3.1.6.19 (2R)-1-(4-chlorophenyl)propan-2-yl sulfate + H2O enantiomeric excess of the product: 16% Sulfolobus acidocaldarius (2S)-1-(4-chlorophenyl)propan-2-ol + sulfate - ? 419651 3.1.6.19 (2R)-1-(4-chlorophenyl)propan-2-yl sulfate + H2O enantiomeric excess of the product: 16% Sulfolobus acidocaldarius DSM 639 (2S)-1-(4-chlorophenyl)propan-2-ol + sulfate - ? 419651 3.1.6.19 (2R)-1-(4-fluorophenyl)propan-2-yl sulfate + H2O enantiomeric excess of the product: 16% Sulfolobus acidocaldarius (2S)-1-(4-chlorophenyl)propan-2-ol + sulfate - ? 419652 3.1.6.19 (2R)-1-(4-fluorophenyl)propan-2-yl sulfate + H2O enantiomeric excess of the product: 16% Sulfolobus acidocaldarius DSM 639 (2S)-1-(4-chlorophenyl)propan-2-ol + sulfate - ? 419652 3.1.6.19 (2R)-nonan-2-yl sulfate + H2O enantiomeric excess of the product: 65% Sulfolobus acidocaldarius (2S)-nonan-2-ol + sulfate - ? 419654 3.1.6.19 (2R)-nonan-2-yl sulfate + H2O enantiomeric excess of the product: 65% Sulfolobus acidocaldarius DSM 639 (2S)-nonan-2-ol + sulfate - ? 419654 3.1.6.19 (2R)-octan-2-yl hydrogen sulfate + H2O - Pseudomonas sp. DSM 6611 (S)-2-octanol + sulfate - ? 458746 3.1.6.19 (2R)-octan-2-yl sulfate + H2O - Saccharolobus solfataricus (2S)-octan-2-ol + sulfate - ? 419655 3.1.6.19 (2R)-octan-2-yl sulfate + H2O - Saccharolobus shibatae (2S)-octan-2-ol + sulfate - ? 419655 3.1.6.19 (2R)-octan-2-yl sulfate + H2O enantioselectivity expressed by E-value is 21. The preferred substrates for the enzyme are linear sec-alkyl sulfate esters, particularly 2-, 3-, and 4-octyl sulfates. The enzymatic hydrolysis proceeds through inversion of the configuration at the stereogenic carbon atom Rhodococcus ruber (2S)-octan-2-ol + sulfate - ? 419655 3.1.6.19 (2R)-octan-2-yl sulfate + H2O high enantioselectivity (E-value > 200), enantiomeric excess > 99 Sulfolobus acidocaldarius (2S)-octan-2-ol + sulfate - ? 419655 3.1.6.19 (2R)-octan-2-yl sulfate + H2O hydrolysis of (R)-enantiomers from the racemate provided the corresponding (S)-configured sec-alcohols. Excellent enantioselectivity is observed for octan-2-yl sulfate. When the sulfate ester moiety is gradually moved toward the center of the molecule (octan-3-yl sulfate and octan-4-yl sulfate), the enantioselectivities decreases, which is due to the fact that the alkyl groups flanking the sulfate ester group became similar in size, thus making the chiral recognition process more difficult Sulfolobus acidocaldarius (2S)-octan-2-ol + sulfate - ? 419655 3.1.6.19 (2R)-octan-2-yl sulfate + H2O high enantioselectivity (E-value > 200), enantiomeric excess > 99 Sulfolobus acidocaldarius DSM 639 (2S)-octan-2-ol + sulfate - ? 419655 3.1.6.19 (2R)-octan-2-yl sulfate + H2O hydrolysis of (R)-enantiomers from the racemate provided the corresponding (S)-configured sec-alcohols. Excellent enantioselectivity is observed for octan-2-yl sulfate. When the sulfate ester moiety is gradually moved toward the center of the molecule (octan-3-yl sulfate and octan-4-yl sulfate), the enantioselectivities decreases, which is due to the fact that the alkyl groups flanking the sulfate ester group became similar in size, thus making the chiral recognition process more difficult Sulfolobus acidocaldarius DSM 639 (2S)-octan-2-ol + sulfate - ? 419655 3.1.6.19 (2R)-octan-2-yl sulfate + H2O - Saccharolobus shibatae DSM 5389 (2S)-octan-2-ol + sulfate - ? 419655 3.1.6.19 (2R)-octan-2-yl sulfate + H2O - Saccharolobus solfataricus DSM 1617 (2S)-octan-2-ol + sulfate - ? 419655 3.1.6.19 (2R)-octan-2-yl sulfate + H2O enantioselectivity expressed by E-value is 21. The preferred substrates for the enzyme are linear sec-alkyl sulfate esters, particularly 2-, 3-, and 4-octyl sulfates. The enzymatic hydrolysis proceeds through inversion of the configuration at the stereogenic carbon atom Rhodococcus ruber DSM 44541 (2S)-octan-2-ol + sulfate - ? 419655 3.1.6.19 (2S)-1-phenylpropan-2-yl sulfate + H2O - Sulfolobus acidocaldarius (2S)-1-phenylpropan-2-ol + sulfate - ? 419658 3.1.6.19 (2S)-1-phenylpropan-2-yl sulfate + H2O - Saccharolobus solfataricus (2S)-1-phenylpropan-2-ol + sulfate - ? 419658 3.1.6.19 (2S)-1-phenylpropan-2-yl sulfate + H2O - Saccharolobus shibatae (2S)-1-phenylpropan-2-ol + sulfate - ? 419658 3.1.6.19 (2S)-1-phenylpropan-2-yl sulfate + H2O high enantioselectivity (E-value > 200), enantiomeric excess of the product: > 99% Sulfolobus acidocaldarius (2S)-1-phenylpropan-2-ol + sulfate - ? 419658 3.1.6.19 (2S)-1-phenylpropan-2-yl sulfate + H2O high enantioselectivity (E-value > 200), enantiomeric excess of the product: > 99% Sulfolobus acidocaldarius DSM 639 (2S)-1-phenylpropan-2-ol + sulfate - ? 419658 3.1.6.19 (2S)-1-phenylpropan-2-yl sulfate + H2O - Sulfolobus acidocaldarius DSM 639 (2S)-1-phenylpropan-2-ol + sulfate - ? 419658 3.1.6.19 (2S)-1-phenylpropan-2-yl sulfate + H2O - Saccharolobus shibatae DSM 5389 (2S)-1-phenylpropan-2-ol + sulfate - ? 419658 3.1.6.19 (2S)-1-phenylpropan-2-yl sulfate + H2O - Saccharolobus solfataricus DSM 1617 (2S)-1-phenylpropan-2-ol + sulfate - ? 419658 3.1.6.19 (3R)-pentan-3-yl sulfate + H2O low activity Pseudomonas sp. pentan-3-ol + sulfate - ? 419671 3.1.6.19 (3R)-pentan-3-yl sulfate + H2O low activity Pseudomonas sp. C12B pentan-3-ol + sulfate - ? 419671 3.1.6.19 (4R)-heptan-4-yl sulfate + H2O the L-isomer is much more readily hydrolysed than the D-isomer. Enzymic hydrolysis of this group is accompanied by complete inversion of configuration at the asymmetric carbon atom Pseudomonas sp. (4S)-heptan-4-ol + sulfate - ? 419673 3.1.6.19 (4R)-heptan-4-yl sulfate + H2O the L-isomer is much more readily hydrolysed than the D-isomer. Enzymic hydrolysis of this group is accompanied by complete inversion of configuration at the asymmetric carbon atom Pseudomonas sp. C12B (4S)-heptan-4-ol + sulfate - ? 419673 3.1.6.19 (5R)-nonan-5-yl sulfate + H2O the L-isomer is much more readily hydrolysed than the D-isomer. Enzymic hydrolysis of this group is accompanied by complete inversion of configuration at the asymmetric carbon atom Pseudomonas sp. nonan-5-ol + sulfate - ? 419676 3.1.6.19 (5R)-nonan-5-yl sulfate + H2O the L-isomer is much more readily hydrolysed than the D-isomer. Enzymic hydrolysis of this group is accompanied by complete inversion of configuration at the asymmetric carbon atom Pseudomonas sp. C12B nonan-5-ol + sulfate - ? 419676 3.1.6.19 (R)-2-octyl sulfate + H2O - Rhodococcus ruber (S)-2-octanol + sulfate - ? 419690 3.1.6.19 (R)-2-octyl sulfate + H2O - Rhodococcus ruber DSM 44541 (S)-2-octanol + sulfate - ? 419690 3.1.6.19 additional information when rather symmetrical molecules, such as 3- or 4-octyl sulfate, are used, the chiral recognition process gets more difficult as the relative sizes of the two alkyl groups adjacent to the stereogenic sulfate ester group become more similar. Rhodococcus ruber ? - ? 89 3.1.6.19 additional information when rather symmetrical molecules, such as 3- or 4-octyl sulfate, are used, the chiral recognition process gets more difficult as the relative sizes of the two alkyl groups adjacent to the stereogenic sulfate ester group become more similar. Rhodococcus ruber DSM 44541 ? - ? 89 3.1.6.19 octyl sulfate + H2O - Pseudomonas sp. DSM 6611 1-octanol + sulfate - ? 459833 3.1.6.19 rac-octan-3-yl sulfate + H2O enantiomeric excess of the product: 59% Sulfolobus acidocaldarius (3S)-octan-3-ol + sulfate - ? 419670 3.1.6.19 rac-octan-3-yl sulfate + H2O enantioselectivity expressed by E-value is 4.3. The preferred substrates for the enzyme are linear sec-alkyl sulfate esters, particularly 2-, 3-, and 4-octyl sulfates. The enzymatic hydrolysis proceeds through inversion of the configuration at the stereogenic carbon atom Rhodococcus ruber (3S)-octan-3-ol + sulfate - ? 419670 3.1.6.19 rac-octan-3-yl sulfate + H2O hydrolysis of (R)-enantiomers from the racemate provided the corresponding (S)-configured sec-alcohols. Excellent enantioselectivity is observed for octan-2-yl sulfate. When the sulfate ester moiety is gradually moved toward the center of the molecule (octan-3-yl sulfate and octan-4-yl sulfate), the enantioselectivities decreases, which is due to the fact that the alkyl groups flanking the sulfate ester group became similar in size, thus making the chiral recognition process more difficult Sulfolobus acidocaldarius (3S)-octan-3-ol + sulfate - ? 419670 3.1.6.19 rac-octan-3-yl sulfate + H2O hydrolysis of (R)-enantiomers from the racemate provided the corresponding (S)-configured sec-alcohols. Excellent enantioselectivity is observed for octan-2-yl sulfate. When the sulfate ester moiety is gradually moved toward the center of the molecule (octan-3-yl sulfate and octan-4-yl sulfate), the enantioselectivities decreases, which is due to the fact that the alkyl groups flanking the sulfate ester group became similar in size, thus making the chiral recognition process more difficult Sulfolobus acidocaldarius DSM 639 (3S)-octan-3-ol + sulfate - ? 419670 3.1.6.19 rac-octan-3-yl sulfate + H2O enantioselectivity expressed by E-value is 4.3. The preferred substrates for the enzyme are linear sec-alkyl sulfate esters, particularly 2-, 3-, and 4-octyl sulfates. The enzymatic hydrolysis proceeds through inversion of the configuration at the stereogenic carbon atom Rhodococcus ruber DSM 44541 (3S)-octan-3-ol + sulfate - ? 419670 3.1.6.19 rac-octan-4-yl sulfate + H2O enantiomeric excess of the product: 55% Sulfolobus acidocaldarius (4S)-octan-4-ol + sulfate - ? 419674 3.1.6.19 rac-octan-4-yl sulfate + H2O hydrolysis of (R)-enantiomers from the racemate provides the corresponding (S)-configured sec-alcohols. Excellent enantioselectivity is observed for octan-2-yl sulfate. When the sulfate ester moiety is gradually moved toward the center of the molecule (octan-3-yl- and octan-4-yl sulfate), the enantioselectivities decreases, which is due to the fact that the alkyl groups flanking the sulfate ester group became similar in size, thus making the chiral recognition process more difficult Sulfolobus acidocaldarius (4S)-octan-4-ol + sulfate - ? 419674 3.1.6.19 rac-octan-4-yl sulfate + H2O no enantioselectivity is observed, production of racemic 4-octanol. The preferred substrates for the enzyme are linear sec-alkyl sulfate esters, particularly 2-, 3-, and 4-octyl sulfates. The enzymatic hydrolysis proceeds through inversion of the configuration at the stereogenic carbon atom Rhodococcus ruber (4S)-octan-4-ol + sulfate - ? 419674 3.1.6.19 rac-octan-4-yl sulfate + H2O hydrolysis of (R)-enantiomers from the racemate provides the corresponding (S)-configured sec-alcohols. Excellent enantioselectivity is observed for octan-2-yl sulfate. When the sulfate ester moiety is gradually moved toward the center of the molecule (octan-3-yl- and octan-4-yl sulfate), the enantioselectivities decreases, which is due to the fact that the alkyl groups flanking the sulfate ester group became similar in size, thus making the chiral recognition process more difficult Sulfolobus acidocaldarius DSM 639 (4S)-octan-4-ol + sulfate - ? 419674 3.1.6.19 rac-octan-4-yl sulfate + H2O no enantioselectivity is observed, production of racemic 4-octanol. The preferred substrates for the enzyme are linear sec-alkyl sulfate esters, particularly 2-, 3-, and 4-octyl sulfates. The enzymatic hydrolysis proceeds through inversion of the configuration at the stereogenic carbon atom Rhodococcus ruber DSM 44541 (4S)-octan-4-ol + sulfate - ? 419674