Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search Reaction

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 3 of 3
EC Number Reaction Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 1.8.5.12 glutathione + dehydroascorbate = glutathione disulfide + ascorbate catalytic mechanism 394032
Display the word mapDisplay the reaction diagram Show all sequences 1.8.5.12 glutathione + dehydroascorbate = glutathione disulfide + ascorbate the reaction of DHAR proceeds by a bi-uni-uni-uniping-pong enzymatic mechanism. In step 1, the DHA molecule is bound to the catalytic cysteine residue of the reduced form of DHAR (DHAR-S-) and is reduced to ascorbate. This reduction involves nucleophilic attack by the catalytic cysteine residue and the formation of cysteine sulfenic acid (sulfenylated DHAR, DHAR-SOH). In step 2, the reactive sulfenic acid at the catalytic cysteine residue reacts with GSH bound at the G-site and generates the mixed disulfide (DHAR-S-SG). Subsequently, the second GSH molecule binds to the H-site and may be de-protonated to GS-. Then, the GSH bound with the catalytic cysteine residue is removed by the nucleophilic attack of GS- at the H-site. As a result, a catalytic cysteine residue is reduced and one molecule of glutathione disulfide (GSSG) is released (step 3). Unlike most other GSTs, DHARs have an active-site cysteine in place of serine, and rather than stabilizing the thiolate anion of GSH (GS-), this change confers the capacity for reversible disulfide bond formation with GSH as part of the catalytic mechanism -, 765156
Display the word mapDisplay the reaction diagram Show all sequences 1.8.5.12 glutathione + dehydroascorbate = glutathione disulfide + ascorbate the reaction of DHAR proceeds by a bi-uni-uni-uniping-pong enzymatic mechanism. In step 1, the DHA molecule is bound to the catalytic cysteine residue of the reduced form of DHAR (DHAR-S-) and is reduced to ascorbate. This reduction involves nucleophilic attack by the catalytic cysteine residue and the formation of cysteine sulfenic acid (sulfenylated DHAR, DHAR-SOH). In step 2, the reactive sulfenic acid at the catalytic cysteine residue reacts with GSH bound at the G-site and generates the mixed disulfide (DHAR-S-SG). Subsequently, the second GSH molecule binds to the H-site and may be deprotonated to GS-. Then, the GSH bound with the catalytic cysteine residue is removed by the nucleophilic attack of GS- at the H-site. As a result, a catalytic cysteine residue is reduced and one molecule of glutathione disulfide (GSSG) is released (step 3). Unlike most other GSTs, DHARs have an active-site cysteine in place of serine, and rather than stabilizing the thiolate anion of GSH (GS-), this change confers the capacity for reversible disulfide bond formation with GSH as part of the catalytic mechanism 765156
Results 1 - 3 of 3