2.7.8.41 evolution CL synthase (CLS) with two phospholipase D domains, i.e. CLS_pld, and CLS with one CDP-alcohol phosphatidyltransferase domain, i.e. CLS_cap, function in bacteria and eukaryotes (mitochondria), respectively. Phylogenetic analysis, overview. Exceptions to the above-mentioned hypothesis regarding CLS phylogenetic distribution, in which CLS_pld and CLS_cap are exclusively found in bacteria and eukaryotes, respectively, are found in actinobacteria and proteobacteria, that contain CLS_cap-like proteins. The eukaryotic supergroups Amoebozoa, Excavata, and Alveolata, a subgroup of the supergroup SAR, have only CLS_pld (without phylogenetic affiliation to any particular bacterial homologues), while the supergroups Opisthokonta (including animals and fungi) and Archaeplastida (including land plants) along with another SAR subgroup stramenopiles possess only CLS_cap (closely related to alpha-proteobacterial homologues). Cafeteria roenbergensis contains only a CLS_cap enzyme homologue, no CLS_pld homologue -, 739118 2.7.8.41 evolution CL synthase (CLS) with two phospholipase D domains, i.e. CLS_pld, and CLS with one CDP-alcohol phosphatidyltransferase domain, i.e. CLS_cap, function in bacteria and eukaryotes (mitochondria), respectively. Phylogenetic analysis, overview. Exceptions to the above-mentioned hypothesis regarding CLS phylogenetic distribution, in which CLS_pld and CLS_cap are exclusively found in bacteria and eukaryotes, respectively, are found in actinobacteria and proteobacteria, that contain CLS_cap-like proteins. The eukaryotic supergroups Amoebozoa, Excavata, and Alveolata, a subgroup of the supergroup SAR, have only CLS_pld (without phylogenetic affiliation to any particular bacterial homologues), while the supergroups Opisthokonta (including animals and fungi) and Archaeplastida (including land plants) along with another SAR subgroup stramenopiles possess only CLS_cap (closely related to alpha-proteobacterial homologues). Cafeteria sp. Caron contains both, a CLS_cap enzyme homologue, and a CLS_pld homologue 739118 2.7.8.41 evolution CL synthase (CLS) with two phospholipase D domains, i.e. CLS_pld, and CLS with one CDP-alcohol phosphatidyltransferase domain, i.e. CLS_cap, function in bacteria and eukaryotes (mitochondria), respectively. Phylogenetic analysis, overview. Exceptions to the above-mentioned hypothesis regarding CLS phylogenetic distribution, in which CLS_pld and CLS_cap are exclusively found in bacteria and eukaryotes, respectively, are found in actinobacteria and proteobacteria, that contain CLS_cap-like proteins. The eukaryotic supergroups Amoebozoa, Excavata, and Alveolata, a subgroup of the supergroup SAR, have only CLS_pld (without phylogenetic affiliation to any particular bacterial homologues), while the supergroups Opisthokonta (including animals and fungi) and Archaeplastida (including land plants) along with another SAR subgroup stramenopiles possess only CLS_cap (closely related to alpha-proteobacterial homologues). Developayella elegans contains only a CLS_cap enzyme homologue, no CLS_pld homologue -, 739118 2.7.8.41 evolution CL synthase (CLS) with two phospholipase D domains, i.e. CLS_pld, and CLS with one CDP-alcohol phosphatidyltransferase domain, i.e. CLS_cap, function in bacteria and eukaryotes (mitochondria), respectively. Phylogenetic analysis, overview. Exceptions to the above-mentioned hypothesis regarding CLS phylogenetic distribution, in which CLS_pld and CLS_cap are exclusively found in bacteria and eukaryotes, respectively, are found in actinobacteria and proteobacteria, that contain CLS_cap-like proteins. The eukaryotic supergroups Amoebozoa, Excavata, and Alveolata, a subgroup of the supergroup SAR, have only CLS_pld (without phylogenetic affiliation to any particular bacterial homologues), while the supergroups Opisthokonta (including animals and fungi) and Archaeplastida (including land plants) along with another SAR subgroup stramenopiles possess only CLS_cap (closely related to alpha-proteobacterial homologues). Wobblia lunata contains both, a CLS_cap enzyme homologue, and a CLS_pld homologue -, 739118 2.7.8.41 evolution phosphatidylglycerophosphate synthase (PGPS) and cardiolipin synthase (CLS) are both involved in the biosynthesis of phosphatidylglycerol and cardiolipin and belong to the CDP-alcohol phosphotransferases, they share overall amino acid sequence homology. PGPS and CLS are functionally distinct in vivo. Comparison of CDP-alcohol phosphotransferase motifs between PGPS and CLS among different species reveal a possible additional motif that might define the substrate specificity of the closely related enzymes -, 738289 2.7.8.41 malfunction a yeast mutant with a deletion of YDL142c is defective in the formation of cardiolipin. A cls1 deletion strain is viable on glucose, galactose, ethanol, glycerol and lactate containing media, although the growth rate on nonfermentable carbon sources is decreased. Mitochondria of the cls1 mutant are devoid of cardiolipin but accumulate the cardiolipin precursor phosphatidylglycerol when grown on nonfermentable carbon sources -, 727498 2.7.8.41 malfunction in contrast to yeast, where development of deletion mutants is little affected, the Arabidopsis seedlings are slow developing under short-day conditions in vitro and die if they are transferred to long-day conditions 728476 2.7.8.41 malfunction null mutant can grow on both fermentable and non-fermentable carbon sources at lower temperatures, it cannot form colonies at 37°C -, 728313 2.7.8.41 malfunction overexpression of clsA results in weakened hyphal tips, misshaped aerial hyphae and anucleate spores and demonstrates that cardiolipin synthesis is a requirement for morphogenesis in Streptomyces -, 728326 2.7.8.41 metabolism cardiolipin is known to be biosynthesized by either of two phylogenetically distinct enzymes: CL synthase (CLS) with two phospholipase D domains, i.e. CLS_pld, which synthesizes cardiolipin from two molecules of phosphatidylglycerols or CLS with one CDP-alcohol phosphatidyltransferase domain, i.e. CLS_cap, which produces this lipid using a phosphatidylglycerol and a cytidine diphosphate diacylglycerol as substrates. In contrast to the bacterial-type CL, mitochondrial immature cardiolipin synthesized by CLS is further remodeled (reacylated), resulting in mature cardiolipin generally possessing the same fatty acids at sn-1, 2 sites in one molecule. This eukaryotic cardiolipin maturation pathway consists of two steps: in the first step, immature ardiolipin is deacylated into monolysocardiolipin (MLCL) with either cardiolipin-specific phospholipase (CLD) or calcium-independent phospholipase A2 (iPLA2) beta/gamma -, 739118