1.8.4.11 (S)-methyl 4-tolyl sulfoxide + thioredoxin - Saccharomyces cerevisiae ? - ? 375481 1.8.4.11 (S)-methyl 4-tolyl sulfoxide + thioredoxin FMsr is specific for the S-isomer Escherichia coli ? - ? 375481 1.8.4.11 ac-L-Lys-L-Asn-L-Met(O)-L-Asp-L-Lys-dinitrophenol + dithiothreitol - Aspergillus nidulans ac-L-Lys-L-Asn-L-Met-L-Asp-L-Lys-dinitrophenol + dithiothreitol disulfide + H2O - ? 440988 1.8.4.11 ac-L-Lys-L-Asp-L-Met(O)-L-Asn-L-Lys-dinitrophenol + dithiothreitol - Aspergillus nidulans ac-L-Lys-L-Asp-L-Met-L-Asn-L-Lys-dinitrophenol + dithiothreitol disulfide + H2O - ? 440989 1.8.4.11 ac-L-Lys-L-Asp-L-Met(O)-L-Asp-L-Lys-dinitrophenol + dithiothreitol - Aspergillus nidulans ac-L-Lys-L-Asp-L-Met-L-Asp-L-Lys-dinitrophenol + dithiothreitol disulfide + H2O - ? 440990 1.8.4.11 ac-L-Lys-L-Phe-L-Met(O)-L-Lys-L-Lys-dinitrophenol + dithiothreitol - Aspergillus nidulans ac-L-Lys-L-Phe-L-Met-L-Lys-L-Lys-dinitrophenol + dithiothreitol disulfide + H2O - ? 440991 1.8.4.11 acetyl-L-methionine-(S)-S-oxide-NHMe + thioredoxin - Neisseria meningitidis ? - ? 396334 1.8.4.11 acetyl-L-methionine-(S)-S-oxide-NHMe + thioredoxin - Escherichia coli acetyl-L-methionine-NHMe + thioredoxin disulfide + H2O - ? 441000 1.8.4.11 alpha-synuclein + dithiothreitol alpha-synuclein is oxidized at both Met1 and Met5 but not at Met116 or Met127 Homo sapiens ? - ? 425915 1.8.4.11 alpha-synuclein + thioredoxin disulfide + H2O Met1 and Met5 within alpha-synuclein are oxidized to (S)-methionine sulfoxide Mus musculus ? - ? 425916 1.8.4.11 alpha-synuclein-L-methionine (S)-S-oxide + thioredoxin - Bos taurus alpha-synuclein-L-methionine + thioredoxin disulfide + H2O - ? 396398 1.8.4.11 alpha1-antitrypsin + thioredoxin disulfide + H2O Met358 within alpha1-antitrypsin is oxidized to (S)-methionine sulfoxide Mus musculus ? - ? 425918 1.8.4.11 apolipoprotein A-I + dithiothreitol the myristoylated enzyme reduces the methionine sulfoxides in apolipoprotein A-I four times faster than nonmyristoylated enzyme Mus musculus ? - ? 425933 1.8.4.11 calmodulin + thioredoxin disulfide + H2O Met77 within calmodulin is oxidized to (S)-methionine sulfoxide Mus musculus ? - r 426065 1.8.4.11 calmodulin L-methionine-(S)-sulfoxide + thioredoxin MsrA is specific for the S-form, enzyme provides protection against oxidative damage by reactive oxygen species and has a repair function for oxidized protein methionine residues, which restores the calmodulin binding to adenylate cyclase of the pathogen Bordetella pertussis, which is an essential step for the bacterium to enter host cells, overview Rattus norvegicus calmodulin L-methionine + thioredoxin disulfide - ? 375083 1.8.4.11 calmodulin L-methionine-(S)-sulfoxide + thioredoxin MsrA is specific for the S-form, recombinant human calmodulin, recombinant rat enzyme, artificial system, determination of oxidized methionine residues being reduced by the enzyme, overview Rattus norvegicus calmodulin L-methionine + thioredoxin disulfide - ? 375083 1.8.4.11 calmodulin-L-methionine (S)-S-oxide + thioredoxin MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin. The efficient repair is the coordinate activity of the two catalytic domains in the MsrBA fusion protein, which results in a 1 order of magnitude rate enhancement in comparison to those of the individual MsrA or MsrB enzyme alone Shewanella oneidensis calmodulin-L-methionine + thioredoxin disulfide + H2O - ? 396648 1.8.4.11 calmodulin-L-methionine (S)-sulfoxide + thioredoxin - Escherichia coli calmodulin-L-methionine + thioredoxin disulfide + H2O - ? 375085 1.8.4.11 dabsyl-L-methionine (R)-sulfoxide + thioredoxin - Mus musculus dabsyl-L-methionine + thioredoxin disulfide + H2O - ? 376644 1.8.4.11 dabsyl-L-methionine (S)-S-oxide + dithiothreitol - Treponema denticola dabsyl-L-methionine + dithiothreitol disulfide + H2O - ? 441263 1.8.4.11 dabsyl-L-methionine (S)-S-oxide + dithiothreitol - Treponema denticola ATCC 35405 dabsyl-L-methionine + dithiothreitol disulfide + H2O - ? 441263 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + dithiothreitol - Nicotiana tabacum dabsyl-L-methionine + dithiothreitol disulfide + H2O - ? 376641 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + dithiothreitol - Helicobacter pylori dabsyl-L-methionine + dithiothreitol disulfide + H2O - ? 376641 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + dithiothreitol - Solanum lycopersicum dabsyl-L-methionine + dithiothreitol disulfide + H2O - ? 376641 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + dithiothreitol synthetic substrate, MsrA is absolutely specific for the S-form Caenorhabditis elegans dabsyl-L-methionine + dithiothreitol disulfide + H2O - ? 376641 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + dithiothreitol - Helicobacter pylori ATCC 700392 dabsyl-L-methionine + dithiothreitol disulfide + H2O - ? 376641 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + dithiothreitol - Clostridium sp. dabsyl-L-methionine + dithiothreitol disulfide - ? 404941 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + dithiothreitol - Clostridium sp. OhILAs dabsyl-L-methionine + dithiothreitol disulfide - ? 404941 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + NADPH + H+ synthetic substrate, MsrA is absolutely specific for the S-form, 7fold lower activity with NADPH compared to DTT Caenorhabditis elegans dabsyl-L-methionine + NADP+ + H2O - ? 376642 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin - Saccharomyces cerevisiae dabsyl-L-methionine + thioredoxin disulfide + H2O - ? 376643 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin - Nicotiana tabacum dabsyl-L-methionine + thioredoxin disulfide + H2O - ? 376643 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin synthetic substrate Rattus norvegicus dabsyl-L-methionine + thioredoxin disulfide + H2O - ? 376643 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-isomer Saccharomyces cerevisiae dabsyl-L-methionine + thioredoxin disulfide + H2O - ? 376643 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin MsrA specifically reduces the S-form of methionine sulfoxide Saccharomyces cerevisiae dabsyl-L-methionine + thioredoxin disulfide + H2O - ? 376643 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin FMsr is specific for the S-isomer Escherichia coli dabsyl-L-methionine + thioredoxin disulfide + H2O - ? 376643 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin synthetic substrate, MsrA is absolutely specific for the S-form Caenorhabditis elegans dabsyl-L-methionine + thioredoxin disulfide + H2O - ? 376643 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin - Caenorhabditis elegans ? - ? 404942 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin - Caenorhabditis elegans N2 ? - ? 404942 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin - Clostridium sp. dabsyl-L-methionine + thioredoxin disulfide - ? 404943 1.8.4.11 dabsyl-L-methionine (S)-sulfoxide + thioredoxin - Clostridium sp. OhILAs dabsyl-L-methionine + thioredoxin disulfide - ? 404943 1.8.4.11 dabsyl-L-methionine-(S)-S-oxide + dithiothreitol - Thermococcus kodakarensis dabsyl-L-methionine + dithiothreitol disulfide + H2O - ? 396965 1.8.4.11 dabsyl-L-methionine-(S)-S-oxide + dithiothreitol - Mus musculus dabsyl-L-methionine + DTT disulfide + H2O - ? 396966 1.8.4.11 dabsyl-L-methionine-(S)-S-oxide + DTT stereospecific reduction Mus musculus dabsyl-L-methionine + DTT disulfide + H2O - ? 384564 1.8.4.11 dabsyl-L-methionine-(S)-S-oxide + DTT stereospecific reduction Saccharomyces cerevisiae dabsyl-L-methionine + DTT disulfide + H2O - ? 384564 1.8.4.11 dabsyl-L-methionine-(S)-S-oxide + DTT stereospecific reduction Aggregatibacter actinomycetemcomitans dabsyl-L-methionine + DTT disulfide + H2O - ? 384564 1.8.4.11 dabsyl-L-methionine-(S)-S-oxide + DTT stereospecific reduction Saccharomyces cerevisiae BY4743 dabsyl-L-methionine + DTT disulfide + H2O - ? 384564 1.8.4.11 dabsyl-L-methionine-(S)-S-oxide + thioredoxin - Saccharomyces cerevisiae dabsyl-L-methionine + thioredoxin disulfide + H2O - ? 384565 1.8.4.11 dabsyl-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Mus musculus dabsyl-L-methionine + thioredoxin disulfide + H2O - ? 384565 1.8.4.11 dabsyl-L-methionine-(S)-S-sulfoxide + dithiothreitol - Saccharomyces cerevisiae dabsyl-L-methionine + dithiothreitol disulfide + H2O - ? 414524 1.8.4.11 dabsyl-L-methionine-(S)-S-sulfoxide + dithiothreitol - Saccharomyces cerevisiae BY4741 dabsyl-L-methionine + dithiothreitol disulfide + H2O - ? 414524 1.8.4.11 dabsylated L-methionine (S)-sulfoxide + thioredoxin - Clostridium sp. dabsylated L-methionine + thioredoxin disulfide + H2O - r 451779 1.8.4.11 dabsylated L-methionine (S)-sulfoxide + thioredoxin - Clostridium sp. OhILAs dabsylated L-methionine + thioredoxin disulfide + H2O - r 451779 1.8.4.11 dimethylsulfide + thioredoxin disulfide + H2O - Drosophila melanogaster dimethylsulfoxide + thioredoxin - ? 441322 1.8.4.11 dimethylsulfide + thioredoxin disulfide + H2O - Rattus norvegicus dimethylsulfoxide + thioredoxin - ? 441322 1.8.4.11 dimethylsulfide + thioredoxin disulfide + H2O - Caenorhabditis elegans dimethylsulfoxide + thioredoxin - ? 441322 1.8.4.11 DL-methionine (S)-sulfoxide + thioredoxin enzyme MsrA is specific for the S-form, active on free and protein-bound methionine, the latter is bound more efficiently Neisseria meningitidis DL-methionine + thioredoxin disulfide + H2O - ? 376730 1.8.4.11 Fmoc-L-methionine (S)-sulfoxide + dithiothreitol - Arabidopsis thaliana Fmoc-L-methionine + dithiothreitol disulfide + H2O - ? 376806 1.8.4.11 Gly-L-Met-Gly + dithiothreitol - Homo sapiens ? - ? 426448 1.8.4.11 His6-Ala-Ala-Gln-MetO-Ile + DTT - Homo sapiens His6-Ala-Ala-Gln-Met-Ile + DTT disulfide + H2O - ? 384885 1.8.4.11 Hsp21 L-methionine S-oxide + dithiothreitol chloroplast-localized small heat shock protein, repair function for heat shock protein Hsp21 by restoring the structure, which is crucial for cellular resistance to oxidative stress, the enzyme can protect the chaperone-like activity of Hsp21 Arabidopsis thaliana Hsp21 L-methionine + dithiothreitol S-oxide - ? 375150 1.8.4.11 Hsp21 L-methionine S-oxide + dithiothreitol Hsp21 contains 6 methionine residues at positions 49, 52, 55, 59, 62, and 67, about half of the residues are reduced by the enzyme probably due to its stereospecificity Arabidopsis thaliana Hsp21 L-methionine + dithiothreitol S-oxide - ? 375150 1.8.4.11 L-methionine (R)-sulfoxide + thioredoxin the membrane-associated isozyme reduces both R- and S-stereoisomers of methionine sulfoxide in proteins Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375162 1.8.4.11 L-methionine (R,S)-sulfoxide + glutathione - Gracilaria gracilis L-methionine + GSSG + H2O - ? 426576 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin - Neisseria meningitidis L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin the enzyme protects cells against oxidative damage and plays a role in age-related misfunctions Haemophilus influenzae L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin the enzyme protects cells against oxidative damage and plays a role in age-related misfunctions Neisseria gonorrhoeae L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin the enzyme protects cells against oxidative damage and plays a role in age-related misfunctions Neisseria meningitidis L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin the enzyme protects cells against oxidative damage and plays a role in age-related misfunctions Streptococcus pneumoniae L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin the enzyme protects cells against oxidative damage and plays a role in age-related misfunctions Helicobacter pylori L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin the enzyme protects cells against oxidative damage and plays a role in age-related misfunctions Streptococcus gordonii L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin enzyme MsrA/B shows both MsrA and MsrB activity, free and protein-bound methionine Haemophilus influenzae L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin enzyme MsrA/B shows both MsrA and MsrB activity, free and protein-bound methionine Neisseria gonorrhoeae L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin enzyme MsrA/B shows both MsrA and MsrB activity, free and protein-bound methionine Neisseria meningitidis L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin enzyme MsrA/B shows both MsrA and MsrB activity, free and protein-bound methionine Streptococcus pneumoniae L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin enzyme MsrA/B shows both MsrA and MsrB activity, free and protein-bound methionine Helicobacter pylori L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (R,S)-sulfoxide + thioredoxin enzyme MsrA/B shows both MsrA and MsrB activity, free and protein-bound methionine Streptococcus gordonii L-methionine + thioredoxin disulfide - ? 375163 1.8.4.11 L-methionine (S)-sulfoxide + 2 dithiothreitol - Escherichia coli L-methionine + dithiothreitol disulfide + H2O - ? 377058 1.8.4.11 L-methionine (S)-sulfoxide + 2 dithiothreitol - Saccharomyces cerevisiae L-methionine + dithiothreitol disulfide + H2O - ? 377058 1.8.4.11 L-methionine (S)-sulfoxide + 2 dithiothreitol - Mus musculus L-methionine + dithiothreitol disulfide + H2O - ? 377058 1.8.4.11 L-methionine (S)-sulfoxide + 2 dithiothreitol - Alkaliphilus oremlandii L-methionine + dithiothreitol disulfide + H2O - ? 377058 1.8.4.11 L-methionine (S)-sulfoxide + 2 dithiothreitol the MsrA-domain of MsrABTk is strictly specific for the reduction of L-methionine (S)-sulfoxide Thermococcus kodakarensis L-methionine + dithiothreitol disulfide + H2O - ? 377058 1.8.4.11 L-methionine (S)-sulfoxide + 2 dithiothreitol - Saccharomyces cerevisiae BY4741 L-methionine + dithiothreitol disulfide + H2O - ? 377058 1.8.4.11 L-methionine (S)-sulfoxide + 2 dithiothreitol - Alkaliphilus oremlandii OhILAs L-methionine + dithiothreitol disulfide + H2O - ? 377058 1.8.4.11 L-methionine (S)-sulfoxide + dithiothreitol the myristoylated enzyme form reduces methionine sulfoxide in protein much faster than the nonmyristoylated form Mus musculus ? - ? 424867 1.8.4.11 L-methionine (S)-sulfoxide + glutaredoxin 2 - Alkaliphilus oremlandii L-methionine + glutaredoxin 2 disulfide + H2O - ? 441526 1.8.4.11 L-methionine (S)-sulfoxide + glutaredoxin 2 - Alkaliphilus oremlandii OhILAs L-methionine + glutaredoxin 2 disulfide + H2O - ? 441526 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Mus musculus L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Homo sapiens L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Saccharomyces cerevisiae L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Streptococcus pneumoniae L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Mycobacterium tuberculosis L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Helicobacter pylori L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Homo sapiens L-methionine + thioredoxin disulfide + H2O - r 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Mus musculus L-methionine + thioredoxin disulfide + H2O - r 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Solanum lycopersicum L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin enzyme is involved in repairing of oxidized methionine residues in proteins Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin FMsr is absolutely specific for the S-isomer of free methionine sulfoxide, no activity with protein bound methionine sulfoxide Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin important antioxidant enzyme and colonization factor in the gastric pathogen, a methionine repair enzyme responsible for stress resistance Helicobacter pylori L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin membrane-bound enzyme form Mem-R,S-Msr, enzyme form MsrA is specific for the S-form, MsrA enzyme form variants with specificities for either free or protein-bound methionine Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin membrane-bound enzyme form Mem-R,S-Msr, enzyme form MsrA is specific for the S-form, there exist MsrA enzyme form variants with specificities for either free or protein-bound methionine Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Drosophila melanogaster L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Staphylococcus aureus L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Mycoplasma genitalium L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Sinorhizobium meliloti L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Bacillus subtilis L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Mus musculus L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Homo sapiens L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Rattus norvegicus L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Sus scrofa L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Saccharomyces cerevisiae L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Mycolicibacterium smegmatis L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Arabidopsis thaliana L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Neisseria gonorrhoeae L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Neisseria meningitidis L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Mycobacterium tuberculosis L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Helicobacter pylori L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Dickeya chrysanthemi L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Vibrio cholerae serotype O1 L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Aggregatibacter actinomycetemcomitans L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form of the substrate Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form of the substrate Saccharomyces cerevisiae L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form, active on free and protein-bound methionine, the latter is bound more efficiently Bacillus subtilis L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form, active on free and protein-bound methionine, the latter is bound more efficiently Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form, active on free and protein-bound methionine, the latter is bound more efficiently Xanthomonas campestris L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form, enzyme variants with specificities for either free or protein-bound methionine Saccharomyces cerevisiae L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form, enzyme variants with specificities for either free or protein-bound methionine Bos taurus L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form, free and protein-bound methionine Drosophila melanogaster L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form, free and protein-bound methionine Dickeya chrysanthemi L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form, there exist enzyme variants with specificities for either free or protein-bound methionine Mus musculus L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form, there exist enzyme variants with specificities for either free or protein-bound methionine Homo sapiens L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-isomer Saccharomyces cerevisiae L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA specifically reduces the S-form of methionine sulfoxide Saccharomyces cerevisiae L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrAs are specific for the (S)-form of the substrate Staphylococcus aureus L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin oxidation of protein-bound methionine results in loss of protein function, but can be reversed by the enzyme activity reducing methionine sulfoxide Homo sapiens L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin substrates are several peptides and proteins, overview Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin absolute specificity for the S-form Mycobacterium tuberculosis L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin enzyme MsrA shows absolute specificity for the S-form of free methionine sulfoxide, no activity with the R-form, enzyme MsrA is oxidized at Cys51/Cys198 forming a disulfide Neisseria meningitidis L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin enzyme MsrA, absolute specificity for the S-form Mycobacterium tuberculosis L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA activity of the tandem domains of PilB, the MsrA domain alone does not utilize the R-isomer Neisseria meningitidis L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA activity of the tandem domains of PilB, the MsrA domain alone does very poorly utilize the R-isomer Neisseria gonorrhoeae L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA and soluble isozyme MsrA1 are specific for the S-form, the membrane-associated isozyme reduces both R- and S-stereoisomers of methionine sulfoxide in proteins Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin the 2 MsrA enzymes are absolutely specific for the S-form of the substrate Staphylococcus aureus L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form of L-methionine sulfoxide Aspergillus nidulans L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin the enzyme is specific for the S epimer of methionine sulfoxide Homo sapiens L-methionine + thioredoxin disulfide + H2O - r 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin MsrA specifically reduces the S-form of methionine sulfoxide Saccharomyces cerevisiae BY4741 L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + thioredoxin - Mycobacterium tuberculosis H37Rv L-methionine + thioredoxin disulfide + H2O - ? 375164 1.8.4.11 L-methionine (S)-sulfoxide + tryparedoxin I L-methionine (S)-sulfoxide is the specific substrate Trypanosoma cruzi L-methionine + tryparedoxin I disulfide + H2O - ? 414775 1.8.4.11 L-methionine (S)-sulfoxide + tryparedoxin I L-methionine (S)-sulfoxide is the specific substrate Trypanosoma cruzi CL Brener L-methionine + tryparedoxin I disulfide + H2O - ? 414775 1.8.4.11 L-methionine sulfoxide enkephalin + thioredoxin membrane-bound enzyme form Mem-R,S-Msr Escherichia coli L-methionine enkephalin - ? 377061 1.8.4.11 L-methionine-(S)-S-oxide + DTT stereospecific reduction, 9-fluorenylmethyl chloroformate-labeled substrate Arabidopsis thaliana L-methionine + DTT disulfide + H2O - ? 385028 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin - Staphylococcus aureus L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin - Mus musculus L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin - Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin - Sus scrofa L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin - Saccharomyces cerevisiae L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin - Arabidopsis thaliana L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin - Trypanosoma cruzi L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Staphylococcus aureus L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Mus musculus L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Escherichia coli L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Homo sapiens L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Sus scrofa L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Saccharomyces cerevisiae L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Arabidopsis thaliana L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Neisseria meningitidis L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin substrates are HIV-2, which is inactivated by oxidation of its methionine residues M76 and M95, the potassium channel of the brain, the inhibitor IkappaB-alpha, or calmodulin, overview Homo sapiens L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction, free methionine-(S)-S-oxide Mus musculus L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin thioredoxin from Leptospira interrogans Leptospira interrogans L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin - Trypanosoma cruzi Dm28c L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + thioredoxin thioredoxin from Leptospira interrogans Leptospira interrogans Fiocruz L1-130 L-methionine + thioredoxin disulfide + H2O - ? 383225 1.8.4.11 L-methionine-(S)-S-oxide + tryparedoxin I - Trypanosoma cruzi L-methionine + tryparedoxin I disulfide + H2O - ? 462649 1.8.4.11 L-methionine-(S)-S-oxide + tryparedoxin I - Trypanosoma cruzi Dm28c L-methionine + tryparedoxin I disulfide + H2O - ? 462649 1.8.4.11 L-Pro-L-Met-L-Ala-L-Ile-L-Lys-L-Lys + dithiothreitol - Homo sapiens ? - ? 426584 1.8.4.11 methionine sulfoxide in alkyl hydroperoxide reductase C + thioredoxin - Helicobacter pylori methionine in alkyl hydroperoxide reductase C + thioredoxin disulfide + H2O - ? 441607 1.8.4.11 additional information substrate specificity Escherichia coli ? - ? 89 1.8.4.11 additional information substrate specificity Saccharomyces cerevisiae ? - ? 89 1.8.4.11 additional information physiological role Escherichia coli ? - ? 89 1.8.4.11 additional information detoxification enzyme Brucella anthropi ? - ? 89 1.8.4.11 additional information cellular system of balancing native proteins and oxidatively damaged proteins by use of protein biosynthesis, protein oxidative modification, protein elimination, and oxidized protein repair involving the enzyme, overview, enzyme protects against oxidative damage of proteins Escherichia coli ? - ? 89 1.8.4.11 additional information cellular system of balancing native proteins and oxidatively damaged proteins by use of protein biosynthesis, protein oxidative modification, protein elimination, and oxidized protein repair involving the enzyme, overview, enzyme protects against oxidative damage of proteins, enzyme activity is not age-related Saccharomyces cerevisiae ? - ? 89 1.8.4.11 additional information cellular system of balancing native proteins and oxidatively damaged proteins by use of protein biosynthesis, protein oxidative modification, protein elimination, and oxidized protein repair involving the enzyme, overview, enzyme protects against oxidative damage of proteins, loss of enzyme activity is age-related Drosophila melanogaster ? - ? 89 1.8.4.11 additional information cellular system of balancing native proteins and oxidatively damaged proteins by use of protein biosynthesis, protein oxidative modification, protein elimination, and oxidized protein repair involving the enzyme, overview, enzyme protects against oxidative damage of proteins, loss of enzyme activity is age-related Homo sapiens ? - ? 89 1.8.4.11 additional information cellular system of balancing native proteins and oxidatively damaged proteins by use of protein biosynthesis, protein oxidative modification, protein elimination, and oxidized protein repair involving the enzyme, overview, enzyme protects against oxidative damage of proteins, loss of enzyme activity is age-related Rattus norvegicus ? - ? 89 1.8.4.11 additional information downregulation of MsrA during replicative senescence of cells leads to accumulation of oxidized proteins and age-related increased oxidative damage Homo sapiens ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Staphylococcus aureus ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Mycoplasma genitalium ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Sinorhizobium meliloti ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Bacillus subtilis ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Escherichia coli ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Mycolicibacterium smegmatis ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Neisseria gonorrhoeae ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Neisseria meningitidis ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Mycobacterium tuberculosis ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Helicobacter pylori ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Dickeya chrysanthemi ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Vibrio cholerae serotype O1 ? - ? 89 1.8.4.11 additional information enzyme acts on free and protein-bound methionine Aggregatibacter actinomycetemcomitans ? - ? 89 1.8.4.11 additional information enzyme has regulatory function in the plant cell Arabidopsis thaliana ? - ? 89 1.8.4.11 additional information enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide Mycoplasma genitalium ? - ? 89 1.8.4.11 additional information enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide, e.g. the heat shock protein and chaperone Hsp16.3, role of the MsrA/MsrB repair pathway in cellular protein dynamics Mycobacterium tuberculosis ? - ? 89 1.8.4.11 additional information enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide, role of the MsrA/MsrB repair pathway in cellular protein dynamics Sinorhizobium meliloti ? - ? 89 1.8.4.11 additional information enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide, role of the MsrA/MsrB repair pathway in cellular protein dynamics Bacillus subtilis ? - ? 89 1.8.4.11 additional information enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide, role of the MsrA/MsrB repair pathway in cellular protein dynamics Mycolicibacterium smegmatis ? - ? 89 1.8.4.11 additional information enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide, role of the MsrA/MsrB repair pathway in cellular protein dynamics Helicobacter pylori ? - ? 89 1.8.4.11 additional information enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide, role of the MsrA/MsrB repair pathway in cellular protein dynamics Dickeya chrysanthemi ? - ? 89 1.8.4.11 additional information enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide, role of the MsrA/MsrB repair pathway in cellular protein dynamics Vibrio cholerae serotype O1 ? - ? 89 1.8.4.11 additional information enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide, role of the MsrA/MsrB repair pathway in cellular protein dynamics, MsrA is important for virulence in mice Staphylococcus aureus ? - ? 89 1.8.4.11 additional information enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide, role of the MsrA/MsrB repair pathway in cellular protein dynamics, the MsrA/MsrB repair pathway is involved in the signal recognition particle-dependent protein targeting pathway, regulation mechanism of gene expression, overview Escherichia coli ? - ? 89 1.8.4.11 additional information enzymes acts on free and protein-bound methionine Neisseria meningitidis ? - ? 89 1.8.4.11 additional information MsrA is specific for the S-form of the substrate Escherichia coli ? - ? 89 1.8.4.11 additional information potential role of the enzyme in cold-acclimation, enzyme may protect the cells from photodamage Secale cereale ? - ? 89 1.8.4.11 additional information protection of the cells against reactive oxidizing species, biological consequences of methionine oxidation, physiological role, overview Saccharomyces cerevisiae ? - ? 89 1.8.4.11 additional information recycling of free methionine, enzyme reverses the oxidative damage at methionine protein residues oxidized to methionine sulfoxide being a major cause of aging and age-related diseases, Msr can regulate protein function, be involved in signal transduction, and prevent accumulation of faulty proteins Arabidopsis thaliana ? - ? 89 1.8.4.11 additional information recycling of free methionine, enzyme reverses the oxidative damage at methionine protein residues oxidized to methionine sulfoxide being a major cause of aging and age-related diseases, Msr can regulate protein function, be involved in signal transduction, and prevent accumulation of faulty proteins, MsrA has several different physiological repair and regulatory functions, overview Homo sapiens ? - ? 89 1.8.4.11 additional information recycling of free methionine, enzyme reverses the oxidative damage at methionine protein residues oxidized to methionine sulfoxide being a major cause of aging and age-related diseases, Msr can regulate protein function, be involved in signal transduction, and prevent accumulation of faulty proteins, MsrA has several different physiological repair and regulatory functions, overview Sus scrofa ? - ? 89 1.8.4.11 additional information recycling of free methionine, enzyme reverses the oxidative damage at methionine protein residues oxidized to methionine sulfoxide being a major cause of aging and age-related diseases, MsrA can regulate protein function, be involved in signal transduction, and prevent accumulation of faulty proteins, MsrB has several different physiological repair and regulatory functions, overview, oxidation of 2 essential methionine residues of HIV-2 particles can inactivate the virus and prevent infection of human cells Mus musculus ? - ? 89 1.8.4.11 additional information recycling of free methionine, enzyme reverses the oxidative damage at methionine protein residues oxidized to methionine sulfoxide being a major cause of aging, Msr can regulate protein function, be involved in signal transduction, and prevent accumulation of faulty proteins, MsrA has several different physiological repair and regulatory functions, overview Staphylococcus aureus ? - ? 89 1.8.4.11 additional information recycling of free methionine, enzyme reverses the oxidative damage at methionine protein residues oxidized to methionine sulfoxide being a major cause of aging, Msr can regulate protein function, be involved in signal transduction, and prevent accumulation of faulty proteins, MsrA has several different physiological repair and regulatory functions, overview Escherichia coli ? - ? 89 1.8.4.11 additional information recycling of free methionine, enzyme reverses the oxidative damage at methionine protein residues oxidized to methionine sulfoxide being a major cause of aging, Msr can regulate protein function, be involved in signal transduction, and prevent accumulation of faulty proteins, MsrA has several different physiological repair and regulatory functions, overview Saccharomyces cerevisiae ? - ? 89 1.8.4.11 additional information role of the MsrA/MsrB repair pathway in cellular protein dynamics, mutation of gene msrA has no effect on virulence, and on resistance to oxidative agents, and causes no defect in cell envelope, msrA is probably linked to biofilm formation, enzyme repairs oxidatively damaged free and protein bound methionine and recycles it from methionine sulfoxide Aggregatibacter actinomycetemcomitans ? - ? 89 1.8.4.11 additional information the enzyme is an essential regulator of longevity and is important for lens cell viability and resistance to oxidative stress, methionine sulfoxide is the major oxidative stress product, up to 60%, in cataract while being essentially absent in clear lens Homo sapiens ? - ? 89 1.8.4.11 additional information the enzyme is essential in protection of the cells against oxidative damage by reactive oxygen species, yeast cell life span analysis of wild-type and mutant cells, the latter either overexpress or lack enzyme activity, overview Saccharomyces cerevisiae ? - ? 89 1.8.4.11 additional information the enzyme is important in protection of the cell against oxidative damage by oxidation of methionine residues in proteins, biological function Escherichia coli ? - ? 89 1.8.4.11 additional information the enzyme is important in protection of the cell against oxidative damage by oxidation of methionine residues in proteins, biological function Streptococcus pneumoniae ? - ? 89 1.8.4.11 additional information the enzyme protect cells against oxidative damage and plays a role in age-related diseases Mus musculus ? - ? 89 1.8.4.11 additional information the enzyme protects cells against oxidative damage and plays a role in age-related misfunctions Dickeya chrysanthemi ? - ? 89 1.8.4.11 additional information the enzyme protects cells against oxidative damage and plays a role in age-related misfunctions, the membrane-bound enzyme form Mem-R,S-Msr also utilizes the R-isomer of methionine sulfoxide as substrate Escherichia coli ? - ? 89 1.8.4.11 additional information the enzyme protects cells against oxidative damage and plays a role in age-related and neurological diseases, like Parkinsons or Alzheimers disease Homo sapiens ? - ? 89 1.8.4.11 additional information the enzyme protects cells against oxidative damage and plays a role in age-related diseases Drosophila melanogaster ? - ? 89 1.8.4.11 additional information the enzyme protects cells against oxidative damage and plays a role in age-related diseases Saccharomyces cerevisiae ? - ? 89 1.8.4.11 additional information the enzyme protects cells against oxidative damage and plays a role in age-related diseases Bos taurus ? - ? 89 1.8.4.11 additional information the MsrA1/MsrB system is physiologically more significant in Staphylococcus aureus than MsrA2 Staphylococcus aureus ? - ? 89 1.8.4.11 additional information enzyme converts free and protein-bound methionine Caenorhabditis elegans ? - ? 89 1.8.4.11 additional information enzyme reduces oxidized methionine residues of the alpha-1-proteinase inhibitor, calmodulin, and thrombomodulin, which become reversibly inactivated upon oxidation Homo sapiens ? - ? 89 1.8.4.11 additional information enzyme reduces oxidized methionine residues of the shaker potassium channel, which becomes reversibly inactivated upon oxidation Drosophila melanogaster ? - ? 89 1.8.4.11 additional information substrate specificities of enzymes, the reduction step is rate-determining Neisseria meningitidis ? - ? 89 1.8.4.11 additional information substrate specificity and activity of MsrB/PilB in comparison to MsrA, overview Neisseria gonorrhoeae ? - ? 89 1.8.4.11 additional information substrate specificity of enzyme forms with S-form of free and protein-bound methionine sulfoxide, overview Escherichia coli ? - ? 89 1.8.4.11 additional information substrate specificity of MsrA activity, diverse substrates, overview Neisseria meningitidis ? - ? 89 1.8.4.11 additional information substrate specificity of the different enzyme forms, overview, the membrane-bound enzyme form Mem-R,S-Msr also utilizes the R-isomer of methionine sulfoxide as substrate, enzyme reduces oxidized methionine residues of the ribosomal protein L12, which becomes reversibly inactivated and forms monomers instead of dimers upon oxidation Escherichia coli ? - ? 89 1.8.4.11 additional information the enzyme also exhibits MsrB activity utilizing L-methionine (R)-sulfoxide as substrate Helicobacter pylori ? - ? 89 1.8.4.11 additional information the enzymes utilize free and protein-bound L-methionine and N-acetyl-L-methionine as substrates Escherichia coli ? - ? 89 1.8.4.11 additional information the reduction step is rate-determining Bacillus subtilis ? - ? 89 1.8.4.11 additional information the reduction step is rate-determining Escherichia coli ? - ? 89 1.8.4.11 additional information the reduction step is rate-determining Xanthomonas campestris ? - ? 89 1.8.4.11 additional information the tandem domains of PilB also posesses MsrB activity utilizing L-methionine (R)-sulfoxide as substrate, the MsrB domain alone does not utilize the S-isomer Neisseria gonorrhoeae ? - ? 89 1.8.4.11 additional information MsrA is a regulator of antioxidant defense and lifespan in mammals Mus musculus ? - ? 89 1.8.4.11 additional information MsrA is a virulence determinant for the plant pathogen required for full virulence Mycoplasma genitalium ? - ? 89 1.8.4.11 additional information MsrA is a virulence determinant for the plant pathogen required for full virulence Dickeya chrysanthemi ? - ? 89 1.8.4.11 additional information MsrA protects neuronal cells against brief hypoxia/reoxygenation, the enzyme is involved in oxidized protein repair and protects cells against reactive oxygen species and oxidative damage preventing apoptosis, overview Bos taurus ? - ? 89 1.8.4.11 additional information MsrA protects the bacterium against oxidative damage from reactive nitrogen intermediates Escherichia coli ? - ? 89 1.8.4.11 additional information MsrA protects the bacterium against oxidative damage from reactive nitrogen intermediates Mycobacterium tuberculosis ? - ? 89 1.8.4.11 additional information MsrA protects the cell against damage caused by oxidative stress through treatment with H2O2, paraquat, or 2,2'-azobis-(2-amidinopropane) dihydrochloride Saccharomyces cerevisiae ? - ? 89 1.8.4.11 additional information roles of methionine sulfoxide reductases in antioxidant defense, protein regulation via alternating it between active and inactive form, and survival, MsrA protects cells from the cytotoxic effects of reactive oxygen species, ROS, overview, enzyme involvement in protein repair and associated factors, protein regulation pathway, overview Sus scrofa ? - ? 89 1.8.4.11 additional information roles of methionine sulfoxide reductases in antioxidant defense, protein regulation via alternating it between active and inactive form, and survival, MsrA protects cells from the cytotoxic effects of reactive oxygen species, ROS, overview, the enzyme is involved in age-related diseases such as Alzheimer's or Parkinson's diseases as well as in diseases caused by prions, mechanism, overview, enzyme involvement in protein repair and associated factors, protein regulation pathway Saccharomyces cerevisiae ? - ? 89 1.8.4.11 additional information roles of methionine sulfoxide reductases in antioxidant defense, protein regulation via alternating it between active and inactive form, and survival, MsrA protects cells from the cytotoxic effects of reactive oxygen species, ROS, overview, the enzyme is involved in age-related diseases such as Alzheimer's or Parkinson's diseases as well as in diseases caused by prions, mechanism, overview, enzyme involvement in protein repair and associated factors, protein regulation pathway, overview Staphylococcus aureus ? - ? 89 1.8.4.11 additional information roles of methionine sulfoxide reductases in antioxidant defense, protein regulation via alternating it between active and inactive form, and survival, MsrA protects cells from the cytotoxic effects of reactive oxygen species, ROS, overview, the enzyme is involved in age-related diseases such as Alzheimer's or Parkinson's diseases as well as in diseases caused by prions, mechanism, overview, enzyme involvement in protein repair and associated factors, protein regulation pathway, overview Mus musculus ? - ? 89 1.8.4.11 additional information roles of methionine sulfoxide reductases in antioxidant defense, protein regulation via alternating it between active and inactive form, and survival, MsrA protects cells from the cytotoxic effects of reactive oxygen species, ROS, overview, the enzyme is involved in age-related diseases such as Alzheimer's or Parkinson's diseases as well as in diseases caused by prions, mechanism, overview, enzyme involvement in protein repair and associated factors, protein regulation pathway, overview Escherichia coli ? - ? 89 1.8.4.11 additional information roles of methionine sulfoxide reductases in antioxidant defense, protein regulation via alternating it between active and inactive form, and survival, MsrA protects cells from the cytotoxic effects of reactive oxygen species, ROS, overview, the enzyme is involved in age-related diseases such as Alzheimer's or Parkinson's diseases as well as in diseases caused by prions, mechanism, overview, enzyme involvement in protein repair and associated factors, protein regulation pathway, overview Homo sapiens ? - ? 89 1.8.4.11 additional information roles of methionine sulfoxide reductases in antioxidant defense, protein regulation via alternating it between active and inactive form, and survival, MsrA protects cells from the cytotoxic effects of reactive oxygen species, ROS, overview, the enzyme is involved in age-related diseases such as Alzheimer's or Parkinson's diseases as well as in diseases caused by prions, mechanism, overview, enzyme involvement in protein repair and associated factors, protein regulation pathway, overview Arabidopsis thaliana ? - ? 89 1.8.4.11 additional information the enzyme contributes to the maintenance of adhesins in the pathogen, overview Escherichia coli ? - ? 89 1.8.4.11 additional information the enzyme contributes to the maintenance of adhesins in the pathogen, overview Neisseria gonorrhoeae ? - ? 89 1.8.4.11 additional information the enzyme contributes to the maintenance of adhesins in the pathogen, overview Streptococcus pneumoniae ? - ? 89 1.8.4.11 additional information the enzyme is not a major virulence determinant in the oral pathogen, MsrA is required for protein repair and protection against oxidative damage as well as for the proper expression or maintenance of functional adhesins Aggregatibacter actinomycetemcomitans ? - ? 89 1.8.4.11 additional information the enzyme plays an important role in the oxidative stress response Xanthomonas campestris ? - ? 89 1.8.4.11 additional information role of subcellular localization in structure-function relationship of the isozymes, overview Mus musculus ? - ? 89 1.8.4.11 additional information the bifunctional enzyme catalyzes both reactions of MsrB or PilB, EC 1.8.4.12, and of MsrA or PilA, EC 1.8.4.11, the catalytic sites for the two different activities are localized separately on the enzyme molecule, overview Neisseria gonorrhoeae ? - ? 89 1.8.4.11 additional information identification of some of the target proteins potentially regulated by or interacting with MsrA. These proteins are implicated in aging, defense against oxidative stress and cell death Homo sapiens ? - ? 89 1.8.4.11 additional information MsrA can protect cells against oxidative damage. A strain of Streptococcus pneumoniae that is defective in binding to lung cells has a mutation in the MsrA gene. The adherence of the MsrA mutant organism to lung cells is inhibited by about 60% Streptococcus pneumoniae ? - ? 89 1.8.4.11 additional information MsrA can protect cells against oxidative damage. Increased sensitivity to H2O2 of the Escherichia coli MsrA mutant Escherichia coli ? - ? 89 1.8.4.11 additional information MsrA can protect cells against oxidative damage. MsrA mutants of Erwinia chrysanthemi have a defective interaction with plant cells Dickeya chrysanthemi ? - ? 89 1.8.4.11 additional information MSRA inhibits development of the locomotor and circadian rhythm defects caused by ectopic expression of human alpha-synuclein in the Drosophila nervous system. One way to enhance the MSRA antioxidant system is dietary supplementation with S-methyl-L-cysteine, found abundantly in garlic, cabbage, and turnips. S-methyl-L-cysteine prevents the alpha-synuclein-induced abnormalities Homo sapiens ? - ? 89 1.8.4.11 additional information MsrA knockout mice have a shorter life span, are more sensitive to hyperbaric oxygen and had a neurological defect that resuls in abnormal walking Mus musculus ? - ? 89 1.8.4.11 additional information MsrA null mutant mice exhibit a shortened lifespan and present higher levels of protein carbonyls when exposed to hyperoxia, which indicates an increased sensitivity towards oxidative stress Mus musculus ? - ? 89 1.8.4.11 additional information paraquat induces the expression of msrAB partially through an oxidation on Spx (a global oxidative stress regulator) via modification of its CXXC motif Bacillus subtilis ? - ? 89 1.8.4.11 additional information the lack of the MsrA gene in conjunction with prolonged selenium deficient diet causes decreased antioxidant capability and enhanced protein oxidation Mus musculus ? - ? 89 1.8.4.11 additional information the secreted form of the PilB protein was proposed to be involved in pathogen survival fighting against the defensive host’s oxidative burst Neisseria meningitidis ? - ? 89 1.8.4.11 additional information the PilB protein of Neisseria meningitidis contains a MsrA domain and a MsrB domain Neisseria meningitidis ? - ? 89 1.8.4.11 additional information MsrA repairs methionine oxidized alpha-crystallin and restores the chaperone activity of alpha-crystallin lost upon methionine oxidation, Met-68 of alphabeta-crystallin is oxidized to protein methionine sulfoxide in the actual lens Homo sapiens ? - ? 89 1.8.4.11 additional information MsrA repairs methionine oxidized alpha-crystallin and restores the chaperone activity of alpha-crystallin lost upon methionine oxidation, Met-68 of alphabeta-crystallin is oxidized to protein methionine sulfoxide in the actual lens Mus musculus ? - ? 89 1.8.4.11 additional information the enzyme catalyzes its own autooxidation as well as oxidation of free methionine and methionine residues in peptides and proteins Homo sapiens ? - ? 89 1.8.4.11 additional information no oxidation or reduction of L-methionine in 14-3-3 zeta/delta protein, actin, alpha-crystallin A, alpha-crystallin B, apolipoprotein A, glutamine synthetase, peroxiredoxin 6, and thioredoxin Mus musculus ? - ? 89 1.8.4.11 additional information the enzyme fulfills both MetO reduction and protein deglutathionylation functions and is also capable of regenerating poplar peroxiredoxin IIB Gracilaria gracilis ? - ? 89 1.8.4.11 additional information the enzyme is unable to reduce insulin disulfides Gracilaria gracilis ? - ? 89 1.8.4.11 additional information dunring the regeneration mechanism of MsrA by glutaredoxin, the catalytic Cys16 attacks the sulfoxide moiety of the substrate to form a sulfenic acid intermediate with the concomitant release of the product methionine. The catalytic Cys16 sulfenic acid is then attacked by glutaredoxin, leading to the formation of a complex through a mixed disulfide bond, which is reduced by glutathione, leading to MsrA regeneration Alkaliphilus oremlandii ? - ? 89 1.8.4.11 additional information enzyme catalyzes two reductase steps. In the presence of thioredoxin, the overall rate-limiting step is associated with the thioredoxin-recycling process, and MsrA accumulates under Cys51 sulfenic acid state. Formation of the second mol of Ac-L-Met-NHMe is rate-limiting in the absence of thioredoxin Escherichia coli ? - ? 89 1.8.4.11 additional information MsrA can reduce methionine sulfoxide via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate which is then recycled by mycoredoxin and a second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase system. Trx reduces the Cys204-Cys213 disulfide bond in MsrA produced during methionine sulfoxide reduction via the formation of a transient intermolecular disulfide bond between Trx and MsrA Corynebacterium glutamicum ? - ? 89 1.8.4.11 additional information MsrA oxidation mechanism follows three consecutive, pH dependent steps, corresponding to the oxidation of tyrosine, tryptophan and histidine amino acid residues Escherichia coli ? - ? 89 1.8.4.11 additional information MsrA utilizes two times more NADPH for the reduction of S-methyl p-tolyl sulfoxide when thioredoxin TrxA is included in the assays as compared to TrxC Salmonella enterica ? - ? 89 1.8.4.11 additional information no activity with glutathione Trypanosoma cruzi ? - - 89 1.8.4.11 additional information the enzyme is essential in protection of the cells against oxidative damage by reactive oxygen species, yeast cell life span analysis of wild-type and mutant cells, the latter either overexpress or lack enzyme activity, overview Saccharomyces cerevisiae BY4741 ? - ? 89 1.8.4.11 additional information dunring the regeneration mechanism of MsrA by glutaredoxin, the catalytic Cys16 attacks the sulfoxide moiety of the substrate to form a sulfenic acid intermediate with the concomitant release of the product methionine. The catalytic Cys16 sulfenic acid is then attacked by glutaredoxin, leading to the formation of a complex through a mixed disulfide bond, which is reduced by glutathione, leading to MsrA regeneration Alkaliphilus oremlandii OhILAs ? - ? 89 1.8.4.11 additional information no activity with glutathione Trypanosoma cruzi Dm28c ? - - 89 1.8.4.11 additional information the enzyme contributes to the maintenance of adhesins in the pathogen, overview Neisseria gonorrhoeae MS11A ? - ? 89 1.8.4.11 additional information the bifunctional enzyme catalyzes both reactions of MsrB or PilB, EC 1.8.4.12, and of MsrA or PilA, EC 1.8.4.11, the catalytic sites for the two different activities are localized separately on the enzyme molecule, overview Neisseria gonorrhoeae MS11A ? - ? 89 1.8.4.11 additional information the bifunctional enzyme catalyzes both reactions of MsrB or PilB, EC 1.8.4.12, and of MsrA or PilA, EC 1.8.4.11, the catalytic sites for the two different activities are localized separately on the enzyme molecule, overview Neisseria gonorrhoeae MS11 ? - ? 89 1.8.4.11 additional information the enzyme contributes to the maintenance of adhesins in the pathogen, overview Streptococcus pneumoniae R6x ? - ? 89 1.8.4.11 additional information MsrA can reduce methionine sulfoxide via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate which is then recycled by mycoredoxin and a second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase system. Trx reduces the Cys204-Cys213 disulfide bond in MsrA produced during methionine sulfoxide reduction via the formation of a transient intermolecular disulfide bond between Trx and MsrA Corynebacterium glutamicum DSM 20300 ? - ? 89 1.8.4.11 N-acetyl-L-methionine (R)-sulfoxide + thioredoxin the membrane-associated isozyme reduces both R- and S-stereoisomer of methionine sulfoxide in proteins Escherichia coli N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 377210 1.8.4.11 N-acetyl-L-methionine (R,S)-sulfoxide + thioredoxin enzyme MsrA/B shows both MsrA and MsrB activity, free and protein-bound methionine Neisseria gonorrhoeae N-acetyl-L-methionine + thioredoxin disulfide - ? 377208 1.8.4.11 N-acetyl-L-methionine (R,S)-sulfoxide + thioredoxin membrane-bound enzyme form Mem-R,S-Msr Escherichia coli N-acetyl-L-methionine + thioredoxin disulfide - ? 377208 1.8.4.11 N-acetyl-L-methionine (S)-sulfoxide + thioredoxin - Rattus norvegicus N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 377211 1.8.4.11 N-acetyl-L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Saccharomyces cerevisiae N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 377211 1.8.4.11 N-acetyl-L-methionine (S)-sulfoxide + thioredoxin MsrA and soluble isozyme MsrA1 are specific for the S-form, the membrane-associated isozyme reduces both R- and S-stereoisomers Escherichia coli N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 377211 1.8.4.11 N-acetyl-L-methionine (S)-sulfoxide methyl ester + thioredoxin enzyme MsrA Neisseria meningitidis N-acetyl-L-methionine methyl ester + thioredoxin disulfide + H2O - ? 377209 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + DTT stereospecific reduction Escherichia coli N-acetyl-L-methionine + DTT disulfide + H2O - ? 385242 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + DTT stereospecific reduction Homo sapiens N-acetyl-L-methionine + DTT disulfide + H2O - ? 385242 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + DTT stereospecific reduction Bos taurus N-acetyl-L-methionine + DTT disulfide + H2O - ? 385242 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + DTT stereospecific reduction Mycobacterium tuberculosis N-acetyl-L-methionine + DTT disulfide + H2O - ? 385242 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Escherichia coli N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 385243 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Homo sapiens N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 385243 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Bos taurus N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 385243 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Mycobacterium tuberculosis N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 385243 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Macaca mulatta N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 385243 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + thioredoxin thioredoxin from Leptospira interrogans Leptospira interrogans N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 385243 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + thioredoxin thioredoxin from Leptospira interrogans Leptospira interrogans Fiocruz L1-130 N-acetyl-L-methionine + thioredoxin disulfide + H2O - ? 385243 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + tryparedoxin I - Trypanosoma cruzi N-acetyl-L-methionine + tryparedoxin I disulfide + H2O - ? 462752 1.8.4.11 N-acetyl-L-methionine-(S)-S-oxide + tryparedoxin I - Trypanosoma cruzi Dm28c N-acetyl-L-methionine + tryparedoxin I disulfide + H2O - ? 462752 1.8.4.11 oxidized calmodulin + thioredoxin enzyme reduces L-methionine (S)-sulfoxide of the protein substrate Escherichia coli partially reduced calmodulin + thioredoxin disulfide - ? 377432 1.8.4.11 peptide-L-methionine (S)-S-oxide + mycothiol - Corynebacterium glutamicum peptide-L-methionine + mycothione + H2O - ? 441849 1.8.4.11 peptide-L-methionine (S)-S-oxide + mycothiol - Corynebacterium glutamicum DSM 20300 peptide-L-methionine + mycothione + H2O - ? 441849 1.8.4.11 peptide-L-methionine (S)-S-oxide + thioredoxin - Corynebacterium glutamicum peptide-L-methionine + thioredoxin disulfide + H2O - ? 394946 1.8.4.11 peptide-L-methionine (S)-S-oxide + thioredoxin MsrA suppresses dopaminergic cell death and protein aggregation induced by the complex I inhibitor rotenone or mutant alpha-synuclein, but not by the proteasome inhibitor MG132. MsrA protects against Parkinson's disease-related stresses primarily via methionine sulfoxide repair rather than by scavenging reactive oxygen species Bos taurus peptide-L-methionine + thioredoxin disulfide + H2O - ? 394946 1.8.4.11 peptide-L-methionine (S)-S-oxide + thioredoxin - Corynebacterium glutamicum DSM 20300 peptide-L-methionine + thioredoxin disulfide + H2O - ? 394946 1.8.4.11 peptide-L-methionine-(S)-S-oxide + DTT - Escherichia coli peptide-L-methionine + DTT disulfide + H2O - ? 385518 1.8.4.11 peptide-L-methionine-(S)-S-oxide + DTT stereospecific reduction Homo sapiens peptide-L-methionine + DTT disulfide + H2O - ? 385518 1.8.4.11 peptide-L-methionine-(S)-S-oxide + DTT protein-bound substrate, stereospecific reduction, substrate is oxidized ribosomal L12 protein Escherichia coli peptide-L-methionine + DTT disulfide + H2O - ? 385518 1.8.4.11 peptide-L-methionine-(S)-S-oxide + DTT protein-bound substrate, stereospecific reduction, substrate is oxidized ribosomal L12 protein Escherichia coli Z19 peptide-L-methionine + DTT disulfide + H2O - ? 385518 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Staphylococcus aureus peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Mus musculus peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Escherichia coli peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Homo sapiens peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Sus scrofa peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Saccharomyces cerevisiae peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Neisseria gonorrhoeae peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Streptococcus pneumoniae peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Rattus norvegicus peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Mus musculus peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Escherichia coli peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Homo sapiens peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Saccharomyces cerevisiae peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Bos taurus peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Arabidopsis thaliana peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Neisseria gonorrhoeae peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Streptococcus pneumoniae peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Mycobacterium tuberculosis peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Dickeya chrysanthemi peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Drosophila melanogaster peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Xanthomonas campestris peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Aggregatibacter actinomycetemcomitans peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin MsrA is involved in regulation of protein function and in elimination of reactive oxygen species via reversible methionine formation besides protein repair in human skin Homo sapiens peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin MsrA is involved in repair of oxidized proteins Mus musculus peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin MsrA is involved in the antioxidant defense Escherichia coli peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin MsrA regulation, overview Saccharomyces cerevisiae peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin physiological role, overview Xanthomonas campestris peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction of protein-bound methionine (S)-sulfoxide residues, the enzyme is involved in oxidized protein repair Dickeya chrysanthemi peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction of protein-bound methionine (S)-sulfoxide residues, the enzyme is involved in repair of oxidized proteins by reducing oxidized methionine residues, which is required for resistance to hydrogen peroxide and other reactive oxygen species, and for adherence to host cell surfaces Mycoplasma genitalium peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction, MsrA is essential for protein repair and protection against oxidative damage Dickeya chrysanthemi peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction, MsrA is essential for protein repair and protection against oxidative damage Escherichia coli peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction, the enzyme is involved in repair of oxidized proteins Homo sapiens peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin substrate in vivo is e.g. the small heat shock protein Hsp-21 which loses its chaperone-like activity upon methionine oxidation Arabidopsis thaliana peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin substrate is oxidized A-type potassium channel ShC/B whose activity strongly depends on the oxidative state of a methionine residue in the N-terminal part of the polypeptide Homo sapiens peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin substrate is oxidized ribosomal L12 protein, stereospecific reduction Escherichia coli peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin the enzyme protects the epidermis cells against irradiation and oxidative damages, overview Homo sapiens peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin protein-bound substrate, stereospecific reduction, substrates are oxidized ribosomal L12 protein or oxidized Met-enkephalin Escherichia coli peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction of protein-bound methionine (S)-sulfoxide residues Mycoplasma genitalium peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction of protein-bound methionine (S)-sulfoxide residues Dickeya chrysanthemi peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin hormonal regulation of MsrA is implicated in conferring protection against oxidative stress in the Drosophila. Cells that are able to express MsrA were twice as resistant to H2O2 in comparison with cells that are not able to express this gene Drosophila melanogaster peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin MsrA and MsrB significantly contribute to the protection of Campylobacter jejuni against oxidative and nitrosative stress Campylobacter jejuni peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Saccharomyces cerevisiae BY4743 peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin MsrA regulation, overview Saccharomyces cerevisiae BY4743 peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin MsrA and MsrB significantly contribute to the protection of Campylobacter jejuni against oxidative and nitrosative stress Campylobacter jejuni NCTC 11168 peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Neisseria gonorrhoeae MS11A peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Neisseria gonorrhoeae MS11A peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin - Streptococcus pneumoniae R6x peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin stereospecific reduction Streptococcus pneumoniae R6x peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin substrate is oxidized ribosomal L12 protein, stereospecific reduction Escherichia coli Z19 peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 peptide-L-methionine-(S)-S-oxide + thioredoxin protein-bound substrate, stereospecific reduction, substrates are oxidized ribosomal L12 protein or oxidized Met-enkephalin Escherichia coli Z19 peptide-L-methionine + thioredoxin disulfide + H2O - ? 383283 1.8.4.11 protein-L-methionine (S)-S-oxide + thioredoxin Met sulfoxide residues in Met-rich proteins can be reduced by MsrA and MsrB Mus musculus protein-L-methionine + thioredoxin disulfide + H2O - ? 394970 1.8.4.11 protein-L-methionine (S)-sulfoxide + thioredoxin - Brucella anthropi protein-L-methionine + thioredoxin disulfide + H2O - ? 375260 1.8.4.11 protein-L-methionine (S)-sulfoxide + thioredoxin - Arabidopsis thaliana protein-L-methionine + thioredoxin disulfide + H2O - ? 375260 1.8.4.11 protein-L-methionine (S)-sulfoxide + thioredoxin enzyme provides protection against oxidative damage by reactive oxygen species and has a repair function for oxidized protein methionine residues Brucella anthropi protein-L-methionine + thioredoxin disulfide + H2O - ? 375260 1.8.4.11 protein-L-methionine (S)-sulfoxide + thioredoxin enzyme provides protection against oxidative damage by reactive oxygen species and has a repair function for oxidized protein methionine residues Arabidopsis thaliana protein-L-methionine + thioredoxin disulfide + H2O - ? 375260 1.8.4.11 protein-L-methionine (S)-sulfoxide + thioredoxin MsrA and the soluble isozyme MsrA1 are specific for the S-form, the membrane-associated isozyme reduces both R- and S-stereoisomers of methionine sulfoxide, N-acetylmethionine sulfoxide, and D-Ala-Met-enkephalin Escherichia coli protein-L-methionine + thioredoxin disulfide + H2O - ? 375260 1.8.4.11 protein-L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form Rattus norvegicus protein-L-methionine + thioredoxin disulfide + H2O - ? 375260 1.8.4.11 protein-L-methionine (S)-sulfoxide + thioredoxin MsrA is specific for the S-form, enzyme provides protection against oxidative damage by reactive oxygen species and has a repair function for oxidized protein methionine residues Rattus norvegicus protein-L-methionine + thioredoxin disulfide + H2O - ? 375260 1.8.4.11 racemic (ethanesulfinyl)benzene + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila (ethylsulfanyl)benzene + [(R)-ethanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462939 1.8.4.11 racemic (methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii (methylsulfanyl)benzene + [(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462941 1.8.4.11 racemic (methanesulfinyl)benzene + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila (methylsulfanyl)benzene + [(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462941 1.8.4.11 racemic (methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii CCTCC M2013683 (methylsulfanyl)benzene + [(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462941 1.8.4.11 racemic 1-(methanesulfinyl)-4-methylbenzene + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila 1-methyl-4-(methylsulfanyl)benzene + 1-[(R)-methanesulfinyl]-4-methylbenzene + dithiothreitol disulfide + H2O - ? 462943 1.8.4.11 racemic 1-bromo-4-(methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii 1-bromo-4-(methylsulfanyl)benzene + 1-bromo-4-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462945 1.8.4.11 racemic 1-bromo-4-(methanesulfinyl)benzene + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila 1-bromo-4-(methylsulfanyl)benzene + 1-bromo-4-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462945 1.8.4.11 racemic 1-bromo-4-(methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii CCTCC M2013683 1-bromo-4-(methylsulfanyl)benzene + 1-bromo-4-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462945 1.8.4.11 racemic 1-fluoro-2-(methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii 1-fluoro-2-(methylsulfanyl)benzene + 1-fluoro-2-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462946 1.8.4.11 racemic 1-fluoro-2-(methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii CCTCC M2013683 1-fluoro-2-(methylsulfanyl)benzene + 1-fluoro-2-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462946 1.8.4.11 racemic 1-fluoro-3-(methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii 1-fluoro-3-(methylsulfanyl)benzene + 1-fluoro-3-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462947 1.8.4.11 racemic 1-fluoro-3-(methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii CCTCC M2013683 1-fluoro-3-(methylsulfanyl)benzene + 1-fluoro-3-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462947 1.8.4.11 racemic 1-fluoro-4-(methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii 1-fluoro-4-(methylsulfanyl)benzene + 1-fluoro-4-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462948 1.8.4.11 racemic 1-fluoro-4-(methanesulfinyl)benzene + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila 1-fluoro-4-(methylsulfanyl)benzene + 1-fluoro-4-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462948 1.8.4.11 racemic 1-fluoro-4-(methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii CCTCC M2013683 1-fluoro-4-(methylsulfanyl)benzene + 1-fluoro-4-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462948 1.8.4.11 racemic 1-methyl-4-(methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii 1-methyl-4-(methylsulfanyl)benzene + 1-methyl-4-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462949 1.8.4.11 racemic 1-methyl-4-(methanesulfinyl)benzene + dithiothreitol - Pseudomonas monteilii CCTCC M2013683 1-methyl-4-(methylsulfanyl)benzene + 1-methyl-4-[(R)-methanesulfinyl]benzene + dithiothreitol disulfide + H2O - ? 462949 1.8.4.11 racemic 2-(methanesulfinyl)aniline + dithiothreitol - Pseudomonas monteilii 2-(methylsulfanyl)aniline + 2-[(R)-methanesulfinyl]aniline + dithiothreitol disulfide + H2O - ? 462950 1.8.4.11 racemic 2-(methanesulfinyl)aniline + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila 2-(methylsulfanyl)aniline + 2-[(R)-methanesulfinyl]aniline + dithiothreitol disulfide + H2O - ? 462950 1.8.4.11 racemic 2-(methanesulfinyl)aniline + dithiothreitol - Pseudomonas monteilii CCTCC M2013683 2-(methylsulfanyl)aniline + 2-[(R)-methanesulfinyl]aniline + dithiothreitol disulfide + H2O - ? 462950 1.8.4.11 racemic 2-(methanesulfinyl)naphthalene + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila 2-(methylsulfanyl)naphthalene + 2-[(R)-methanesulfinyl]naphthalene + dithiothreitol disulfide + H2O - ? 462951 1.8.4.11 racemic 2-(methanesulfinyl)phenol + dithiothreitol - Pseudomonas monteilii 2-(methylsulfanyl)phenol + 2-[(R)-methanesulfinyl]phenol + dithiothreitol disulfide + H2O - ? 462952 1.8.4.11 racemic 2-(methanesulfinyl)phenol + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila 2-(methylsulfanyl)phenol + 2-[(R)-methanesulfinyl]phenol + dithiothreitol disulfide + H2O - ? 462952 1.8.4.11 racemic 3-(methanesulfinyl)aniline + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila 3-(methylsulfanyl)aniline + 3-[(R)-methanesulfinyl]aniline + dithiothreitol disulfide + H2O - ? 462953 1.8.4.11 racemic 4-(methanesulfinyl)benzaldehyde + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila 4-(methylsulfanyl)benzaldehyde + 4-[(R)-methanesulfinyl]benzaldehyde + dithiothreitol disulfide + H2O - ? 462954 1.8.4.11 racemic N-[2-(methanesulfinyl)phenyl]acetamide + dithiothreitol specifically reduces the (S)-enantiomer of methionine sulfoxide to methionine Pseudomonas alcaliphila N-[2-(methylsulfanyl)phenyl]acetamide + N-(2-[(R)-methanesulfinyl]phenyl)acetamide+ dithiothreitol disulfide + H2O - ? 462955 1.8.4.11 ribosomal protein L12-L-methionine (S)-sulfoxide + thioredoxin - Escherichia coli ribosomal protein L12-L-methionine + thioredoxin disulfide + H2O - ? 375277 1.8.4.11 S-methyl p-tolyl sulfoxide + thioredoxin A - Salmonella enterica 1-methyl-4-(methylsulfanyl)benzene + thioredoxin A disulfide + H2O - ? 441972 1.8.4.11 S-methyl p-tolyl sulfoxide + thioredoxin C - Salmonella enterica 1-methyl-4-(methylsulfanyl)benzene + thioredoxin C disulfide + H2O - ? 441973 1.8.4.11 sulindac + thioredoxin - Escherichia coli sulindac sulfide + thioredoxin disulfide + H2O - ? 375321 1.8.4.11 sulindac + thioredoxin - Bos taurus sulindac sulfide + thioredoxin disulfide + H2O - ? 375321 1.8.4.11 sulindac + thioredoxin activation of the antiinflammatory drug with anti-tumorigenic activity, which acts via inhibition of cyclooxygenases 1 and 2 Escherichia coli sulindac sulfide + thioredoxin disulfide + H2O - ? 375321 1.8.4.11 sulindac + thioredoxin highest activity by enzyme MsrA, low activity by enzyme MsrA1 Escherichia coli sulindac sulfide + thioredoxin disulfide + H2O - ? 375321 1.8.4.11 sulindac + thioredoxin activation of a methionine sulfoxide-containing prodrug, activity with membrane-bound enzyme form Mem-R,S-Msr Bos taurus sulindac sulfide + thioredoxin disulfide activated drug which inhibits cyclooxygenase 1 and 2 and exhibiting anti-inflammatory activity ? 375322 1.8.4.11 sulindac + thioredoxin activation of a methionine sulfoxide-containing prodrug, activity with membrane-bound enzyme form Mem-R,S-Msr and MsrA Escherichia coli sulindac sulfide + thioredoxin disulfide activated drug which inhibits cyclooxygenase 1 and 2 and exhibiting anti-inflammatory activity ? 375322 1.8.4.11 sulindac + thioredoxin activity with membrane-bound enzyme form Mem-R,S-Msr and MsrA Escherichia coli sulindac sulfide + thioredoxin disulfide - ? 375322 1.8.4.11 sulindac + thioredoxin activity with membrane-bound enzyme form Mem-R,S-Msr and MsrA Bos taurus sulindac sulfide + thioredoxin disulfide - ? 375322 1.8.4.11 Tyr-Gly-Gly-Phe-L-methionine-(S)-S-oxide + DTT oxidized Met-enkephalin Escherichia coli Tyr-Gly-Gly-Phe-L-methionine + DTT disulfide + H2O - ? 385865 1.8.4.11 Tyr-Gly-Gly-Phe-L-methionine-(S)-S-oxide + DTT oxidized Met-enkephalin Escherichia coli Z19 Tyr-Gly-Gly-Phe-L-methionine + DTT disulfide + H2O - ? 385865 1.8.4.11 Tyr-Gly-Gly-Phe-L-methionine-(S)-S-oxide + thioredoxin oxidized Met-enkephalin Escherichia coli Tyr-Gly-Gly-Phe-L-methionine + thioredoxin disulfide + H2O - ? 383397 1.8.4.11 Tyr-Gly-Gly-Phe-L-methionine-(S)-S-oxide + thioredoxin oxidized Met-enkephalin Escherichia coli Z19 Tyr-Gly-Gly-Phe-L-methionine + thioredoxin disulfide + H2O - ? 383397