Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search General Information

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

<< < Results 11 - 20 of 28 > >>
EC Number General Information Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 1.9.6.1malfunction Salmonella enterica serovar Typhimurium strains with defects in either nitrate reductase A (narG mutant) or the regulator inducing its transcription in the presence of high concentrations of nitrate (narL mutant) exhibit growth comparable to that of wild-type Salmonella enterica serovar Typhimurium. In contrast, a strain lacking a functional periplasmic nitrate reductase (napA mutant) exhibits a marked growth defect in the lumen of the colon. Inactivation of narP, encoding a response regulator that activates napABC transcription in response to low nitrate concentrations, significantly reduces the growth of Salmonella enterica serovar Typhimurium in the murine host gut lumen -, 742645
Display the word mapDisplay the reaction diagram Show all sequences 1.9.6.1physiological function Salmonella enterica serovar Typhimurium uses the periplasmic nitrate reductase to support its growth on the low nitrate concentrations encountered in the gut, a strategy that may be shared with other enteric pathogens -, 742645
Display the word mapDisplay the reaction diagram Show all sequences 1.9.6.1physiological function the anaerobic reduction of NO3- to N2O is lower in Bradyrhizobium japonicum than in Bradyrhizobium diazoefficiens due to impaired periplasmic nitrate reductase (Nap) activity in B. japonicum. Impaired Nap activity in B. japonicum is due to low Nap protein levels -, 765355
Display the word mapDisplay the reaction diagram Show all sequences 1.9.6.1evolution the enzyme belongs to the DMSO reductase family -, 741958
Display the word mapDisplay the reaction diagram Show all sequences 1.9.6.1more the enzyme shows a sulfur-shift mechanism catalytic mechanism, the active site is deeply buried and centered on the Mo atom, which is hexacoordinated to four sulfur atoms of two pyranopterin guanosine dinucleotides, one inorganic sulfur, and one S (Nap) atom from the side chain of a Cys, structure, structure overview. Above the region of the metal center, the enzyme presents an arginine residue, Arg354,that is proposed to be key for stabilization and substrate binding. The side chain of this residues probably interacts electrostatically with the substrates, compensating for the negative charge and favoring their interaction with the negatively charged active site 741478
Display the word mapDisplay the reaction diagram Show all sequences 1.9.6.1more the enzyme shows a sulfur-shift mechanism catalytic mechanism, the active site is deeply buried and centered on the Mo atom, which is hexacoordinated to four sulfur atoms of two pyranopterin guanosine dinucleotides, one inorganic sulfur, and one S (Nap) atom from the side chain of a Cys, structure. Above the region of the metal center, the enzyme presents an arginine residue, Arg354,that is proposed to be key for stabilization and substrate binding. The side chain of this residues probably interacts electrostatically with the substrates, compensating for the negative charge and favoring their interaction with the negatively charged active site. Comparisons of reaction mechanisms of members of the DMSO reductase family and structure analysis and modelling, overview. The NapA, product of the napA gene, is the catalytic subunit that contains the Mo-bisPGD and one 4Fe-4S center involved in electron transfer. Similar to other periplasmic Mo- and W-enzymes, immature NapA contains a signal peptide that is recognized by the TAT (twin arginine translocator) system. Prior to translocation, the two metallic cofactors are incorporated into NapA with the aid of the chaperone NapD, which accompanies the assembled metalloenzyme to the transporter, maturation mechanism of Mo. NapB contains two c-type hemes and is assembled and secreted into the periplasm by the Ccm (cytochrome c maturation) machinery independently from NapA. Once in the periplasm they form the heterodimer NapAB, except in the case of monomeric Naps. It is remarkable that napM is present only when the napB gene is absent. NapM is a tetrahemic c-type cytochrome. This cytochrome may mediate electron transfer to NapA in a similar way that NapB does in heterodimeric Naps. NapC is a membrane-anchored protein harboring four c-type hemes belonging to the NapC/NirT family. In bacteria like Desulfovibrio desulfuricans ATCC 27774 and Escherichia coli K12, where nitrate reduction catalyzed by Nap is coupled to an energy conserving process, the genes napG and napH are always present 742319
Display the word mapDisplay the reaction diagram Show all sequences 1.9.6.1more the enzyme shows a sulfur-shift mechanism catalytic mechanism, the active site is deeply buried and centered on the Mo atom, which is hexacoordinated to four sulfur atoms of two pyranopterin guanosine dinucleotides, one inorganic sulfur, and one S (Nap) atom from the side chain of a Cys, structure. Above the region of the metal center, the enzyme presents an arginine residue, that is proposed to be key for stabilization and substrate binding. The side chain of this residues probably interacts electrostatically with the substrates, compensating for the negative charge and favoring their interaction with the negatively charged active site. Comparisons of reaction mechanisms of members of the DMSO reductase family and structure analysis and modelling, overview. The NapA (product of the napA gene) is the catalytic subunit that contains the Mo-bis-PGD and one 4Fe-4S center involved in electron transfer. Similar to other periplasmic Mo- and W-enzymes, immature NapA contains a signal peptide that is recognized by the TAT (twin arginine translocator) system. Prior to translocation, the two metallic cofactors are incorporated into NapA with the aid of the chaperone NapD, which accompanies the assembled metalloenzyme to the transporter, maturation mechanism of Mo. NapB contains two c-type hemes and is assembled and secreted into the periplasm by the Ccm (cytochrome c maturation) machinery independently from NapA. Once in the periplasm they form the heterodimer NapAB, except in the case of monomeric Naps. It is remarkable that napM is present only when the napB gene is absent. NapM is a tetrahemic c-type cytochrome. This cytochrome may mediate electron transfer to NapA in a similar way that NapB does in heterodimeric Naps. NapC is a membrane-anchored protein harboring four c-type hemes belonging to the NapC/NirT family. In some bacteria, where nitrate reduction catalyzed by Nap is coupled to an energy conserving process, the genes napG and napH are always present. Nap from Paracoccus pantotrophus catalyzes nitrate reduction to consume the excess of reducing equivalents generated by consumption of the carbon source, which is in agreement with the lack of napG and napH genes -, 742319
Display the word mapDisplay the reaction diagram Show all sequences 1.9.6.1more the enzyme shows a sulfur-shift mechanism catalytic mechanism, the active site is deeply buried and centered on the Mo atom, which is hexacoordinated to four sulfur atoms of two pyranopterin guanosine dinucleotides, one inorganic sulfur, and one S (Nap) atom from the side chain of a Cys, structure. Above the region of the metal center, the enzyme presents an arginine residue, that is proposed to be key for stabilization and substrate binding. The side chain of this residues probably interacts electrostatically with the substrates, compensating for the negative charge and favoring their interaction with the negatively charged active site. Comparisons of reaction mechanisms of members of the DMSO reductase family and structure analysis and modelling, overview. The NapA (product of the napA gene) is the catalytic subunit that contains the Mo-bisPGD and one 4Fe-4S center involved in electron transfer. Similar to other periplasmic Mo- and W-enzymes, immature NapA contains a signal peptide that is recognized by the TAT (Twin Arginine Translocator) system. Prior to translocation, the two metallic cofactors are incorporated into NapA with the aid of the chaperone NapD, which accompanies the assembled metalloenzyme to the transporter, maturation mechanism of Mo. NapB contains two c-type hemes and is assembled and secreted into the periplasm by the Ccm (cytochrome c maturation) machinery independently from NapA. Once in the periplasm they form the heterodimer NapAB, except in the case of monomeric Naps. It is remarkable that napM is present only when the napB gene is absent. NapM is a tetrahemic c-type cytochrome. This cytochrome may mediate electron transfer to NapA in a similar way that NapB does in heterodimeric Naps. NapC is a membrane-anchored protein harboring four c-type hemes belonging to the NapC/NirT family. In some bacteria, where nitrate reduction catalyzed by Nap is coupled to an energy conserving process, the genes napG and napH are always present. But the Nap from Pseudomonas sp. G-179 lacks these two genes -, 742319
Display the word mapDisplay the reaction diagram Show all sequences 1.9.6.1physiological function the Nap enzyme from Cupriavidus necator catalyzes nitrate reduction to consume the excess of reducing equivalents generated by consumption of the carbon source -, 742319
Display the word mapDisplay the reaction diagram Show all sequences 1.9.6.1physiological function the Nap enzyme from Rhodobacter sphaeroides catalyzes nitrate reduction to consume the excess of reducing equivalents generated by consumption of the carbon source 742319
<< < Results 11 - 20 of 28 > >>