Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 10 of 11 > >>
EC Number General Information Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 1.1.2.10evolution XoxJ are predicted to be members of the periplasmic binding protein (PBP) family -, 756461
Display the word mapDisplay the reaction diagram Show all sequences 1.1.2.10evolution XoxJ, encoded by the core Ln-MDH operon, is a member of the periplasmic (or solute) binding protein (PBP or SBP) family -, 763431
Display the word mapDisplay the reaction diagram Show all sequences 1.1.2.10malfunction xoxF is required for the expression of mxaF in Methylobacterium aquaticum 22A, since xoxF deletion mutants are not able to grow in the presence of calcium -, 762947
Display the word mapDisplay the reaction diagram Show all sequences 1.1.2.10metabolism the enzyme is involved in methanol oxidation. XoxF1 is capable of formaldehyde oxidation in vivo and in vitro and alleviates formaldehyde toxicity in formaldehyde oxidation-pathway mutants but in the absence of the NADH-producing pathways, it cannot solely support methanol growth -, 763457
Display the word mapDisplay the reaction diagram Show all sequences 1.1.2.10metabolism the enzyme participates in the methanol oxidation pathway 763284
Display the word mapDisplay the reaction diagram Show all sequences 1.1.2.10metabolism xoxF is required for the expression of mxaF in Methylobacterium aquaticum 22A, since xoxF deletion mutants are not able to grow in the presence of calcium -, 762947
Display the word mapDisplay the reaction diagram Show all sequences 1.1.2.10metabolism XoxF is the preferred enzyme for methanol oxidation, even when calcium is present in 100fold higher concentrations than lanthanide -, 762947
Display the word mapDisplay the reaction diagram Show all sequences 1.1.2.10more XoxF is encoded in an operon alongside genes encoding a c-type cytochrome, XoxG, the physiological electron acceptor for XoxF, as well as a periplasmic solute binding protein (SBP) XoxJ. The crystal structure of XoxJ reveals general architectures similar to classic SBPs, except it exhibits an exceptionally large cavity, putatively for substrate binding, as well as a beta-sheet missing several strands -, 763431
Display the word mapDisplay the reaction diagram Show all sequences 1.1.2.10physiological function lanthanide (Ln)-dependent methanol dehydrogenases (MDHs) have been recently shown to be widespread in methylotrophic bacteria. Along with the core MDH protein, XoxF, these systems comprise two other proteins, XoxG (a c-type cytochrome) and XoxJ (a periplasmic binding protein of unknown function) in methyltroph, Methylobacterium extorquens strain AM1. In contrast to results obtained via an artificial assay system, assays of XoxFs metallated with LaIII, CeIII, and NdIII using their physiological electron acceptor, XoxG, display Ln-independent activities, the Km for XoxG markedly increases from La to Nd. This result suggests that XoxG's redox properties are tuned specifically for lighter Lns in XoxF, an interpretation supported by the unusually low reduction potential of XoxG (+172 mV). The reduction potential of isolated XoxG measured may reasonably approximate the potential of the cytochrome in complex with XoxF -, 756461
Display the word mapDisplay the reaction diagram Show all sequences 1.1.2.10physiological function lanthanoid-dependent methanol dehydrogenase (Eu-MDH) from the acidophilic verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV has its own physiological cytochrome cGJ electron acceptor. Eu-MDH harbours a redox active 2,7,9-tricarboxypyrroloquinoline quinone (PQQ) cofactor which is non-covalently bound but coordinates trivalent lanthanoid elements including Eu3+. Eu-MDH and the cytochrome are co-adsorbed with the biopolymer chitosan and cast onto a mercaptoundecanol (MU) monolayer modified Au working electrode. Cyclic voltammetry of cytochrome cGJ reveals a well-defined quasi-reversible FeIII/II redox couple at +255 mV versus normal hydrogen electrode (NHE) at pH 7.5, and this response is pH independent. The reversible one-electron response of the cytochrome cGJ transforms into a sigmoidal catalytic wave in the presence of Eu-MDH and its substrates (methanol or formaldehyde). The catalytic current is pH-dependent, and pH 7.3 is optimal -, 762927
Results 1 - 10 of 11 > >>