,3,4-pentahydroxychalcone upon incubation with extracts of yellow snapdragon flowers through activity of aureusidin (or aurone) synthase 744988
Results 1 - 3 of 3