Any feedback?
Please rate this page
(search_result.php)
(0/150)

BRENDA support

Refine search

Search Application

show results
Don't show organism specific information (fast!)
Search organism in taxonomic tree (slow, choose "exact" as search mode, e.g. "mammalia" for rat,human,monkey,...)
(Not possible to combine with the first option)
Refine your search

Search term:

Results 1 - 3 of 3
EC Number Application Commentary Reference
Display the word mapDisplay the reaction diagram Show all sequences 1.14.13.64pharmacology construction of a novel artificial pathway for arbutin biosynthesis in Escherichia colid. De novo biosynthesis of arbutin from simple carbon sources is established and a generalizable strategy for the biosynthesis of shikimate pathway derived chemicals is provided. Arbutin is a hydroquinone glucoside compound existing in various plants. It is widely used in pharmaceuticaland cosmetic industries owing to its well-known skin-lightening property as well as anti-oxidant, anti-microbial, and anti-inflammatory activities. A 4-hydroxybenzoate 1-hydroxylase gene from Candida parapsilosis CBS604 and a glucosyltransferase (arbutin synthase) gene from Rauvolfia serpentina are introduced into Escherichia coli lead to the production of 54.71 mg/l of arbutin from glucose. Further redirection of carbon flux into arbutin biosynthesis pathway by enhancing shikimate pathway genes enables production of 3.29 g/l arbutin, which is a 60-fold increase compared with the initial strain. Final optimization of glucose concentration added in the culture medium is able to further improve the titer of arbutin to 4.19 g/l in shake flasks experiments, which is around 77-fold higher than that of initial strain -, 745691
Display the word mapDisplay the reaction diagram Show all sequences 1.14.13.64synthesis an artificial pathway is established in Escherichia coli for high-level production of arbutin from simple carbon sources in Escherichia coli for high-level production of arbutin from simple carbon sources. Introduction of the genes for 4-hydroxybenzoate 1-hydroxylase from Candida parapsilosis CBS604 and hydroquinone glucosyltransferase from Rauvolfia serpentina into Escherichia coli leads to the production of 54.71 mg/l of arbutin from glucose. Further redirection of carbon flux into arbutin biosynthesis pathway by enhancing shikimate pathway genes enables production of 3.29 g/l arbutin. Final optimization of glucose concentration added in the culture medium is able to further improve the titer of arbutin to 4.19 g/l in shake flasks experiments -, 745691
Display the word mapDisplay the reaction diagram Show all sequences 1.14.13.64synthesis construction of a novel artificial pathway for arbutin biosynthesis in Escherichia colid. De novo biosynthesis of arbutin from simple carbon sources is established and a generalizable strategy for the biosynthesis of shikimate pathway derived chemicals is provided. Arbutin is a hydroquinone glucoside compound existing in various plants. It is widely used in pharmaceutical and cosmetic industries owing to its well-known skin-lightening property as well as anti-oxidant, anti-microbial, and anti-inflammatory activities. A 4-hydroxybenzoate 1-hydroxylase gene from Candida parapsilosis CBS604 and a glucosyltransferase (arbutin synthase) gene from Rauvolfia serpentina are introduced into Escherichia coli lead to the production of 54.71 mg/l of arbutin from glucose. Further redirection of carbon flux into arbutin biosynthesis pathway by enhancing shikimate pathway genes enables production of 3.29 g/l arbutin, which is a 60-fold increase compared with the initial strain. Final optimization of glucose concentration added in the culture medium is able to further improve the titer of arbutin to 4.19 g/l in shake flasks experiments, which is around 77-fold higher than that of initial strain -, 745691
Results 1 - 3 of 3