4.1.99.5 2-(2-tetradecylcyclopropyl)acetaldehyde + 2 NADH + O2 + 2 H+ formation of 1-octadecene at low level appears to be described by first-order kinetics, 1-octadecene might be involved in enzyme inhibition Nostoc punctiforme 1-methyl-2-tetradecylcyclopropane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 427892 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Synechocystis sp. PCC 6803 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Synechococcus sp. RS9917 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 = FACHB-805 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Limnothrix redekei an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Oscillatoria sp. KNUA011 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ ADO activity is dependent upon a continuous supply of electrons, both for reduction of the Fe2 III/III form of the cofactor back to the O2-reactive Fe2 II/II state and during conversion of the Fe2 III/III-PHA intermediate state to the product complex Nostoc punctiforme an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ C-H-bond-formation by enzyme cADO. The enzyme requires O2 to carry out the oxidative deformylation of substrate to form alkane and formate. The formate product derives an O atom from O2 and retains the aldehyde C-H bond, and the terminal methyl group of the alkane product incorporates an H atom from solvent Prochlorococcus marinus an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme ATCC 29133 / PCC 73102 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ ADO activity is dependent upon a continuous supply of electrons, both for reduction of the Fe2 III/III form of the cofactor back to the O2-reactive Fe2 II/II state and during conversion of the Fe2 III/III-PHA intermediate state to the product complex Nostoc punctiforme ATCC 29133 / PCC 73102 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus MIT 9313 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ C-H-bond-formation by enzyme cADO. The enzyme requires O2 to carry out the oxidative deformylation of substrate to form alkane and formate. The formate product derives an O atom from O2 and retains the aldehyde C-H bond, and the terminal methyl group of the alkane product incorporates an H atom from solvent Prochlorococcus marinus MIT 9313 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus MIT9313 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Limnothrix redekei KNUA012 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 a long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 = FACHB-805 R2 an alkane + formate + H2O + 2 NADP+ - ? 444192 4.1.99.5 butanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Prochlorococcus marinus propane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428453 4.1.99.5 butanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Prochlorococcus marinus MIT9313 propane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428453 4.1.99.5 decanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine Prochlorococcus marinus nonane + formate + H2O + 2 NAD+ - ? 428558 4.1.99.5 decanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine Prochlorococcus marinus MIT 9313 nonane + formate + H2O + 2 NAD+ - ? 428558 4.1.99.5 dodecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Nostoc punctiforme undecane + formate + H2O + 2 NAD+ - ? 428599 4.1.99.5 fatty aldehyde + O2 + NADPH reaction requires dioxygen and results in incorporation of 18O from 18O2 into formate, activity depends on the presence of a reducing system (NADPH, ferredoxin and ferredoxin reductase) Nostoc punctiforme alkane + formate + H2O + NADP+ - ? 416997 4.1.99.5 heptanal + O2 + 2 NAD(P)H + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Prochlorococcus marinus hexane + formate + H2O + 2 NAD(P)+ - ? 428679 4.1.99.5 heptanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Synechococcus sp. hexane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428680 4.1.99.5 heptanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Synechocystis sp. hexane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428680 4.1.99.5 heptanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Prochlorococcus marinus hexane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428680 4.1.99.5 heptanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Nostoc punctiforme hexane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428680 4.1.99.5 heptanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Prochlorococcus marinus MIT9313 hexane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428680 4.1.99.5 hexadecanal + O2 + 2 NAD(P)H + 2 H+ endogenous reducing system ferredoxin-mediated the cytochrome c reduction with ferredoxin-NADP+ reductase Synechococcus elongatus pentadecane + formate + H2O + 2 NAD(P)+ - ? 428682 4.1.99.5 hexadecanal + O2 + 2 NAD(P)H + 2 H+ endogenous reducing system ferredoxin-mediated the cytochrome c reduction with ferredoxin-NADP+ reductase Synechococcus elongatus PCC 7942 pentadecane + formate + H2O + 2 NAD(P)+ - ? 428682 4.1.99.5 isobutyraldehyde + O2 + 2 NADPH + 2 H+ low activity with the wild-type enzyme, but increased activity with enzyme mutants I127G and I127G/A48G Prochlorococcus marinus propane + formate + H2O + 2 NADP+ - ? 445569 4.1.99.5 isobutyraldehyde + O2 + 2 NADPH + 2 H+ low activity with the wild-type enzyme, but increased activity with enzyme mutants I127G and I127G/A48G Prochlorococcus marinus MIT 9313 propane + formate + H2O + 2 NADP+ - ? 445569 4.1.99.5 long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme alkane + formate + H2O + 2 NADP+ - ? 427475 4.1.99.5 long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus alkane + formate + H2O + 2 NADP+ - ? 427475 4.1.99.5 long-chain aldehyde + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 alkane + formate + H2O + 2 NADP+ - ? 427475 4.1.99.5 additional information responsible for a key step in the biosynthesis of hydrocarbon compounds Botryococcus braunii ? - ? 89 4.1.99.5 additional information alkane biosynthesis Pisum sativum ? - ? 89 4.1.99.5 additional information final step in alkane biosynthesis Podiceps nigricollis ? - ? 89 4.1.99.5 additional information final step in alkane biosynthesis Botryococcus braunii ? - ? 89 4.1.99.5 additional information the aldehyde hydrogen is retained in the HCO2- and the hydrogen in the nascent methyl group of the alkane originates, at least in part, from solvent. The reaction appears to be formally hydrolytic, but the improbability of a hydrolytic mechanism having the primary carbanion as the leaving group, the structural similarity of the aldehyde decarbonylases to other O2-activating non-heme di-iron proteins, and the dependence of in vitro aldehyde decarbonylase activity on the presence of a reducing system implicate some type of redox mechanism. Two possible resolutions to this conundrum, overview Nostoc punctiforme ? - ? 89 4.1.99.5 additional information cyanobacterial aldehyde-deformylating oxygenases catalyze conversion of saturated or monounsaturated Cn fatty aldehydes to formate and the corresponding Cn-1 alkanes or alkenes, respectively Nostoc punctiforme ? - ? 89 4.1.99.5 additional information natural specificity of cADO to favour reactivity against short-chain over long-chain aldehydes Prochlorococcus marinus ? - ? 89 4.1.99.5 additional information substrate specificity, overview. Marked decrease in relative yields of aldehyde and alcohol products are observed as the alkyl chain length is decreased from C9 to C8. The relative yields of the one-carbon-shorter alcohol and aldehyde products are optimal with nonanal and decanal and decrease with shorter and longer alkyl chains Prochlorococcus marinus ? - ? 89 4.1.99.5 additional information the endogenous electron transfer system works more effectively than the heterologous and chemical ones, e.g. phenazine methosulfate or 1-methyoxy-5-methylphenazinium methylsulfate and NADH, overview Synechococcus elongatus ? - ? 89 4.1.99.5 additional information the enzyme catalyzes the conversion of Cn fatty aldehydes to formate and the corresponding Cn-1 alk(a/e)nes. This apparently hydrolytic reaction is actually a cryptically redox oxygenation process, in which one O-atom is incorporated from O2 into formate and a protein-based reducing system (NADPH, ferredoxin, and ferredoxin reductase) provides all four electrons needed for the complete reduction of O2, absolute O2 requirement for formate production Prochlorococcus marinus ? - ? 89 4.1.99.5 additional information the enzyme catalyzes the unusual hydrolysis of aldehydes to produce alkanes and formate. The reaction requires an external reducing system but does not require oxygen. The enzyme catalyzes aldehyde decarbonylation at a much faster rate under anaerobic conditions, and the oxygen in formate derives from water. Eventhough an oxygen-dependent mechanism may operate in cAD, the oxygen-independent decarbonylation of aldehydes is a general feature of these enzymes Synechococcus sp. ? - ? 89 4.1.99.5 additional information the enzyme catalyzes the unusual hydrolysis of aldehydes to produce alkanes and formate. The reaction requires an external reducing system but does not require oxygen. The enzyme catalyzes aldehyde decarbonylation at a much faster rate under anaerobic conditions, and the oxygen in formate derives from water. Eventhough an oxygen-dependent mechanism may operate in cAD, the oxygen-independent decarbonylation of aldehydes is a general feature of these enzymes Synechocystis sp. ? - ? 89 4.1.99.5 additional information the enzyme catalyzes the unusual hydrolysis of aldehydes to produce alkanes and formate. The reaction requires an external reducing system but does not require oxygen. The enzyme catalyzes aldehyde decarbonylation at a much faster rate under anaerobic conditions, and the oxygen in formate derives from water. Eventhough an oxygen-dependent mechanism may operate in cAD, the oxygen-independent decarbonylation of aldehydes is a general feature of these enzymes Prochlorococcus marinus ? - ? 89 4.1.99.5 additional information the enzyme catalyzes the unusual hydrolysis of aldehydes to produce alkanes and formate. The reaction requires an external reducing system but does not require oxygen. The enzyme catalyzes aldehyde decarbonylation at a much faster rate under anaerobic conditions, and the oxygen in formate derives from water. Eventhough an oxygen-dependent mechanism may operate in cAD, the oxygen-independent decarbonylation of aldehydes is a general feature of these enzymes Nostoc punctiforme ? - ? 89 4.1.99.5 additional information the enzyme is more active with either long-chain (C18-C14) or short-chain (C9-C5) aldehydes whereas medium chain aldehydes, including dodecanal, are turned over considerably more slowly Nostoc punctiforme ? - ? 89 4.1.99.5 additional information aldehyde-deformylating oxygenase (ADO) catalyzes conversion of a fatty aldehyde to the corresponding alk(a/e)ne and formate, consuming four electrons and one molecule of O2 per turnover and incorporating one atom from O2 into the formate coproduct. A cyanobacterial [2Fe-2S] ferredoxin (PetF), reduced by ferredoxin-NADP+ reductase (FNR) using NADPH, is implicated. Rapid reduction of the diferric-peroxyhemiacetal intermediate in ADO by a cyanobacterial ferredoxin. The enzyme follows a free-radical mechanism. Both the diferric form of Nostoc punctiforme ADO and its (putative) diferric-peroxyhemiacetal intermediate are reduced much more rapidly by Synechocystis sp. PCC6803 PetF than by the previously employed chemical reductant, 1-methoxy-5-methylphenazinium methyl sulfate. The yield of formate and alkane per reduced PetF approaches its theoretical upper limit when reduction of the intermediate is carried out in the presence of FNR. Reduction of the intermediate by either system leads to accumulation of a substrate-derived peroxyl radical as a result of off-pathway trapping of the C2-alkyl radical intermediate by excess O2, which consequently diminishes the yield of the hydrocarbon product. A sulfinyl radical located on residue Cys71 also accumulates with short-chain aldehydes Nostoc punctiforme ? - ? 89 4.1.99.5 additional information cADO shows extreme low activity with kcat value below 1/min Synechococcus elongatus PCC 7942 = FACHB-805 ? - ? 89 4.1.99.5 additional information cyanobacterial aldehyde-deformylating oxygenase (cADO) converts long-chain fatty aldehydes to alkanes via a proposed diferric-peroxo intermediate that carries out the oxidative deformylation of the substrate. The synthetic iron(III)-peroxo complex [FeIII(eta2deltaO2)(TMC)]+ (TMC is tetramethylcyclam) causes a similar transformation in the presence of a suitable H atom donor, thus serving as a functional model for cADO, reaction analysis with undecanal as substrate, detailed overview. Mechanistic studies suggest that the H atom donor can intercept the incipient alkyl radical formed in the oxidative deformylation step in competition with the oxygen rebound step typically used by most oxygenases for forming C-O bonds Prochlorococcus marinus ? - ? 89 4.1.99.5 additional information enzyme assay in anaerobic conditions, quantification of hydrocarbon products by GC-MS Prochlorococcus marinus ? - ? 89 4.1.99.5 additional information GC-MS analysis of the volatile alkane products Nostoc punctiforme ? - ? 89 4.1.99.5 additional information GC-MS analysis of the volatile alkane products Prochlorococcus marinus ? - ? 89 4.1.99.5 additional information GC-MS analysis of the volatile alkane products Synechocystis sp. PCC 6803 ? - ? 89 4.1.99.5 additional information GC-MS analysis of the volatile alkane products Synechococcus sp. RS9917 ? - ? 89 4.1.99.5 additional information GC-MS measurements and identification of products Nostoc punctiforme ? - ? 89 4.1.99.5 additional information NMR studies of substrate Binding to cADO Prochlorococcus marinus ? - ? 89 4.1.99.5 additional information substrate binding site analysis Limnothrix redekei ? - ? 89 4.1.99.5 additional information substrate binding site analysis Oscillatoria sp. KNUA011 ? - ? 89 4.1.99.5 additional information substrate specificity of recombinant wild-type and mutant enzymes, overview. The wild-type prefers long-chain substrates, but some mutants show also higher activity with short-chain substrates. Analysis of preferred substrates in the presence of the competition substrates for wild-type and mutants enzymes Synechococcus elongatus PCC 7942 = FACHB-805 ? - ? 89 4.1.99.5 additional information the in vitro reaction catalyzed by cADO requires both the dioxygen as co-substrate and the presence of a reducing system, which provides four electrons per turnover and can either be biological (ferredoxin, ferredoxin reductase, and NADPH) or chemical (phenazine methosulfate and NADH) Synechococcus elongatus PCC 7942 = FACHB-805 ? - ? 89 4.1.99.5 additional information aldehyde-deformylating oxygenase (ADO) catalyzes conversion of a fatty aldehyde to the corresponding alk(a/e)ne and formate, consuming four electrons and one molecule of O2 per turnover and incorporating one atom from O2 into the formate coproduct. A cyanobacterial [2Fe-2S] ferredoxin (PetF), reduced by ferredoxin-NADP+ reductase (FNR) using NADPH, is implicated. Rapid reduction of the diferric-peroxyhemiacetal intermediate in ADO by a cyanobacterial ferredoxin. The enzyme follows a free-radical mechanism. Both the diferric form of Nostoc punctiforme ADO and its (putative) diferric-peroxyhemiacetal intermediate are reduced much more rapidly by Synechocystis sp. PCC6803 PetF than by the previously employed chemical reductant, 1-methoxy-5-methylphenazinium methyl sulfate. The yield of formate and alkane per reduced PetF approaches its theoretical upper limit when reduction of the intermediate is carried out in the presence of FNR. Reduction of the intermediate by either system leads to accumulation of a substrate-derived peroxyl radical as a result of off-pathway trapping of the C2-alkyl radical intermediate by excess O2, which consequently diminishes the yield of the hydrocarbon product. A sulfinyl radical located on residue Cys71 also accumulates with short-chain aldehydes Nostoc punctiforme ATCC 29133 / PCC 73102 ? - ? 89 4.1.99.5 additional information GC-MS analysis of the volatile alkane products Nostoc punctiforme ATCC 29133 / PCC 73102 ? - ? 89 4.1.99.5 additional information GC-MS measurements and identification of products Nostoc punctiforme ATCC 29133 / PCC 73102 ? - ? 89 4.1.99.5 additional information NMR studies of substrate Binding to cADO Prochlorococcus marinus MIT 9313 ? - ? 89 4.1.99.5 additional information cyanobacterial aldehyde-deformylating oxygenase (cADO) converts long-chain fatty aldehydes to alkanes via a proposed diferric-peroxo intermediate that carries out the oxidative deformylation of the substrate. The synthetic iron(III)-peroxo complex [FeIII(eta2deltaO2)(TMC)]+ (TMC is tetramethylcyclam) causes a similar transformation in the presence of a suitable H atom donor, thus serving as a functional model for cADO, reaction analysis with undecanal as substrate, detailed overview. Mechanistic studies suggest that the H atom donor can intercept the incipient alkyl radical formed in the oxidative deformylation step in competition with the oxygen rebound step typically used by most oxygenases for forming C-O bonds Prochlorococcus marinus MIT 9313 ? - ? 89 4.1.99.5 additional information GC-MS analysis of the volatile alkane products Prochlorococcus marinus MIT 9313 ? - ? 89 4.1.99.5 additional information substrate specificity, overview. Marked decrease in relative yields of aldehyde and alcohol products are observed as the alkyl chain length is decreased from C9 to C8. The relative yields of the one-carbon-shorter alcohol and aldehyde products are optimal with nonanal and decanal and decrease with shorter and longer alkyl chains Prochlorococcus marinus MIT 9313 ? - ? 89 4.1.99.5 additional information the enzyme catalyzes the unusual hydrolysis of aldehydes to produce alkanes and formate. The reaction requires an external reducing system but does not require oxygen. The enzyme catalyzes aldehyde decarbonylation at a much faster rate under anaerobic conditions, and the oxygen in formate derives from water. Eventhough an oxygen-dependent mechanism may operate in cAD, the oxygen-independent decarbonylation of aldehydes is a general feature of these enzymes Prochlorococcus marinus MIT9313 ? - ? 89 4.1.99.5 additional information natural specificity of cADO to favour reactivity against short-chain over long-chain aldehydes Prochlorococcus marinus MIT9313 ? - ? 89 4.1.99.5 additional information enzyme assay in anaerobic conditions, quantification of hydrocarbon products by GC-MS Prochlorococcus marinus MIT9313 ? - ? 89 4.1.99.5 additional information final step in alkane biosynthesis Botryococcus braunii Austin ? - ? 89 4.1.99.5 additional information the endogenous electron transfer system works more effectively than the heterologous and chemical ones, e.g. phenazine methosulfate or 1-methyoxy-5-methylphenazinium methylsulfate and NADH, overview Synechococcus elongatus PCC 7942 ? - ? 89 4.1.99.5 additional information substrate binding site analysis Limnothrix redekei KNUA012 ? - ? 89 4.1.99.5 additional information substrate specificity of recombinant wild-type and mutant enzymes, overview. The wild-type prefers long-chain substrates, but some mutants show also higher activity with short-chain substrates. Analysis of preferred substrates in the presence of the competition substrates for wild-type and mutants enzymes Synechococcus elongatus PCC 7942 = FACHB-805 R2 ? - ? 89 4.1.99.5 additional information cADO shows extreme low activity with kcat value below 1/min Synechococcus elongatus PCC 7942 = FACHB-805 R2 ? - ? 89 4.1.99.5 additional information the in vitro reaction catalyzed by cADO requires both the dioxygen as co-substrate and the presence of a reducing system, which provides four electrons per turnover and can either be biological (ferredoxin, ferredoxin reductase, and NADPH) or chemical (phenazine methosulfate and NADH) Synechococcus elongatus PCC 7942 = FACHB-805 R2 ? - ? 89 4.1.99.5 n-butanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme n-propane + formate + H2O + 2 NADP+ - ? 445724 4.1.99.5 n-butanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus n-propane + formate + H2O + 2 NADP+ - ? 445724 4.1.99.5 n-butanal + O2 + 2 NADPH + 2 H+ - Synechocystis sp. PCC 6803 n-propane + formate + H2O + 2 NADP+ - ? 445724 4.1.99.5 n-butanal + O2 + 2 NADPH + 2 H+ - Synechococcus sp. RS9917 n-propane + formate + H2O + 2 NADP+ - ? 445724 4.1.99.5 n-butanal + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 = FACHB-805 n-propane + formate + H2O + 2 NADP+ - ? 445724 4.1.99.5 n-butanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme ATCC 29133 / PCC 73102 n-propane + formate + H2O + 2 NADP+ - ? 445724 4.1.99.5 n-butanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus MIT 9313 n-propane + formate + H2O + 2 NADP+ - ? 445724 4.1.99.5 n-butanal + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 = FACHB-805 R2 n-propane + formate + H2O + 2 NADP+ - ? 445724 4.1.99.5 n-decanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme n-nonane + formate + H2O + 2 NADP+ - ? 445725 4.1.99.5 n-decanal + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 = FACHB-805 n-nonane + formate + H2O + 2 NADP+ - ? 445725 4.1.99.5 n-decanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme ATCC 29133 / PCC 73102 n-nonane + formate + H2O + 2 NADP+ - ? 445725 4.1.99.5 n-decanal + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 = FACHB-805 R2 n-nonane + formate + H2O + 2 NADP+ - ? 445725 4.1.99.5 n-dodecanal + O2 + 2 NADPH + 2 H+ mutants show increased activity with n-dodecanal compared to wild-type: V184F 4.4fold, F87Y 2.5fold, I27F 2.1fold and V28Y 2.0fold. Yields of n-undecane of wild-type and some cADO mutants against n-dodecanal in the presence of the competition substrates, overview Synechococcus elongatus PCC 7942 = FACHB-805 undecane + formate + H2O + 2 NADP+ - ? 445727 4.1.99.5 n-dodecanal + O2 + 2 NADPH + 2 H+ mutants show increased activity with n-dodecanal compared to wild-type: V184F 4.4fold, F87Y 2.5fold, I27F 2.1fold and V28Y 2.0fold. Yields of n-undecane of wild-type and some cADO mutants against n-dodecanal in the presence of the competition substrates, overview Synechococcus elongatus PCC 7942 = FACHB-805 R2 undecane + formate + H2O + 2 NADP+ - ? 445727 4.1.99.5 n-heptanal + O2 + 2 NAD(P)H + 2 H+ endogenous reducing system ferredoxin-mediated the cytochrome c reduction with ferredoxin-NADP+ reductase Synechococcus elongatus n-hexane + formate + H2O + 2 NAD(P)+ - ? 428808 4.1.99.5 n-heptanal + O2 + 2 NAD(P)H + 2 H+ endogenous reducing system ferredoxin-mediated the cytochrome c reduction with ferredoxin-NADP+ reductase Synechococcus elongatus PCC 7942 n-hexane + formate + H2O + 2 NAD(P)+ - ? 428808 4.1.99.5 n-heptanal + O2 + 2 NADPH + 2 H+ - Synechocystis sp. PCC 6803 n-hexane + formate + H2O + 2 NADP+ - ? 445728 4.1.99.5 n-heptanal + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 = FACHB-805 n-hexane + formate + H2O + 2 NADP+ - ? 445728 4.1.99.5 n-heptanal + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 = FACHB-805 R2 n-hexane + formate + H2O + 2 NADP+ - ? 445728 4.1.99.5 n-hexadecanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme pentadecane + formate + H2O + 2 NADP+ - ? 445730 4.1.99.5 n-hexadecanal + O2 + 2 NADPH + 2 H+ - Synechocystis sp. PCC 6803 pentadecane + formate + H2O + 2 NADP+ - ? 445730 4.1.99.5 n-hexadecanal + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 = FACHB-805 pentadecane + formate + H2O + 2 NADP+ - ? 445730 4.1.99.5 n-hexadecanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme ATCC 29133 / PCC 73102 pentadecane + formate + H2O + 2 NADP+ - ? 445730 4.1.99.5 n-hexadecanal + O2 + 2 NADPH + 2 H+ - Synechococcus elongatus PCC 7942 = FACHB-805 R2 pentadecane + formate + H2O + 2 NADP+ - ? 445730 4.1.99.5 n-hexanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme n-pentane + formate + H2O + 2 NADP+ - ? 445731 4.1.99.5 n-hexanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus n-pentane + formate + H2O + 2 NADP+ - ? 445731 4.1.99.5 n-hexanal + O2 + 2 NADPH + 2 H+ - Synechocystis sp. PCC 6803 n-pentane + formate + H2O + 2 NADP+ - ? 445731 4.1.99.5 n-hexanal + O2 + 2 NADPH + 2 H+ - Synechococcus sp. RS9917 n-pentane + formate + H2O + 2 NADP+ - ? 445731 4.1.99.5 n-hexanal + O2 + 2 NADPH + 2 H+ mutants A121F, C70F, M193Y, and L198F show 2.7, 2.5, 1.7 and 1.4fold increase in kcatapp against n-hexanal, respectively, compared to wild-type enzyme Synechococcus elongatus PCC 7942 = FACHB-805 n-pentane + formate + H2O + 2 NADP+ - ? 445731 4.1.99.5 n-hexanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme ATCC 29133 / PCC 73102 n-pentane + formate + H2O + 2 NADP+ - ? 445731 4.1.99.5 n-hexanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus MIT 9313 n-pentane + formate + H2O + 2 NADP+ - ? 445731 4.1.99.5 n-nonanal + O2 + 2 NADPH + 2 H+ mutant M193Y and L198F exhibit a 1.7 and 2.0fold increase in kcat, respectively, compared to wild-type, while kcat value of I24Y is much lower than that of the wild-type, and those of C70F and A121F are about half of that of wild-type Synechococcus elongatus PCC 7942 = FACHB-805 n-octane + formate + H2O + 2 NADP+ - ? 445732 4.1.99.5 n-octadecanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme heptadecane + formate + H2O + 2 NADP+ - ? 445733 4.1.99.5 n-octadecanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus heptadecane + formate + H2O + 2 NADP+ - ? 445733 4.1.99.5 n-octadecanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme ATCC 29133 / PCC 73102 heptadecane + formate + H2O + 2 NADP+ - ? 445733 4.1.99.5 n-octadecanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus MIT 9313 heptadecane + formate + H2O + 2 NADP+ - ? 445733 4.1.99.5 n-octadecanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus MIT9313 heptadecane + formate + H2O + 2 NADP+ - ? 445733 4.1.99.5 n-octadecenal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme 1-heptadecene + formate + H2O + 2 NADP+ - ? 445734 4.1.99.5 n-octadecenal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme ATCC 29133 / PCC 73102 1-heptadecene + formate + H2O + 2 NADP+ - ? 445734 4.1.99.5 n-octanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme n-heptane + formate + H2O + 2 NADP+ - ? 445735 4.1.99.5 n-octanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus n-heptane + formate + H2O + 2 NADP+ - ? 445735 4.1.99.5 n-octanal + O2 + 2 NADPH + 2 H+ - Synechocystis sp. PCC 6803 n-heptane + formate + H2O + 2 NADP+ - ? 445735 4.1.99.5 n-octanal + O2 + 2 NADPH + 2 H+ - Synechococcus sp. RS9917 n-heptane + formate + H2O + 2 NADP+ - ? 445735 4.1.99.5 n-octanal + O2 + 2 NADPH + 2 H+ binding of 1-[13C]-octanal to enzyme cADO is monitored by 13C NMR Prochlorococcus marinus n-heptane + formate + H2O + 2 NADP+ - ? 445735 4.1.99.5 n-octanal + O2 + 2 NADPH + 2 H+ mutant M193Y show 3.2fold improved activity, and mutants A121F and L198F exhibit comparable activity to wild-type, while mutants I24Y and C70F display much lower activity compared to wild-type Synechococcus elongatus PCC 7942 = FACHB-805 n-heptane + formate + H2O + 2 NADP+ - ? 445735 4.1.99.5 n-octanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme ATCC 29133 / PCC 73102 n-heptane + formate + H2O + 2 NADP+ - ? 445735 4.1.99.5 n-octanal + O2 + 2 NADPH + 2 H+ binding of 1-[13C]-octanal to enzyme cADO is monitored by 13C NMR Prochlorococcus marinus MIT 9313 n-heptane + formate + H2O + 2 NADP+ - ? 445735 4.1.99.5 n-octanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus MIT 9313 n-heptane + formate + H2O + 2 NADP+ - ? 445735 4.1.99.5 n-undecanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus n-decane + formate + H2O + 2 NADP+ - ? 445742 4.1.99.5 n-undecanal + O2 + 2 NADPH + 2 H+ - Prochlorococcus marinus MIT 9313 n-decane + formate + H2O + 2 NADP+ - ? 445742 4.1.99.5 nonanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine Prochlorococcus marinus octane + formate + H2O + 2 NAD+ - ? 428848 4.1.99.5 nonanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine Prochlorococcus marinus MIT 9313 octane + formate + H2O + 2 NAD+ - ? 428848 4.1.99.5 octadecanal - Pisum sativum heptadecane + CO - ? 363304 4.1.99.5 octadecanal - Podiceps nigricollis heptadecane + CO - r 363304 4.1.99.5 octadecanal - Botryococcus braunii heptadecane + CO - ? 363304 4.1.99.5 octadecanal - Botryococcus braunii Austin heptadecane + CO - ? 363304 4.1.99.5 octadecanal + NADPH + O2 activity depends on the presence of a reducing system (NADPH, ferredoxin and ferredoxin reductase) Nostoc punctiforme heptadecane + formate + H2O + NADP+ - ? 417436 4.1.99.5 octadecanal + NADPH + O2 only observed in the presence of ferredoxin, ferredoxin reductase and NADPH Nostoc punctiforme heptadecane + formate + H2O + NADP+ - ? 417436 4.1.99.5 octadecanal + O2 + 2 NAD(P)H + 2 H+ endogenous reducing system ferredoxin-mediated the cytochrome c reduction with ferredoxin-NADP+ reductase Synechococcus elongatus heptadecane + formate + H2O + 2 NAD(P)+ - ? 428854 4.1.99.5 octadecanal + O2 + 2 NAD(P)H + 2 H+ endogenous reducing system ferredoxin-mediated the cytochrome c reduction with ferredoxin-NADP+ reductase Synechococcus elongatus PCC 7942 heptadecane + formate + H2O + 2 NAD(P)+ - ? 428854 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine Prochlorococcus marinus heptadecane + formate + H2O + 2 NAD+ - ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Nostoc punctiforme heptadecane + formate + H2O + 2 NAD+ - ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Prochlorococcus marinus heptadecane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Nostoc punctiforme heptadecane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Prochlorococcus marinus heptadecane + formate + H2O + 2 NAD+ - ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Synechococcus sp. heptadecane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Synechocystis sp. heptadecane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Prochlorococcus marinus heptadecane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Nostoc punctiforme heptadecane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine Prochlorococcus marinus MIT 9313 heptadecane + formate + H2O + 2 NAD+ - ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate or reducing system with NADPH, ferredoxin, and ferredoxin reductase Prochlorococcus marinus MIT9313 heptadecane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428855 4.1.99.5 octadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Prochlorococcus marinus MIT9313 heptadecane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428855 4.1.99.5 octadecanal + O2 + 2 NADPH + 2 H+ - Nostoc punctiforme heptadecane + formate + H2O + 2 NADP+ - ? 418018 4.1.99.5 octadecanal + O2 + 2 NADPH + 2 H+ the in vitro activity of the enzyme depends on the presence of a reducing system, i.e. NADPH, ferredoxin, and ferredoxin reductase Nostoc punctiforme heptadecane + formate + H2O + 2 NADP+ - ? 418018 4.1.99.5 octanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate, reaction under anaerobic conditions to protect the cofactor, but the enzyme shows no differences between aerobic and anaerobic condition, meaning that the substrate does not bind tightly to the Fe2 III/III form of the enzyme or that the aldehyde binds in a manner that does not detectably alter its Moessbauer properties Nostoc punctiforme heptane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428856 4.1.99.5 pentadecanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Nostoc punctiforme tetradecane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428865 4.1.99.5 pentanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Prochlorococcus marinus butane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428867 4.1.99.5 pentanal + O2 + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Prochlorococcus marinus MIT9313 butane + formate + H2O + 2 NAD+ GC-MS poduct analysis ? 428867 4.1.99.5 trans-3-nonyloxirane-2-carbaldehyde + 2 NADH + 2 H+ with reducing system NADH/phenazine methosulfate Nostoc punctiforme 2-nonyloxirane + formate + H2O + 2 NAD+ - ? 428976 4.1.99.5 trans-3-pentadecanyloxirane-2-carbaldehyde + 2 NADH + O2 + 2 H+ with reducing system NADH/phenazine methosulfate Nostoc punctiforme 2-pentadecanyloxirane + formate + 2 NAD+ + H2O - ? 428977