2.4.1.65 Ba2+ stimulates 637635 2.4.1.65 Ca2+ can replace Mn2+ for activation, optimum concentration is 10-15 mM 660797 2.4.1.65 Ca2+ leads to 2.1fold activation of SFT3 661313 2.4.1.65 Ca2+ stimulates 637635 2.4.1.65 Cd2+ stimulates 637635 2.4.1.65 Co2+ leads to 2.8fold activation of SFT3 661313 2.4.1.65 Co2+ stimulates 637635 2.4.1.65 Cu2+ no significant activity is detected 661313 2.4.1.65 Mg2+ can replace Mn2+ for activation, optimum concentration is 10-15 mM 660797 2.4.1.65 Mg2+ leads to 2.5fold activation of SFT3 661313 2.4.1.65 Mg2+ required for activity 661845 2.4.1.65 Mg2+ stimulates, 20 mM required for maximal activation 637635 2.4.1.65 Mn2+ - 637636, 658008, 693000 2.4.1.65 Mn2+ absolutely required 691644 2.4.1.65 Mn2+ activation above pH 8.0 637636 2.4.1.65 Mn2+ binds the enzyme and increases affinity for the acceptor. One possible functional role of manganese in catalysis can be as an electrophilic catalyst, co-ordinating the negative charges of the phosphate groups of the GDP-Fuc donor and promoting Fuc transfer. A low pH values such role would be played by the proton. Mn2+ leads to 2.7fold activation of SFT3 661313 2.4.1.65 Mn2+ Fuc-T V is Mn2+ dependent 661341 2.4.1.65 Mn2+ required for activation in vitro, optimum concentration is 10-15 mM 660797 2.4.1.65 Mn2+ required for activity 661845 2.4.1.65 Mn2+ stimulates, activation is maximal at 5 mM 637635 2.4.1.65 additional information Cu2+ inactivates the enzyme 660797 2.4.1.65 additional information FUT10 functions well without MnCl2 704613 2.4.1.65 additional information FUT11 functions well without MnCl2 704613 2.4.1.65 additional information the enzyme retains approximately 35% of its maximal activity in the absence of metal ions 661313 2.4.1.65 Ni2+ stimulates 637635 2.4.1.65 Zn2+ can replace Mn2+ for activation, but shows only half the maximal activity, optimum concentration is 10-15 mM 660797 2.4.1.65 Zn2+ leads to 80% inhibition of STF3 661313 2.4.1.65 Zn2+ stimulates 637635