Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 10 of 12 > >>
EC Number General Information Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 3.5.3.18physiological function heterozygous DDAH1 embryos express DDAH1 RNA and protein at approximately 50% of wild-type levels, while circulating plasma asymmetric dimethylarginine levels of heterozygotes are about 20% higher than those of wild-type mice. Homozygous DDAH1 null embryos are generated at low frequency, and do not progress through embryonic development. Mice carrying an inactivated DDAH2 locus have reduced DDAH2 expression at both the RNA and protein levels in all tissues studied. Breeding of these mice indicates that both heterozygous and homozygous inactivation of the DDAH2 locus does not impact on embryonic survival, with wild type, heterozygous and null mice produced in Mendelian ratios 712183
Display the word mapDisplay the reaction diagram Show all sequences 3.5.3.18physiological function overexpression of DDAH-1 increases endothelial nitric oxide by 24%. Small interfering RNA-mediated down-regulation of DDAH-1 reduces nitric oxide bioavailability by 27%. The reduction in nitric oxide production following DDAH-1 gene silencing is associated with a 48% reduction in L-Arg/asymmetric dimethylarginine and is partially restored with L-Arg supplementation 712403
Display the word mapDisplay the reaction diagram Show all sequences 3.5.3.18physiological function overexpression of DDAH-2 increases endothelial nitric oxide by 18%. Small interfering RNA-mediated down-regulation of DDAH-2 reduces nitric oxide bioavailability by 57%. L-Arg and asymmetric dimethylarginine are unchanged in the DDAH-2-silenced cells, and L-Arg supplementation has no effect on nitric oxide 712403
Display the word mapDisplay the reaction diagram Show all sequences 3.5.3.18malfunction plasma and tissue asymmetrical dimethylarginine (ADMA) and N-monomethyl-L-arginine (L-NMMA) levels in DDAH1-/- mice are several folds higher than in wild-type mice, but growth and development of these knockout mice are similar to wild-type. Although the expression of DDAH2 is unaffected, DDAH activity is undetectable in all tissues tested. Results indicate that DDAH1 is the critical enzyme for ADMA and L-NMMA degradation 718715
Display the word mapDisplay the reaction diagram Show all sequences 3.5.3.18malfunction DDAH1 knockout impairs endothelial sprouting from cultured aortic rings, and overexpression of constitutively active Akt or DDAH1 rescues endothelial sprouting in the aortic rings from these mice 718717
Display the word mapDisplay the reaction diagram Show all sequences 3.5.3.18malfunction using selective gene silencing of DDAH1 with small interfering RNA and overexpression of DDAH1 in HUVEC, it is shown that DDAH1 acts to promote endothelial cell proliferation, migration and tube formation both by Akt phosphorylation as well as through the traditional role of degrading ADMA. DDAH1 overexpression increases Ras activity 718717
Display the word mapDisplay the reaction diagram Show all sequences 3.5.3.18physiological function results from this animal model of prolonged critical illness show that DDAH activities in several organs in concert determine plasma levels of ADMA, confirming that DDAH is an important player in the regulation of circulatory ADMA 720369
Display the word mapDisplay the reaction diagram Show all sequences 3.5.3.18physiological function human DDAH1 overexpression does not protect against hypertension-induced cardiac fibrosis and hypertrophy. In addition, the hypertension-induced impairment of the endothelium-dependent vasorelaxation of aortic segments ex vivo is not significantly attenuated by DDAH1 overexpression. However, human DDAH1 overexpressing mice display an attenuated hypertensive inflammatory response in renal tissue, resulting in less hypertensive renal injury 735071
Display the word mapDisplay the reaction diagram Show all sequences 3.5.3.18physiological function global knockout of Ddah2 results in elevated blood pressure during periods of activity and changes in vascular responsiveness mediated by changes in methylarginine concentration, and systemic nitric oxide concentrations. In a model of severe polymicrobial sepsis, Ddah2 knockout affects outcome. Monocyte-specific deletion of Ddah2 results in a similar pattern of increased severity to that seen in globally deficient animals 752613
Display the word mapDisplay the reaction diagram Show all sequences 3.5.3.18physiological function in mice specifically lacking Ddah1 expression in endothelial cells, plasma asymmetrical dimethylarginine level is unchanged, and cultured aortas release amounts of asymmetrical dimethylarginine to similar to controls. Vasoreactivity ex vivo and hemodynamics in vivo are unaltered in endothelial DDAH1 mutant mice, while angiogenic responses both ex vivo and in vivo are significantly impaired 753292
Results 1 - 10 of 12 > >>