2.2.1.6 1-(1,3-benzodioxol-5-yloxy)propan-2-one + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433084 2.2.1.6 1-(1,3-benzodioxol-5-yloxy)propan-2-one + pyruvate - Yersinia pseudotuberculosis O:VI ? + CO2 - ? 433084 2.2.1.6 1-(2-bromo-5-hydroxyphenoxy)propan-2-one + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433085 2.2.1.6 1-(naphthalen-2-yloxy)propan-2-one + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433086 2.2.1.6 1-(phenylsulfanyl)propan-2-one + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433087 2.2.1.6 1-naphthaldehyde + pyruvate - Azoarcus sp. (1R)-1-hydroxy-1-(naphthalen-1-yl)propan-2-one + CO2 - ? 433106 2.2.1.6 1-naphthaldehyde + pyruvate - Azoarcus sp. 22Lin (1R)-1-hydroxy-1-(naphthalen-1-yl)propan-2-one + CO2 - ? 433106 2.2.1.6 1-phenoxypropan-2-one + pyruvate - Azoarcus sp. 3-hydroxy-3-methyl-4-phenoxybutan-2-one + CO2 - ? 433112 2.2.1.6 1-phenoxypropan-2-one + pyruvate - Azoarcus sp. 22Lin 3-hydroxy-3-methyl-4-phenoxybutan-2-one + CO2 - ? 433112 2.2.1.6 1-phenoxypropan-2-one + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433113 2.2.1.6 2 butane-2,3-dione homocoupling of butane-2,3-dione by the wild-type enzyme, no activity with mutant H28A/N484A Azoarcus sp. acetylacetoin + acetoin - ? 433125 2.2.1.6 2 butane-2,3-dione homocoupling of butane-2,3-dione by the wild-type enzyme, no activity with mutant H28A/N484A Azoarcus sp. 22Lin acetylacetoin + acetoin - ? 433125 2.2.1.6 2 pyruvate - Yersinia pseudotuberculosis (S)-acetolactate + CO2 - ? 393399 2.2.1.6 2 pyruvate - Thermus thermophilus (S)-acetolactate + CO2 - ? 393399 2.2.1.6 2 pyruvate - Geobacillus stearothermophilus (S)-acetolactate + CO2 - ? 393399 2.2.1.6 2 pyruvate - Yersinia pseudotuberculosis O:VI (S)-acetolactate + CO2 - ? 393399 2.2.1.6 2 pyruvate - Thermus thermophilus HB8 / ATCC 27634 / DSM 579 (S)-acetolactate + CO2 - ? 393399 2.2.1.6 2 pyruvate - Escherichia coli 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Saccharomyces cerevisiae 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Nicotiana tabacum 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Arabidopsis thaliana 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Lactococcus lactis 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Brassica napus 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Haloferax volcanii 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Enterococcus faecalis 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Klebsiella pneumoniae 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Corynebacterium glutamicum 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Mycobacterium tuberculosis 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Mycobacterium tuberculosis 2-acetolactate + CO2 - ir 402314 2.2.1.6 2 pyruvate - Bacillus licheniformis 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Raphanus sativus 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Helianthus annuus 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Pyricularia oryzae 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Echinochloa crus-galli 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Thermotoga maritima 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Amaranthus retroflexus 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Descurainia sophia 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Bacillus anthracis 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Alopecurus myosuroides 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Papaver rhoeas 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Schoenoplectiella juncoides 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Digitaria adscendens 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Oryza sativa 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Lindernia dubia 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Lindernia micrantha 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Lindernia procumbens 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Pseudomonas sp. 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Myosoton aquaticum 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Poa annua 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Pyrococcus furiosus 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Thermus thermophilus 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Bacillus subtilis 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Zea mays 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Chenopodium quinoa 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Oryza sativa Indica Group 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Anabaena azotica 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Pyrococcus furiosus 2-acetolactate + CO2 product decarboxylates spontaneously to final product acetoin (i.e. 3-hydroxybutanone), which is a major product at temperatures below 80°C. Acetolactate synthase ALS, which is involved in branched-chain amino acid biosynthesis, is responsible and deletion of the Als gene abolishes acetoin production ? 402314 2.2.1.6 2 pyruvate acetohydroxyacid synthase is the enzyme that catalyses the first step in the common pathway of the biosynthesis of the branched chain amino acids, valine, leucine and isoleucine Bacillus anthracis 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate AHAS catalyzes the first common step in the biosynthetic pathway of the branched-amino acids leucine, isoleucine, and valine Haemophilus influenzae 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate condensation reaction Haemophilus influenzae 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate 60fold higher specificity for 2-ketobutyrate over pyruvate as acceptor Escherichia coli 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate catalytic subunit ilvG shows positive cooperativity towards substrate and cofactors Mycobacterium tuberculosis 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate irreversible decarboxylation of pyruvate Salmonella enterica subsp. enterica serovar Typhimurium 2-acetolactate + CO2 - ir 402314 2.2.1.6 2 pyruvate irreversible decarboxylation of pyruvate Saccharomyces cerevisiae 2-acetolactate + CO2 - ir 402314 2.2.1.6 2 pyruvate irreversible decarboxylation of pyruvate Pseudomonas aeruginosa 2-acetolactate + CO2 - ir 402314 2.2.1.6 2 pyruvate irreversible decarboxylation of pyruvate Escherichia coli 2-acetolactate + CO2 - ir 402314 2.2.1.6 2 pyruvate irreversible decarboxylation of pyruvate Mycobacterium tuberculosis 2-acetolactate + CO2 - ir 402314 2.2.1.6 2 pyruvate the enzyme produces 2-acetolactate in a temperature-dependent manner Pyrococcus furiosus 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate activated enzyme ALS catalyzes the condensation and decarboxylation of two pyruvates to one 2-acetolactate Pyrococcus furiosus 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Lactococcus lactis IL1403 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Bacillus subtilis 168 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Klebsiella pneumoniae KG1 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Klebsiella pneumoniae KG-1 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Corynebacterium glutamicum VWB-1 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Bacillus licheniformis WX-02 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Bacillus subtilis PY79 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Thermotoga maritima DSM 3109 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Anabaena azotica FACHB-686 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Mycobacterium tuberculosis H37Rv 2-acetolactate + CO2 - ir 402314 2.2.1.6 2 pyruvate - Mycobacterium tuberculosis H37Rv 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate catalytic subunit ilvG shows positive cooperativity towards substrate and cofactors Mycobacterium tuberculosis H37Rv 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate irreversible decarboxylation of pyruvate Mycobacterium tuberculosis H37Rv 2-acetolactate + CO2 - ir 402314 2.2.1.6 2 pyruvate - Pyricularia oryzae Guy11 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Pseudomonas sp. Lm10 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Corynebacterium glutamicum IWJ001 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Helianthus annuus HA89 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Thermus thermophilus HB8 / ATCC 27634 / DSM 579 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate - Haloferax volcanii DSM 3757 2-acetolactate + CO2 - ? 402314 2.2.1.6 2 pyruvate enzymatic formation of highly enantioenriched acetoin from two molecules of pyruvate occurs without the release of acetaldehyde or acetolactate Azoarcus sp. (S)-acetoin + 2 CO2 87-90%ee ? 433133 2.2.1.6 2 pyruvate in the absence of aldehydes, CDH catalyzes the decarboxylation and homocoupling of pyruvate to provide (S)-acetoin (3-hydroxybutan-2-one) with remarkably high enantioselectivity (up to 93%ee) Azoarcus sp. (S)-acetoin + 2 CO2 - ? 433133 2.2.1.6 2 pyruvate in the absence of aldehydes, CDH catalyzes the decarboxylation and homocoupling of pyruvate to provide (S)-acetoin (3-hydroxybutan-2-one) with remarkably high enantioselectivity (up to 93%ee) Azoarcus sp. 22Lin (S)-acetoin + 2 CO2 - ? 433133 2.2.1.6 2 pyruvate enzymatic formation of highly enantioenriched acetoin from two molecules of pyruvate occurs without the release of acetaldehyde or acetolactate Azoarcus sp. 22Lin (S)-acetoin + 2 CO2 87-90%ee ? 433133 2.2.1.6 2-acetyl-2-hydroxycyclohexanone + pyruvate - Azoarcus sp. 1-(1-hydroxycyclohexyl)ethanone + CO2 - ? 433162 2.2.1.6 2-bromobenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(2-bromophenyl)propan-2-one + CO2 - ? 433183 2.2.1.6 2-bromobenzaldehyde + pyruvate - Azoarcus sp. 22Lin (R)-1-hydroxy-1-(2-bromophenyl)propan-2-one + CO2 - ? 433183 2.2.1.6 2-chlorobenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(2-chlorophenyl)propan-2-one + CO2 - ? 433188 2.2.1.6 2-chlorobenzaldehyde + pyruvate - Azoarcus sp. 22Lin (R)-1-hydroxy-1-(2-chlorophenyl)propan-2-one + CO2 - ? 433188 2.2.1.6 2-chlorobenzaldehyde + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433189 2.2.1.6 2-fluorobenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(2-fluorophenyl)propan-2-one + CO2 - ? 433196 2.2.1.6 2-hydroxybenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(2-hydroxyphenyl)propan-2-one + CO2 - ? 433198 2.2.1.6 2-iodobenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(2-iodophenyl)propan-2-one + CO2 - ? 433202 2.2.1.6 2-methoxybenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(2-methoxyphenyl)propan-2-one + CO2 - ? 433205 2.2.1.6 2-methylbenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(2-methylphenyl)propan-2-one + CO2 - ? 433208 2.2.1.6 2-naphthaldehyde + pyruvate - Azoarcus sp. (1R)-1-hydroxy-1-(naphthalen-2-yl)propan-2-one + CO2 - ? 433210 2.2.1.6 2-nitrobenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(2-nitrophenyl)propan-2-one + CO2 - ? 433213 2.2.1.6 2-oxobutanoate + lactylthiamine diphosphate - Zea mays acetohydroxybutanoate + ? - ? 260887 2.2.1.6 2-oxobutanoate + pyruvate - Escherichia coli 2-hydroxy-2-methyl-3-oxopentanoate + CO2 - ? 375702 2.2.1.6 2-oxobutanoate + pyruvate - Nicotiana tabacum 2-hydroxy-2-methyl-3-oxopentanoate + CO2 - ? 375702 2.2.1.6 2-oxobutanoate + pyruvate - Corynebacterium glutamicum 2-hydroxy-2-methyl-3-oxopentanoate + CO2 - ? 375702 2.2.1.6 2-oxobutanoate + pyruvate - Geobacillus stearothermophilus 2-hydroxy-2-methyl-3-oxopentanoate + CO2 - ? 375702 2.2.1.6 2-oxobutanoate + pyruvate 60fold higher specificity for 2-ketobutyrate over pyruvate as acceptor Escherichia coli 2-hydroxy-2-methyl-3-oxopentanoate + CO2 - ? 375702 2.2.1.6 2-oxobutanoate + pyruvate reaction catalyzed by mutant V375A Escherichia coli 2-propionyl-2-hydroxybutanoate + ? - ? 403615 2.2.1.6 2-oxobutyrate - Escherichia coli 2-ethyl-2-hydroxy-3-oxopentanoate + CO2 - ir 432598 2.2.1.6 2-oxobutyrate + pyruvate - Mycobacterium tuberculosis 2-aceto-2-hydroxybutyrate + CO2 - ? 434525 2.2.1.6 2-oxobutyrate + pyruvate - Saccharomyces cerevisiae (S)-2-aceto-2-hydroxybutyrate + CO2 - ? 454179 2.2.1.6 2-oxobutyrate + pyruvate - Arabidopsis thaliana (S)-2-aceto-2-hydroxybutyrate + CO2 - ? 454179 2.2.1.6 2-oxoisovalerate - Bacillus subtilis isobutyraldehyde + CO2 - ? 432599 2.2.1.6 2-oxoisovalerate - Bacillus subtilis PY79 isobutyraldehyde + CO2 - ? 432599 2.2.1.6 2-oxopropyl 4-bromobenzoate + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433220 2.2.1.6 3,4-dihydronaphthalen-2(1H)-one + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433237 2.2.1.6 4-(tert-butyl)benzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(4-(tert-butyl)phenyl)propan-2-one + CO2 - ? 433266 2.2.1.6 4-ethoxybenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(4-ethoxyphenyl)propan-2-one + CO2 - ? 433277 2.2.1.6 4-ethylbenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(4-ethylphenyl)propan-2-one + CO2 - ? 433278 2.2.1.6 4-hydroxybenzaldehyde + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433282 2.2.1.6 4-isopropylbenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(4-isopropylphenyl)propan-2-one + CO2 - ? 433285 2.2.1.6 4-phenylbenzaldehyde + pyruvate - Azoarcus sp. (R)-1-hydroxy-1-(4-ethylphenyl)propan-2-one + CO2 - ? 433295 2.2.1.6 butane-2,3-dione + benzaldehyde - Azoarcus sp. ? + CO2 - ? 433524 2.2.1.6 butane-2,3-dione + pyruvate - Azoarcus sp. acetylacetoin + CO2 - ? 433525 2.2.1.6 cyclohexane-1,2-dione + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433591 2.2.1.6 cyclohexanone + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433594 2.2.1.6 dihydro-2H-pyran-3(4H)-one + pyruvate - Azoarcus sp. 1-(3-hydroxytetrahydro-2H-pyran-3-yl)ethanone + CO2 - ? 433637 2.2.1.6 dihydro-2H-pyran-3(4H)-one + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433638 2.2.1.6 ethyl 3-oxobutanoate + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433719 2.2.1.6 hexan-3,4-dione + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433812 2.2.1.6 hexane-3,4-dione + pyruvate - Azoarcus sp. (S)-3-ethyl-3-hydroxyhexane-2,4-dione + CO2 - ? 433813 2.2.1.6 hydroxypyruvate - Escherichia coli ? + CO2 - ? 376981 2.2.1.6 methylpyruvate + benzaldehyde - Azoarcus sp. (S)-acetoin + CO2 - ? 433929 2.2.1.6 methylpyruvate + pyruvate - Yersinia pseudotuberculosis ? + CO2 - ? 433930 2.2.1.6 additional information mechanism of expression regulation, overview Escherichia coli ? - ? 89 2.2.1.6 additional information regulatory role of the proteins of the phosphoenolpyruvate:carbohydrate phosphotransferase system, requirement of the dephospho-form of enzyme IIANtr, encoded by gene ptsN, for derepression of Escherichia coli K-12 ilvBN expression, overview Escherichia coli K-12 ? - ? 89 2.2.1.6 additional information the enzyme can act in anabolic or in catabolic function, the first enzyme contains the conserved motif 372RFDDR376, while the latter does not, the conserved motif 372RFDDR376 is a possible determinant of the FAD-dependent and herbicide-resistant properties of tobacco, overview Nicotiana tabacum ? - ? 89 2.2.1.6 additional information acetohydroxybutyrate is preferably formed, isozyme AHAS I can also form peracetate from synthetic acetolactate Escherichia coli ? - ? 89 2.2.1.6 additional information sll1981 functions as L-myo-inositol 1-phosphate synthase, MIPS, EC 5.5.1.4, overview Synechocystis sp. ? - ? 89 2.2.1.6 additional information substrate specificity ratios of isozymes I-III, substrate recognition mechanism, overview Escherichia coli ? - ? 89 2.2.1.6 additional information acetolactate synthase is the first common enzyme in the biosynthetic pathway of branched-chain amino acids Oryza sativa ? - ? 89 2.2.1.6 additional information AHAS catalyses the first step leading to all three branched-chain amino acids, in the reactions, enzyme-bound thiamine diphosphate reacts with pyruvate, releasing CO2 and forming an acetaldehyde moiety as enzyme-bound hydroxyethyl-ThDP, resonating enamine/alpha-carbanion intermediate Salmonella enterica subsp. enterica serovar Typhimurium ? - ? 89 2.2.1.6 additional information AHAS catalyses the first step leading to all three branched-chain amino acids, in the reactions, enzyme-bound thiamine diphosphate reacts with pyruvate, releasing CO2 and forming an acetaldehyde moiety as enzyme-bound hydroxyethyl-ThDP, resonating enamine/alpha-carbanion intermediate Escherichia coli ? - ? 89 2.2.1.6 additional information AHAS catalyses the first step leading to all three branched-chain amino acids, in the reactions, enzyme-bound thiamine diphosphate reacts with pyruvate, releasing CO2 and forming an acetaldehyde moiety as enzyme-bound hydroxyethyl-ThDP, resonating enamine/alpha-carbanion intermediate Nicotiana tabacum ? - ? 89 2.2.1.6 additional information AHAS catalyses the first step leading to all three branched-chain amino acids, in the reactions, enzyme-bound thiamine diphosphate reacts with pyruvate, releasing CO2 and forming an acetaldehyde moiety as enzyme-bound hydroxyethyl-ThDP, resonating enamine/alpha-carbanion intermediate Arabidopsis thaliana ? - ? 89 2.2.1.6 additional information AHAS catalyses the first step leading to all three branched-chain amino acids, in the reactions, enzyme-bound thiamine diphosphate reacts with pyruvate, releasing CO2 and forming an acetaldehyde moiety as enzyme-bound hydroxyethyl-ThDP, resonating enamine/alpha-carbanion intermediate Brassica napus ? - ? 89 2.2.1.6 additional information AHAS catalyses the first step leading to all three branched-chain amino acids, in the reactions, enzyme-bound thiamine diphosphate reacts with pyruvate, releasing CO2 and forming an acetaldehyde moiety as enzyme-bound hydroxyethyl-ThDP, resonating enamine/alpha-carbanion intermediate Nitrosomonas europaea ? - ? 89 2.2.1.6 additional information AHAS catalyses the first step leading to all three branched-chain amino acids, in the reactions, enzyme-bound thiamine diphosphate reacts with pyruvate, releasing CO2 and forming an acetaldehyde moiety as enzyme-bound hydroxyethyl-ThDP, resonating enamine/alpha-carbanion intermediate Helianthus annuus ? - ? 89 2.2.1.6 additional information AHAS catalyses the first step leading to all three branched-chain amino acids, in the reactions, enzyme-bound thiamine diphosphate reacts with pyruvate, releasing CO2 and forming an acetaldehyde moiety as enzyme-bound hydroxyethyl-ThDP, resonating enamine/alpha-carbanion intermediate Thermotoga maritima ? - ? 89 2.2.1.6 additional information AHAS catalyses the first step leading to all three branched-chain amino acids, in the reactions, enzyme-bound thiamine diphosphate reacts with pyruvate, releasing CO2 and forming an acetaldehyde moiety as enzyme-bound hydroxyethyl-ThDP, resonating enamine/alpha-carbanion intermediate Gossypium hirsutum ? - ? 89 2.2.1.6 additional information AHAS catalyses the first step leading to all three branched-chain amino acids, in the reactions, enzyme-bound thiamine diphosphate reacts with pyruvate, releasing CO2 and forming an acetaldehyde moiety as enzyme-bound hydroxyethyl-ThDP, resonating enamine/alpha-carbanion intermediate Saccharomyces cerevisiae ? - ? 89 2.2.1.6 additional information enzyme additionallly displays 2-ketoisovalerate decarboxylase activity Bacillus subtilis ? - ? 89 2.2.1.6 additional information the specificity of AHAS for 2-ketoacids as acceptor substrates is due to an arginine residue which probably interacts with the carboxylate of the second substrate, e.g., Arg276 in AHAS II. Mutants altered at this arginine can utilize aromatic aldehydes as second substrate and form chiral arylacyl carbinols. Mechanistically, carboligation occurs after rate-determining formation of hydroxyethyl-thiamine diphosphate. A faster rate constant for product release when the alkyl group derived from the acceptor substrate is ethyl compared to methyl plays a major role in product specificity. The crucial role of a Trp residue, i.e. Trp 464 in AHAS II, in determining specificity may be due to control of a conformational change involved in product release rather than to affinity for 2-ketobutyrate Escherichia coli ? - ? 89 2.2.1.6 additional information a valine and a phenylalanine residue hydrophobically interact with the methyl substituent of pyruvate. A mutation of either Val375 or Phe109 is detrimental for unimolecular catalytic steps in which tetrahedral intermediates are involved, such as substrate addition to the cofactor and product liberation. Val375 and Phe109 to not only conjointly mediate substrate binding and specificity but moreover to ensure a proper orientation of the donor substrate and intermediates for correct orbital alignment in multiple transition states Escherichia coli ? - ? 89 2.2.1.6 additional information isozyme I is not specific for 2-oxobutanoate over pyruvate as an acceptor substrate. Residues Gln480 and Met476 in AHAS I replace the Trp and Leu residues conserved in other acetohydroxyacid synthases and lead to accelerated ligation and product release steps. This difference in kinetics accounts for the unique specificity, reversibility and allosteric response of AHAS I Escherichia coli ? - ? 89 2.2.1.6 additional information residue Glu47 has a crucial catalytic role for it in the carboligation of the acceptor and the hydroxyethyl-thiamine diphosphate enamine intermediate. The Glu47-cofactor proton shuttle acts in concert with Gln110 in the carboligation. Either the transient oxyanion on the acceptor carbonyl is stabilized by H-bonding to the glutamine side chain, or carboligation involves glutamine tautomerization and the elementary reactions of addition and protonation occur in a concerted manner. Gln110 and Glu47 have global catalytic roles, being engaged in all major bond-breaking and bond-making steps. Lys159 has a minor effect on the kinetics and specificity of isoform AHAS II, far less than does Arg276,which influences the specificity for a 2-ketoacid as a second substrate. His251 has a large effect on donor substrate binding, but this effect masks any other effects of replacement of His251 Escherichia coli ? - ? 89 2.2.1.6 additional information enzyme AlsS catalyzes the condensation of two pyruvate molecules to acetolactate with thiamine diphosphate and Mg2+ as cofactors. The enzyme also catalyzes the conversion of 2-ketoisovalerate into isobutyraldehyde, the immediate precursor of isobutanol Bacillus subtilis ? - ? 89 2.2.1.6 additional information non-enzymatic decarboxylation of acetolactate to acetoin Pyrococcus furiosus ? - ? 89 2.2.1.6 additional information non-enzymatic decarboxylation of acetolactate to acetoin Thermus thermophilus ? - ? 89 2.2.1.6 additional information the enzyme catalyzes the C-C bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, EC 3.7.1.11, and the asymmetric benzoin condensation between benzaldehyde and pyruvate Azoarcus sp. ? - ? 89 2.2.1.6 additional information YerE might posses the ability to activate non-sugar ketones for cross-benzoin condensations, performing enzymatic aldehyde-ketone cross-benzoin condensations Yersinia pseudotuberculosis ? - ? 89 2.2.1.6 additional information assay method with indirect quantitation of alpha-acetolactate by measuring acetoin formation Pyrococcus furiosus ? - ? 89 2.2.1.6 additional information asymmetric intermolecular crossed aldehyde-ketone condensation through enzymatic carboligation reaction. Carboligation reactions catalyzed by the ThDP-dependent enzyme YerE with pyruvate and an acceptor substrate can lead to tertiary alcohols, (R)-phenylacetylcarbinol derivatives, (S )-acetolactate, and (S)-acetoin, overview Yersinia pseudotuberculosis ? - ? 89 2.2.1.6 additional information detection of nonenzymatic acetoin formation from acetolactate in the assay Klebsiella pneumoniae ? - ? 89 2.2.1.6 additional information in addition to its physiological C-C bond-cleavage activity, CDH catalyzes the asymmetric cross-benzoin reaction of a broad variety of aromatic aldehydes and pyruvate. In the case of the sterically demanding 4-(tert-butyl)benzaldehyde and 2-naphthaldehyde, the respective 2-hydroxyketone products are obtained in high yield. The recombinant CDH shows the same C-C bond-cleavage and C-C bond-formation activity as the enzyme purified from its native source, Azoarcus sp. strain 22Lin. Enzyme CDH catalyzes the asymmetric cross-benzoin reaction of aromatic aldehydes and (decarboxylated) pyruvate (up to quantitative conversion, 92-99% ee). The enzyme accepts also hydroxybenzaldehydes and nitrobenzaldehydes. On a semipreparative scale, sterically demanding 4-(tert-butyl)benzaldehyde and 2-naphthaldehyde are transformed into the corresponding 2-hydroxy ketone products in high yields, enzyme substrate specificity and enantioselectivity, overview Azoarcus sp. ? - ? 89 2.2.1.6 additional information ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) is able to form (S)-acetoin with particularly high enantioselectivity (up to 95%ee) by all three possible pathways: homocoupling of pyruvate, homocoupling of acetaldehyde, or cross-coupling of acetaldehyde (as acceptor) and pyruvate (as donor), high enantioselectivity in the CDH-catalyzed formation of (S)-acetoin. An unprecedented non-acetolactate pathway for the homocoupling of pyruvate explains the high enantioselectivity in the CDH-catalyzed formation of (S)-acetoin, enzymatic formation of highly enantioenriched acetoin from two molecules of pyruvate occurs without the release of acetaldehyde or acetolactate, competition assay, mechanism, overview Azoarcus sp. ? - ? 89 2.2.1.6 additional information the product of this enzyme-catalyzed reaction is either 2-acetolactate or 2-aceto-2-hydroxybutyrate obtained from self-condensation of pyruvate or condensation of puruvate and 2-ketobutyrate, respectively Salmonella enterica subsp. enterica serovar Typhimurium ? - ? 89 2.2.1.6 additional information the product of this enzyme-catalyzed reaction is either 2-acetolactate or 2-aceto-2-hydroxybutyrate obtained from self-condensation of pyruvate or condensation of puruvate and 2-ketobutyrate, respectively Saccharomyces cerevisiae ? - ? 89 2.2.1.6 additional information the product of this enzyme-catalyzed reaction is either 2-acetolactate or 2-aceto-2-hydroxybutyrate obtained from self-condensation of pyruvate or condensation of puruvate and 2-ketobutyrate, respectively Pseudomonas aeruginosa ? - ? 89 2.2.1.6 additional information the product of this enzyme-catalyzed reaction is either 2-acetolactate or 2-aceto-2-hydroxybutyrate obtained from self-condensation of pyruvate or condensation of puruvate and 2-ketobutyrate, respectively Mycobacterium tuberculosis ? - ? 89 2.2.1.6 additional information the product of this enzyme-catalyzed reaction is either 2-acetolactate or 2-aceto-2-hydroxybutyrate obtained from self-condensation of pyruvate or condensation of pyruvate and 2-oxobutyrate, respectively. Substrate specificities of isozymes: isozymes AHAS II and AHAS III prefer 2-oxobutyrate as the second substrate whereas such selectivity is not observed in case of isozyme AHAS I. Isozymes AHAS I and AHAS II are capable of self condensing 2-oxobutyrate to form 2-ethyl-2-hydroxy-3-oxopentanoate Escherichia coli ? - ? 89 2.2.1.6 additional information acetolactate synthase AlsS is able to catalyze the decarboxylation of 2-oxoisovalerate both in vivo and in vitro Bacillus subtilis ? - ? 89 2.2.1.6 additional information acetolactate synthase AlsS is able to catalyze the decarboxylation of 2-oxoisovalerate both in vivo and in vitro Bacillus subtilis 168 ? - ? 89 2.2.1.6 additional information detection of nonenzymatic acetoin formation from acetolactate in the assay Klebsiella pneumoniae KG1 ? - ? 89 2.2.1.6 additional information detection of nonenzymatic acetoin formation from acetolactate in the assay Klebsiella pneumoniae KG-1 ? - ? 89 2.2.1.6 additional information YerE might posses the ability to activate non-sugar ketones for cross-benzoin condensations, performing enzymatic aldehyde-ketone cross-benzoin condensations Yersinia pseudotuberculosis O:VI ? - ? 89 2.2.1.6 additional information asymmetric intermolecular crossed aldehyde-ketone condensation through enzymatic carboligation reaction. Carboligation reactions catalyzed by the ThDP-dependent enzyme YerE with pyruvate and an acceptor substrate can lead to tertiary alcohols, (R)-phenylacetylcarbinol derivatives, (S )-acetolactate, and (S)-acetoin, overview Yersinia pseudotuberculosis O:VI ? - ? 89 2.2.1.6 additional information enzyme AlsS catalyzes the condensation of two pyruvate molecules to acetolactate with thiamine diphosphate and Mg2+ as cofactors. The enzyme also catalyzes the conversion of 2-ketoisovalerate into isobutyraldehyde, the immediate precursor of isobutanol Bacillus subtilis PY79 ? - ? 89 2.2.1.6 additional information the enzyme catalyzes the C-C bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, EC 3.7.1.11, and the asymmetric benzoin condensation between benzaldehyde and pyruvate Azoarcus sp. 22Lin ? - ? 89 2.2.1.6 additional information in addition to its physiological C-C bond-cleavage activity, CDH catalyzes the asymmetric cross-benzoin reaction of a broad variety of aromatic aldehydes and pyruvate. In the case of the sterically demanding 4-(tert-butyl)benzaldehyde and 2-naphthaldehyde, the respective 2-hydroxyketone products are obtained in high yield. The recombinant CDH shows the same C-C bond-cleavage and C-C bond-formation activity as the enzyme purified from its native source, Azoarcus sp. strain 22Lin. Enzyme CDH catalyzes the asymmetric cross-benzoin reaction of aromatic aldehydes and (decarboxylated) pyruvate (up to quantitative conversion, 92-99% ee). The enzyme accepts also hydroxybenzaldehydes and nitrobenzaldehydes. On a semipreparative scale, sterically demanding 4-(tert-butyl)benzaldehyde and 2-naphthaldehyde are transformed into the corresponding 2-hydroxy ketone products in high yields, enzyme substrate specificity and enantioselectivity, overview Azoarcus sp. 22Lin ? - ? 89 2.2.1.6 additional information ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) is able to form (S)-acetoin with particularly high enantioselectivity (up to 95%ee) by all three possible pathways: homocoupling of pyruvate, homocoupling of acetaldehyde, or cross-coupling of acetaldehyde (as acceptor) and pyruvate (as donor), high enantioselectivity in the CDH-catalyzed formation of (S)-acetoin. An unprecedented non-acetolactate pathway for the homocoupling of pyruvate explains the high enantioselectivity in the CDH-catalyzed formation of (S)-acetoin, enzymatic formation of highly enantioenriched acetoin from two molecules of pyruvate occurs without the release of acetaldehyde or acetolactate, competition assay, mechanism, overview Azoarcus sp. 22Lin ? - ? 89 2.2.1.6 additional information the product of this enzyme-catalyzed reaction is either 2-acetolactate or 2-aceto-2-hydroxybutyrate obtained from self-condensation of pyruvate or condensation of puruvate and 2-ketobutyrate, respectively Mycobacterium tuberculosis H37Rv ? - ? 89 2.2.1.6 additional information non-enzymatic decarboxylation of acetolactate to acetoin Thermus thermophilus HB8 / ATCC 27634 / DSM 579 ? - ? 89 2.2.1.6 pyruvate - Salmonella enterica subsp. enterica serovar Typhimurium 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Thermus aquaticus 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Bacillus subtilis 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Escherichia coli 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Escherichia coli 2-acetolactate + CO2 - r 260885 2.2.1.6 pyruvate - Saccharomyces cerevisiae 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Triticum aestivum 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Euglena gracilis 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Neurospora crassa 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Cereibacter sphaeroides 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Hordeum vulgare 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Spinacia oleracea 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Zea mays 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Nicotiana tabacum 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Nicotiana tabacum 2-acetolactate + CO2 - r 260885 2.2.1.6 pyruvate - Arabidopsis thaliana 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Enterobacter cloacae 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Klebsiella aerogenes 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Pseudomonas aeruginosa 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Lactococcus lactis 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Brassica napus 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Serratia marcescens 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Schizosaccharomyces pombe 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Leuconostoc mesenteroides 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Corynebacterium glutamicum 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Mycobacterium tuberculosis 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Bacillus sp. (in: Bacteria) 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Leuconostoc lactis 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Methanothermococcus thermolithotrophicus 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Claviceps purpurea 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Arthrospira platensis 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Brassica rapa subsp. oleifera 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Methanococcus aeolicus 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Methanococcus maripaludis 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Methanococcus voltae 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Escherichia coli K-12 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Schoenoplectiella juncoides 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate first committed step in the biosynthesis of valine and leucine Mycobacterium tuberculosis 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate first step in the biosynthesis of valine, overview Escherichia coli 2-acetolactate + CO2 - r 260885 2.2.1.6 pyruvate the enzyme catalyzes the first committed step in the biosynthesis of valine, leucine, and isoleucine Escherichia coli 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate the enzyme catalyzes the first committed step in the biosynthesis of valine, leucine, and isoleucine Saccharomyces cerevisiae 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate the enzyme catalyzes the first committed step in the biosynthesis of valine, leucine, and isoleucine Nicotiana tabacum 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate the enzyme catalyzes the first committed step in the biosynthesis of valine, leucine, and isoleucine Nicotiana tabacum 2-acetolactate + CO2 - r 260885 2.2.1.6 pyruvate the enzyme catalyzes the first committed step in the biosynthesis of valine, leucine, and isoleucine Mycobacterium tuberculosis 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate the enzyme catalyzes the first committed step in the biosynthesis of valine, leucine, and isoleucine Brassica rapa subsp. oleifera 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate the enzyme catalyzes the first committed step in the biosynthesis of valine, leucine, and isoleucine, overview Corynebacterium glutamicum 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate the enzyme catalyzes the first committed step in the biosynthesis of valine, leucine, and isoleucine, regulation, overview Escherichia coli K-12 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Klebsiella aerogenes 01. Dez 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Mycobacterium tuberculosis H37Rv 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate first committed step in the biosynthesis of valine and leucine Mycobacterium tuberculosis H37Rv 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate the enzyme catalyzes the first committed step in the biosynthesis of valine, leucine, and isoleucine Mycobacterium tuberculosis H37Rv 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Leuconostoc lactis NCW1 2-acetolactate + CO2 - ? 260885 2.2.1.6 pyruvate - Bacillus subtilis ? - ? 370218 2.2.1.6 pyruvate - Saccharomyces cerevisiae ? - ? 370218 2.2.1.6 pyruvate - Nicotiana tabacum ? - ? 370218 2.2.1.6 pyruvate isoenzyme II is regulated by Leu, Ile and Val Salmonella enterica subsp. enterica serovar Typhimurium ? - ? 370218 2.2.1.6 pyruvate isoenzyme II is regulated by Leu, Ile and Val Escherichia coli ? - ? 370218 2.2.1.6 pyruvate isoenzyme II is regulated by Leu Salmonella enterica subsp. enterica serovar Typhimurium ? - ? 370218 2.2.1.6 pyruvate isoenzyme II is regulated by Leu Escherichia coli ? - ? 370218 2.2.1.6 pyruvate the enzyme plays a role in not only preventing intracellular acidification but also supplying alpha-acetolactate as an intermediate of branched chain amino acids biosynthesis Serratia marcescens ? - ? 370218 2.2.1.6 pyruvate production of isoenzyme AHS I is under multivalent control by Val and Leu, production of isoenzyme AHS II is under multivalent control by Ile, Val and Leu Escherichia coli ? - ? 370218 2.2.1.6 pyruvate isoenzyme AHAS I enables a bacterium to cope with poor carbon sources, which lead to low endogenous pyruvate concentrations Salmonella enterica subsp. enterica serovar Typhimurium ? - ? 370218 2.2.1.6 pyruvate isoenzyme AHAS I enables a bacterium to cope with poor carbon sources, which lead to low endogenous pyruvate concentrations Escherichia coli ? - ? 370218 2.2.1.6 pyruvate constitutive high expression, the enzyme is active only under conditions of pyruvate excess Lactococcus lactis ? - ? 370218 2.2.1.6 pyruvate the expression is negatively controlled by Val. Leu and Ile slightly stimulate the enzyme production Arthrospira platensis ? - ? 370218 2.2.1.6 pyruvate catabolic enzyme is involved in 2,3-butanediol pathway Serratia marcescens ? - ? 370218 2.2.1.6 pyruvate catabolic enzyme is involved in 2,3-butanediol pathway Leuconostoc mesenteroides ? - ? 370218 2.2.1.6 pyruvate key enzyme in synthesis of branched-chain amino acids Euglena gracilis ? - ? 370218 2.2.1.6 pyruvate first enzyme unique to biosynthesis of the branched chain amino acids Val, Leu, and Ile Salmonella enterica subsp. enterica serovar Typhimurium ? - ? 370218 2.2.1.6 pyruvate first enzyme unique to biosynthesis of the branched chain amino acids Val, Leu, and Ile Escherichia coli ? - ? 370218 2.2.1.6 pyruvate first enzyme unique to biosynthesis of the branched chain amino acids Val, Leu, and Ile Triticum aestivum ? - ? 370218 2.2.1.6 pyruvate first enzyme unique to biosynthesis of the branched chain amino acids Val, Leu, and Ile Cereibacter sphaeroides ? - ? 370218 2.2.1.6 pyruvate first enzyme unique to biosynthesis of the branched chain amino acids Val, Leu, and Ile Hordeum vulgare ? - ? 370218 2.2.1.6 pyruvate first enzyme unique to biosynthesis of the branched chain amino acids Val, Leu, and Ile Zea mays ? - ? 370218 2.2.1.6 pyruvate first enzyme unique to biosynthesis of the branched chain amino acids Val, Leu, and Ile Nicotiana tabacum ? - ? 370218 2.2.1.6 pyruvate first enzyme unique to biosynthesis of the branched chain amino acids Val, Leu, and Ile Arabidopsis thaliana ? - ? 370218 2.2.1.6 pyruvate isoenzyme I is regulated by Leu and Val Salmonella enterica subsp. enterica serovar Typhimurium ? - ? 370218 2.2.1.6 pyruvate isoenzyme I is regulated by Leu and Val Escherichia coli ? - ? 370218 2.2.1.6 pyruvate - Bacillus subtilis (S)-2-acetolactate + CO2 - ? 386675 2.2.1.6 pyruvate - Escherichia coli (S)-2-acetolactate + CO2 - ? 386675 2.2.1.6 pyruvate stereospecific reaction Escherichia coli (S)-2-acetolactate + CO2 - ? 386675 2.2.1.6 pyruvate stereospecific reaction Saccharomyces cerevisiae (S)-2-acetolactate + CO2 - ? 386675 2.2.1.6 pyruvate the enzyme is the first common enzyme in the pathway for the biosynthesis of branched-chain amino acids, overview Escherichia coli (S)-2-acetolactate + CO2 - ? 386675 2.2.1.6 pyruvate the enzyme is the first common enzyme in the pathway for the biosynthesis of branched-chain amino acids, overview Saccharomyces cerevisiae (S)-2-acetolactate + CO2 - ? 386675 2.2.1.6 pyruvate + 2-oxobutanoate - Escherichia coli acetohydroxybutanoate - ? 260886 2.2.1.6 pyruvate + 2-oxobutanoate no activity Serratia marcescens acetohydroxybutanoate - ? 260886 2.2.1.6 pyruvate + 2-oxobutanoate isoenzyme I shows no product preference, isoenzymes II and III form acetohydroxybutanoate at 180fold and 60fold faster rates, respectively than acetolactate Salmonella enterica subsp. enterica serovar Typhimurium acetohydroxybutanoate - ? 260886 2.2.1.6 pyruvate + 2-oxobutanoate isoenzyme I shows no product preference, isoenzymes II and III form acetohydroxybutanoate at 180fold and 60fold faster rates, respectively than acetolactate Escherichia coli acetohydroxybutanoate - ? 260886 2.2.1.6 pyruvate + 2-oxobutanoate much higher affinity for 2-oxobutanoate than for pyruvate Euglena gracilis acetohydroxybutanoate - ? 260886 2.2.1.6 pyruvate + 2-oxobutanoate preference for 2-ketobutanoate at the second substrate site Hordeum vulgare acetohydroxybutanoate - ? 260886 2.2.1.6 pyruvate + 2-oxobutanoate preference for 2-ketobutanoate at the second substrate site Spinacia oleracea acetohydroxybutanoate - ? 260886 2.2.1.6 pyruvate + 2-oxobutyrate stereospecific reaction Escherichia coli (S)-acetohydroxybutyrate + CO2 - ? 386670 2.2.1.6 pyruvate + 2-oxobutyrate - Escherichia coli 2-aceto-2-hydroxybutyrate + CO2 - ? 386671 2.2.1.6 pyruvate + 2-oxobutyrate - Mycobacterium tuberculosis 2-aceto-2-hydroxybutyrate + CO2 - ? 386671 2.2.1.6 pyruvate + 2-oxobutyrate - Mycobacterium tuberculosis 2-aceto-2-hydroxybutyrate + CO2 - ir 386671 2.2.1.6 pyruvate + 2-oxobutyrate - Thermotoga maritima 2-aceto-2-hydroxybutyrate + CO2 - ? 386671 2.2.1.6 pyruvate + 2-oxobutyrate - Arabidopsis thaliana 2-aceto-2-hydroxybutyrate + CO2 - ? 386671 2.2.1.6 pyruvate + 2-oxobutyrate - Saccharomyces cerevisiae 2-aceto-2-hydroxybutyrate + CO2 - ? 386671 2.2.1.6 pyruvate + 2-oxobutyrate - Helianthus annuus 2-aceto-2-hydroxybutyrate + CO2 - ? 386671 2.2.1.6 pyruvate + 2-oxobutyrate first committed step in the biosynthesis of isoleucine Mycobacterium tuberculosis 2-aceto-2-hydroxybutyrate + CO2 - ? 386671 2.2.1.6 pyruvate + 2-oxobutyrate irreversible decarboxylation of pyruvate Salmonella enterica subsp. enterica serovar Typhimurium 2-aceto-2-hydroxybutyrate + CO2 - ir 386671 2.2.1.6 pyruvate + 2-oxobutyrate irreversible decarboxylation of pyruvate Saccharomyces cerevisiae 2-aceto-2-hydroxybutyrate + CO2 - ir 386671 2.2.1.6 pyruvate + 2-oxobutyrate irreversible decarboxylation of pyruvate Pseudomonas aeruginosa 2-aceto-2-hydroxybutyrate + CO2 - ir 386671 2.2.1.6 pyruvate + 2-oxobutyrate irreversible decarboxylation of pyruvate Escherichia coli 2-aceto-2-hydroxybutyrate + CO2 - ir 386671 2.2.1.6 pyruvate + 2-oxobutyrate irreversible decarboxylation of pyruvate Mycobacterium tuberculosis 2-aceto-2-hydroxybutyrate + CO2 - ir 386671 2.2.1.6 pyruvate + 2-oxobutyrate - Mycobacterium tuberculosis H37Rv 2-aceto-2-hydroxybutyrate + CO2 - ir 386671 2.2.1.6 pyruvate + 2-oxobutyrate - Mycobacterium tuberculosis H37Rv 2-aceto-2-hydroxybutyrate + CO2 - ? 386671 2.2.1.6 pyruvate + 2-oxobutyrate first committed step in the biosynthesis of isoleucine Mycobacterium tuberculosis H37Rv 2-aceto-2-hydroxybutyrate + CO2 - ? 386671 2.2.1.6 pyruvate + 2-oxobutyrate irreversible decarboxylation of pyruvate Mycobacterium tuberculosis H37Rv 2-aceto-2-hydroxybutyrate + CO2 - ir 386671 2.2.1.6 pyruvate + 2-oxobutyrate - Helianthus annuus HA89 2-aceto-2-hydroxybutyrate + CO2 - ? 386671 2.2.1.6 pyruvate + 2-oxobutyrate - Saccharomyces cerevisiae 2-acetohydroxybutyrate + CO2 - ? 454473 2.2.1.6 pyruvate + 2-oxobutyrate - Corynebacterium glutamicum acetohydroxybutyrate + CO2 - ? 454474 2.2.1.6 pyruvate + 2-oxobutyrate - Corynebacterium glutamicum VWB-1 acetohydroxybutyrate + CO2 - ? 454474 2.2.1.6 pyruvate + 2-oxobutyrate - Corynebacterium glutamicum IWJ001 acetohydroxybutyrate + CO2 - ? 454474 2.2.1.6 pyruvate + benzaldehyde stereospecific reaction Escherichia coli (R)-phenylacetylcarbinol + CO2 - ? 389623 2.2.1.6 pyruvate + benzaldehyde stereospecific reaction, benzaldehyde is an artificial substrate, especially of mutants of isozyme AHAS II residues Phe109, Met250, Arg276 and Trp464 Escherichia coli (R)-phenylacetylcarbinol + CO2 - ? 389623 2.2.1.6 pyruvate + benzaldehyde stereospecific reaction, isozymes AHAS I and II Escherichia coli (R)-phenylacetylcarbinol + CO2 - ? 389623 2.2.1.6 pyruvate + benzaldehyde asymmetric benzoin condensation between benzaldehyde and pyruvate Yersinia pseudotuberculosis (R)-phenylacetylcarbinol + CO2 - ? 389623 2.2.1.6 pyruvate + benzaldehyde asymmetric benzoin condensation between benzaldehyde and pyruvate Azoarcus sp. (R)-phenylacetylcarbinol + CO2 (R)-configuration with over 99% ee ? 389623 2.2.1.6 pyruvate + benzaldehyde The enzyme is able to catalyze nonphysiological asymmetric C-C bond formation, the cross-benzoin reaction of benzaldehyde and pyruvate (after decarboxylation) to result in the R-configured 1-hydroxy-1-phenylpropan-2-one (98% ee) Azoarcus sp. (R)-phenylacetylcarbinol + CO2 i.e. (R)-1-hydroxy-1-phenylpropan-2-one ? 389623 2.2.1.6 pyruvate + benzaldehyde asymmetric benzoin condensation between benzaldehyde and pyruvate Yersinia pseudotuberculosis O:VI (R)-phenylacetylcarbinol + CO2 - ? 389623 2.2.1.6 pyruvate + benzaldehyde asymmetric benzoin condensation between benzaldehyde and pyruvate Azoarcus sp. 22Lin (R)-phenylacetylcarbinol + CO2 (R)-configuration with over 99% ee ? 389623 2.2.1.6 pyruvate + benzaldehyde The enzyme is able to catalyze nonphysiological asymmetric C-C bond formation, the cross-benzoin reaction of benzaldehyde and pyruvate (after decarboxylation) to result in the R-configured 1-hydroxy-1-phenylpropan-2-one (98% ee) Azoarcus sp. 22Lin (R)-phenylacetylcarbinol + CO2 i.e. (R)-1-hydroxy-1-phenylpropan-2-one ? 389623 2.2.1.6 pyruvate + cyclohexane-1,2-dione although cyclohexane-1,2-dione is a substrate of a C-C bond-cleavage reaction catalyzed by CDH, EC 3.7.1.11, wild-type CDH is unable to catalyze C-C bond formation (carboligation) using pyruvate as acyl anion donor and cyclohexane-1,2-dione as the acceptor. The formation of a tertiary alcohol is catalyzed by the enzyme double mutant CDH-H28A/N484A Azoarcus sp. ? - ? 434173 2.2.1.6 pyruvate + O2 isozymes AHAS II and AHAS III, oxygen-consuming side reaction Escherichia coli peracetate + CO2 - ? 389631 2.2.1.6 pyruvate + pyruvate - Saccharomyces cerevisiae 2-acetolactate + CO2 - ? 434733 2.2.1.6 pyruvate + pyruvate - Thermotoga maritima 2-acetolactate + CO2 - ? 434733