Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 10 of 22 > >>
EC Number
General Information
Commentary
Reference
evolution
the enzyme belongs to the pancreatic-type secretory ribonuclease superfamily; the enzyme belongs to the pancreatic-type secretory ribonuclease superfamily as a unique natively dimeric member
evolution
the enzyme belongs to the vertebrate pancreatic-like RNase A superfamily, sequence comparisons and phylogenetic analysis, overview
evolution
the enzyme is a member of the pancreatic ribonuclease (RNase) superfamily
evolution
the enzyme is one of the key models in studies of evolutionary innovation and functional diversification, evolution and the function of Caniformia RNASE1 genes, phylogenetic analysis, overview. Four independent gene duplication events in the families of superfamily Musteloidea, including Procyonidae, Ailuridae, Mephitidae and Mustelidae
malfunction
mechanistic model for the denaturation of bovine pancreatic ribonuclease A in urea, a direct interaction between urea and protonated histidine as the initial step for protein inactivation followed by hydrogen bond formation with polar residues, and the breaking of hydrophobic collapse as the final steps for protein denaturation
malfunction
RNase A tandem enzymes, in which two RNase A molecules are artificially connected by a peptide linker, and thus have a pseudodimeric structure, exhibit remarkable cytotoxic activity, but can be inhibited by the cytosolic ribonuclease inhibitor in vitro. Structure modeling, overview
metabolism
the enzyme lacks cytotoxic activity as it is inactivated by intracellular cytosolic ribonuclease inhibitor
more
analysis of synthesis and maturation, folding, quality control, and secretion, of pancreatic RNase in the endoplasmic reticulum of live cells, overview. Human RNase folds rapidly and is secreted mainly in glycosylated forms
more
analysis of synthesis and maturation, folding, quality control, and secretion, of pancreatic RNase in the endoplasmic reticulum of live cells, overview. In contrast to the slow in vitro refolding, the protein folds almost instantly after translation and translocation into the endoplasmatic reticulum lumen. Despite high stability of the native protein, only about half of the RNase reaches a secretion competent, monomeric form and is rapidly transported from the rough endoplasmic reticulum via the Golgi complex to the extracellular space
more
analysis of the disulfide bond formation phase in detail in the oxidative folding, as the first of two folding phases, of RNase A, overview. Comparision of folding intermediates of reduced RNase A obtained at 25°C and different pH values from pH 4.0, pH 7.0, to pH 10.0, shuffling and transformation of different intermediate types, overview. The preconformational folding phase coupled with disulfide bond formation can be divided into two distinct subphases, a kinetic (or stochastic) disulfide bond formation phase and a thermodynamic disulfide bond reshuffling phase. The transition from kinetically formed to thermodynamically stabilized disulfide bond intermediates are induced by hydrophobic nucleation as well as generation of the native interactions
Results 1 - 10 of 22 > >>