1.5.1.41 FAD + NAD(P)H - Corynebacterium crenatum FADH2 + NAD(P)+ - r 375123 1.5.1.41 FAD + NADH + H+ no activity with FAD + NADPH Escherichia coli FADH2 + NAD+ - ? 398873 1.5.1.41 FAD + NADPH - Corynebacterium crenatum FADH2 + NADP+ - r 259299 1.5.1.41 FMN + NAD(P)H - Corynebacterium crenatum FMNH2 + NAD(P)+ - r 375129 1.5.1.41 FMN + NADH - Corynebacterium crenatum FMNH2 + NAD+ - r 287738 1.5.1.41 FMN + NADH + H+ - Escherichia coli FMNH2 + NAD+ - ? 397183 1.5.1.41 FMN + NADH + H+ - Sulfurisphaera tokodaii FMNH2 + NAD+ - ? 397183 1.5.1.41 FMN + NADH + H+ - Sulfurisphaera tokodaii 7 FMNH2 + NAD+ - ? 397183 1.5.1.41 FMN + NADPH - Corynebacterium crenatum FMNH2 + NADP+ - r 259298 1.5.1.41 FMN + NADPH + H+ very low activity Escherichia coli FMNH2 + NADP+ - ? 397184 1.5.1.41 additional information interactions for flavin substrates are provided by a hydrophobic isoalloxazine binding site that also contains a serine and a threonine, which form hydrogen bonds to the isoalloxazine of bound riboflavin in a substrate complex Escherichia coli ? - ? 89 1.5.1.41 additional information enzyme Fre uses the FMN MsrQ cofactor as a substrate to catalyze the electron transfer from cytosolic NADH to the heme. Formation of a specific complex between MsrQ and Fre could favor this unprecedented mechanism, which most likely involves transfer of the reduced FMN cofactor from the Fre active site to MsrQ. Fre forms a specific complex with wild-type MsrQ and the MsrQ H151A mutant. The H151A mutation has no significant quantitative effects on the MsrQ/Fre interaction. Since the MsrQ H151A mutation specifically induces the loss of the FMN cofactor, these data suggest that the flavin cofactor is not involved in the formation of the MsrQ/Fre complex Escherichia coli ? - - 89 1.5.1.41 riboflavin + NADH preferred substrate Corynebacterium crenatum FMNH2 + NAD+ - r 441958 1.5.1.41 riboflavin + NADH + H+ - Escherichia coli reduced riboflavin + NAD+ - ? 401844 1.5.1.41 riboflavin + NADPH + H+ - Escherichia coli reduced riboflavin + NADP+ - ? 406579