2.7.11.30 ATP + KKVLTQMGSPSIRCS(P)SV(P)S Smad3-derived peptide substrate Homo sapiens ADP + ? - ? 381475 2.7.11.30 ATP + KKVLTQMGSPSIRCS(P)SVA Smad3-derived peptide substrate Homo sapiens ADP + ? - ? 381476 2.7.11.30 ATP + KKVLTQMGSPSIRCS(P)SVS Smad3-derived peptide substrate Homo sapiens ADP + ? - ? 381477 2.7.11.30 ATP + KMGSPSVRCS(P)SMS TGF-beta-induced phosphorylation by TbetaRI receptor kinase of the Smad2-derived, phosphorylated peptide substrate containing Ser465 phosphorylation site, poor activity with nonphosphorylated peptide substrate Homo sapiens ADP + ? - ? 381478 2.7.11.30 ATP + KVLTQMGSPSIRCS(P)SVS Smad3-derived peptide substrate Homo sapiens ADP + ? - ? 381479 2.7.11.30 ATP + KVLTQMGSPSIRCSSV(P)S Smad3-derived peptide substrate Homo sapiens ADP + ? - ? 381480 2.7.11.30 ATP + KVLTQMGSPSVRCS(P)SMS Smad2-derived peptide substrate Homo sapiens ADP + ? - ? 381481 2.7.11.30 ATP + KVLTQMGSPSVRCSSMS Smad2-derived peptide substrate Homo sapiens ADP + ? - ? 381483 2.7.11.30 ATP + KVLTQMGSPSVRCSSMS(P)S Smad2-derived peptide substrate Homo sapiens ADP + ? - ? 381482 2.7.11.30 ATP + Smad - Homo sapiens ADP + phosphorylated Smad - ? 380544 2.7.11.30 ATP + Smad involved in ALK5 activation of p38 MAPK signaling and of GADDbeta45 and BGN expression induced by TGF-beta Homo sapiens ADP + phosphorylated Smad - ? 380544 2.7.11.30 ATP + Smad1 phosphorylation by ALK1 Mus musculus ADP + phosphorylated Smad1 - ? 380540 2.7.11.30 ATP + Smad2 - Mus musculus ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 - Homo sapiens ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 ALK7 Rattus norvegicus ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 ALK7 is involved in regulation of cell proliferation and apoptosis, regulation, overview Rattus norvegicus ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 GDF-9-induced phosphorylation Rattus norvegicus ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 phosphorylation by ALK5 Mus musculus ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 step in the MAPK signaling pathway via JNK and p38 Homo sapiens ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 TGF-beta- or actividin-induced phosphorylation Homo sapiens ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 TGF-beta-induced phosphorylation by TbetaRI receptor kinase at both phosphorylation sites Ser465 and Ser467 leads to release of Smad2 from membrane-anchored protein SARA and signaling co-mediator Smad4, translocation into the nucleus, and regulation of target gene expression Homo sapiens ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 TGF-beta-mediated activation of Smad2 by the TGF-beta receptor Homo sapiens ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 TGF-beta-mediated activation of Smad2 by the TGF-beta receptor Rattus norvegicus ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 phosphorylation by ALK7 Homo sapiens ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 phosphorylation by the TGF-beta receptor Rattus norvegicus ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 recombinant GST-fusion Smad2 substrate expressed in Escherichia coli, TGF-beta- or actividin-induced phosphorylation of the two C-terminal Ser residues in the Ser-Ser-Xaa-Ser motif Homo sapiens ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 TGF-beta-induced phosphorylation by TbetaRI receptor kinase at two phosphorylation sites Ser465 and Ser467 within the MH2 domain, activity with Smad2 analogues, overview Homo sapiens ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 TGF-beta-induced phosphorylation of Arg462 and Cys463 by TbetaR-I, no activity with Smad2 mutant R462I/C463A by TbetaR-I, Smad2 is no substrate of TbetaR-II and BMP type II receptor Mus musculus ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad2 the substrate is a tumor suppressor Homo sapiens ADP + phosphorylated Smad2 - ? 380541 2.7.11.30 ATP + Smad3 - Mus musculus ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 - Homo sapiens ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 ALK7 Rattus norvegicus ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 GDF-9-induced phosphorylation Rattus norvegicus ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 phosphorylation by ALK5 Mus musculus ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 step in the MAPK signaling pathway via JNK and p38 Homo sapiens ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 TGF-beta-mediated activation of Smad3 by the TGF-beta receptor Homo sapiens ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 TGF-beta-mediated activation of Smad3 by the TGF-beta receptor Rattus norvegicus ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 phosphorylation by ALK7 Homo sapiens ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 phosphorylation by the TGF-beta receptor Rattus norvegicus ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 TGF-beta-induced C-terminal phosphorylation Mus musculus ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad3 the substrate is a tumor suppressor Homo sapiens ADP + phosphorylated Smad3 - ? 380542 2.7.11.30 ATP + Smad5 phosphorylation by ALK1 Mus musculus ADP + phosphorylated Smad5 - ? 380543 2.7.11.30 ATP + [actividin receptor] - Homo sapiens ADP + [actividin receptor] phosphate - ? 398735 2.7.11.30 ATP + [actividin receptor] activins regulate pancreatic development, differentiation and insulin secretion, insulin gene is a target in activin receptor-like kinase 7 signaling pathway in pancreatic beta-cells, SBE and A/GG elements of the human insulin promoter are involved in the regulation of the ALK7 signal, regulation, overview Homo sapiens ADP + [actividin receptor] phosphate - ? 398735 2.7.11.30 ATP + [receptor-protein] - Gallus gallus ADP + [receptor-protein] phosphate - ? 458580 2.7.11.30 ATP + [TGF-beta receptor II] - Homo sapiens ADP + [TGF-beta receptor II] phosphate - ? 398749 2.7.11.30 ATP + [TGF-beta receptor II] regulation and metabolism, overview Homo sapiens ADP + [TGF-beta receptor II] phosphate - ? 398749 2.7.11.30 ATP + [TGF-beta receptor I] - Homo sapiens ADP + [TGF-beta receptor I] phosphate - ? 398748 2.7.11.30 ATP + [TGF-beta receptor I] TGF-beta signalling pathway regulation, overview Homo sapiens ADP + [TGF-beta receptor I] phosphate - ? 398748 2.7.11.30 additional information activin receptor-like kinase-7, ALK7, induces apoptosis through activation of MAPKs, e.g. SEK1, in a Smad3-dependent mechanism in hepatoma cells Homo sapiens ? - ? 89 2.7.11.30 additional information ALK4 forms a complex with type II serine/threonine transmembrane receptor ActRIIB or ActRII and activin for initiation of signaling, ALK3 forms a complex with bone morphogenetic protein-2 Homo sapiens ? - ? 89 2.7.11.30 additional information ALK7 induces apoptosis of pancreatic beta cells and beta cell lines via Smad2-caspase3 pathways causing diabetes of type 1 and 2, ALK7 activation suppresses Akt activation Rattus norvegicus ? - ? 89 2.7.11.30 additional information diverse ligand members of the TGF-beta family interact with a limited number of receptors in a combinatorial manner to activate two downstream Smad pathways Rattus norvegicus ? - ? 89 2.7.11.30 additional information in TGF-beta signaling, phosphorylated Smad2 and Smad3 form a complex with tumor suppressor Smad4, the complex is translocated to the nucleus, nuclear translocation of Smad2 and Smad3 in absence of Smad4 is not sufficient for TGF-beta-induced transcriptional responses, Smad4 mutations occur in some human cancers and inactivate the TGF-beta signaling, overview Homo sapiens ? - ? 89 2.7.11.30 additional information TGF-beta is responsible for induction of growth arrest in cells via the transforming growth factor-beta receptor I, the inhibition can be blocked by cell treatment with SD-093overview Homo sapiens ? - ? 89 2.7.11.30 additional information TGF-beta mediates activation of Smad2 and Smad3 in a differentiated way dependent on the developmental and activationstages of the cells, regulation, overview Rattus norvegicus ? - ? 89 2.7.11.30 additional information TGF-beta regulates the activation state of endothelium via two opposing type I receptor/Smad pathways: ALK1 induces Smad1/5 phosphorylation leading to increased endothelial cell proliferation and migration, while ALK5 promotes Smad2/3 activation and inhibits both processes, regulation overview Mus musculus ? - ? 89 2.7.11.30 additional information TGF-beta signaling is involved in a wide range of cellular processes and various disease states in humans, R-Smad phosphorylation plays a key role Homo sapiens ? - ? 89 2.7.11.30 additional information TGF-beta signals via its receptor type I and type II, ALK5 mediates most of the TGF-beta signaling, misexpression of ALK2, being constitutively active, in nontransforming ventricular, endocardial cells causes epithelial-mesenchymal transformation, EMT, which can be inhibited by Smad6, since ALK2 alone is sufficient to cause EMT, overview Gallus gallus ? - ? 89 2.7.11.30 additional information the enzyme is involved in p38 MAPK activation Mus musculus ? - ? 89 2.7.11.30 additional information the enzyme is involved in p38 MAPK activation Homo sapiens ? - ? 89 2.7.11.30 additional information the TGF-beta receptor kinase is involved in transforming growth in advanced carcinogenesis and in epithelial-to-mesenchymal cell transition, EMT, overview Homo sapiens ? - ? 89 2.7.11.30 additional information the TGF-beta type I receptor/ALK5-dependent activation of the GADD45beta gene mediates the induction of biglycan expression by TGF-beta, th TGF-beta type II receptor is required for for TGF-beta binding and signaling induction activity, overview Homo sapiens ? - ? 89 2.7.11.30 additional information ALK2 and ALK5 are type I receptors Gallus gallus ? - ? 89 2.7.11.30 additional information ALK5 performs autophosphorylation, substrate specificities of recombinant wild-type and mutant T204D ALK5, ALK5 is the intracellular domain of the transforming growth factor beta type-I receptor Homo sapiens ? - ? 89 2.7.11.30 additional information GDF-9 does not induce phosphorylation of Smad1 Rattus norvegicus ? - ? 89 2.7.11.30 additional information substrate specificity of transforming growth factor-beta receptor I Mus musculus ? - ? 89 2.7.11.30 additional information ALK1 mutations cause hereditary hemorrhagic telangiectasia in association with pulmonary arterial hypertension, PAH, in patients Homo sapiens ? - ? 89 2.7.11.30 additional information ALK6 modulates follicle-stimulating hormone secretion Ovis aries ? - ? 89 2.7.11.30 additional information ALK7 is a receptor for nodal and activin AB and B, overview. The insulin promoter is activated by Smad2, Smad3 and the pancreatic and duodenal homeobox factor-1, PDX-1, in the ALK7 pathway, overview Homo sapiens ? - ? 89 2.7.11.30 additional information cyclin G2 mRNA is strongly up-regulated by Nodal and ALK7, Nodal and ALK7 decrease the expression of Skp1 and Skp2 and increase cyclin G2 levels. The antiproliferative effect of Nodal/ALK7 on ovarian cancer cells is in part mediated by cyclin G2, regulation, overview Homo sapiens ? - ? 89 2.7.11.30 additional information signaling by RON, a phosphotyrosine kinase receptor, cooperates with Smad4-independent TGF-beta signaling to promote cell motility and invasion, knocking down RON expression in Smad4-deficient cells suppresses TGF-beta-mediated motility and invasion. Functional inactivation by site-directed mutations of two Smad binding sites on the RON promoter inhibits TGF-beta-mediated repression of RON promoter activity, cross-talk of Smad4-independent TGF-beta signaling and the RON pathway promotes an invasive phenotype, overview Homo sapiens ? - ? 89 2.7.11.30 additional information TGF-beta receptor kinase inhibitor LY2109761 reverses the anti-apoptotic effects of TGF-beta1 in myelo-monocytic leukaemic cells, overview Homo sapiens ? - ? 89 2.7.11.30 additional information the TGF-beta pathway is overactivated in myelodysplastic syndrome, MDS, involving ineffective hematopoiesis leading to peripheral cytopenias. Suppression of the TGF-beta signaling leads to in vitro enhancement of hematopoiesis, overview. TBRi inhibition can improve anemia in a model of bone marrow failure, overview Homo sapiens ? - ? 89