3.4.15.1 (-)-epigallocatechin gallate - 3428 3.4.15.1 (2E)-3-(3-amino-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one - 79816 3.4.15.1 (2E)-3-(3-fluoro-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one - 79624 3.4.15.1 (2E)-3-(3-hydroxy-4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one - 79633 3.4.15.1 (2E)-3-(3-hydroxy-4-nitrophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one - 79814 3.4.15.1 (2E)-3-(3-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one - 79831 3.4.15.1 (2E)-3-(4-hydroxy-3-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one - 79636 3.4.15.1 (2E)-3-(4-methoxy-3-nitrophenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one - 79833 3.4.15.1 (2E)-3-(4-methoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one - 79824 3.4.15.1 (2E)-3-phenyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one - 79829 3.4.15.1 (2R)-2-((3-[hydroxyl (2-phenyl-(1R)-1-([(benzyloxy) carbonyl]-amino)ethyl)phosphinyl]-2-[(3-phenylisoxazol-5-yl)methyl]-1-oxopropyl)amino)-3-(4-hydroxy-phenyl) propanoic acid - 201345 3.4.15.1 (2S)-2-((3-[hydroxyl (2-phenyl-(1R)-1-([(benzyloxy) carbonyl]-amino)ethyl)phosphinyl]-2-[(3-phenylisoxazol-5-yl)methyl]-1-oxopropyl)amino)-3-(4-hydroxy-phenyl) propanoic acid - 201344 3.4.15.1 (2S)-2-((3-[hydroxyl(2-phenyl-(1R)-1([(benzyloxy)carbonyl]amino)ethyl)phosphinyl]-(2R)-2-[(3-phenylisoxazol-5-yl)methyl]-1-oxopropyl)amino)-3-phenyl propanoic acid - 80604 3.4.15.1 (2S)-2-((3-[hydroxyl(2-phenyl-(1R)-1-([(benzyloxy)carbonyl]-amino)ethyl)phosphinyl]-(2R)-2-[(3-phenylisoxazol-5-yl)methyl]-1-oxopropyl)amino) 1H-Indole-3-propanoic acid - 27360 3.4.15.1 (2S)-2-((3-[hydroxyl(2-phenyl-(1R)-1-([(benzyloxy)carbonyl]-amino)ethyl)phosphinyl]-(2R)-2-[(3-phenylisoxazol-5-yl)methyl]-1-oxopropyl)amino)-3-(4-hydroxy-phenyl) propanoic acid - 27473 3.4.15.1 (2S)-2-((3-[hydroxyl(2-phenyl-(1R)-1-([(benzyloxy)carbonyl]-amino)ethyl)phosphinyl]-(2S)-2-[(3-phenylisoxazol-5-yl)methyl]-1-oxopropyl)amino) 1H-indole-3-propanoic acid - 27365 3.4.15.1 (2S)-2-((3-[hydroxyl(2-phenyl-(1R)-1-([(benzyloxy)carbonyl]-amino)ethyl)phosphinyl]-(2S)-2-[(3-phenylisoxazol-5-yl)methyl]-1-oxopropyl)amino)-3-(4-hydroxy-phenyl) propanoic acid - 27472 3.4.15.1 (2S)-2-([3-(1,1'-biphenyl)-2-([hydroxyl(2-phenyl-(1R)-1-([(benzyloxy)carbonyl]amino)ethyl)phosphinyl]methyl)-1-oxopropyl]-amino) 1H-indole-3-propanoic acid - 27369 3.4.15.1 (2S)-2-([3-(3'-[1,1'-biphenyl]-4''-yl-4',5'-dihydro-5'-isoxazolyl)-2-([hydroxyl(2-phenyl-(1R)-1-([(benzyloxy)carbonyl]amino)ethyl)-phosphinyl]methyl)-1-oxopropyl]amino) 1H-indole-3-propanoic acid - 27303 3.4.15.1 (2S)-2-[[(2S)-2-mercapto-3-methylpentanoyl]amino]-3-(1-naphthyl)propanoic acid - 24677 3.4.15.1 (2S)-2-[[(2S)-2-mercapto-3-methylpentanoyl]amino]-3-(2-naphthyl)propanoic acid - 10020 3.4.15.1 (2S)-2-[[(2S)-2-mercapto-3-methylpentanoyl]amino]-3-phenylpropanoic acid - 24678 3.4.15.1 (2S)-2-[[(2S)-2-mercapto-3-methylpentanoyl]amino]propanoic acid - 25037 3.4.15.1 (2S)-3-(4-hydroxyphenyl)-2-[[(2S)-2-mercapto-3-methylpentanoyl]amino]propanoic acid - 24679 3.4.15.1 (2S)-3-biphenyl-2-yl-2-[[(2S)-3-methyl-2-sulfanylpentanoyl]amino]propanoic acid - 10021 3.4.15.1 (2S)-3-biphenyl-3-yl-2-[[(2S)-3-methyl-2-sulfanylpentanoyl]amino]propanoic acid - 10022 3.4.15.1 (2S)-3-biphenyl-4-yl-2-[(2-mercapto-2-methylpropanoyl)amino]propanoic acid - 24680 3.4.15.1 (2S)-3-biphenyl-4-yl-2-[(mercaptoacetyl)amino]propanoic acid - 24681 3.4.15.1 (2S)-3-biphenyl-4-yl-2-[[(2S)-2-mercaptobutanoyl]amino]propanoic acid - 24682 3.4.15.1 (2S)-3-biphenyl-4-yl-2-[[(2S)-2-mercaptopropanoyl]amino]propanoic acid - 24683 3.4.15.1 (2S)-3-biphenyl-4-yl-2-[[(2S)-3-methyl-2-sulfanylpentanoyl]amino]propanoic acid - 10023 3.4.15.1 (pE)KWAP - 18060 3.4.15.1 (pE)WPRPQIPP - 18061 3.4.15.1 1,10-phenanthroline - 62 3.4.15.1 1-methyl-5-phenyl-3-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole - 79384 3.4.15.1 1-[(5S)-4-oxo-6-phenyl-5-[(phenylcarbonyl)amino]hexanoyl]-L-proline - 36802 3.4.15.1 1-[(5S)-5-[(tert-butoxycarbonyl)amino]-4-oxo-6-phenylhexanoyl]-L-proline - 36803 3.4.15.1 15 B1 - 99782 3.4.15.1 15 B2 - 99783 3.4.15.1 2,3-dimercapto-1-propanol - 5897 3.4.15.1 2-(benzyloxy)-N-[(2S)-3-methyl-2-sulfanylpentanoyl]-L-phenylalanine - 10024 3.4.15.1 2-mercaptoethanol - 63 3.4.15.1 2-methoxy-4-[1-methyl-3-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl]phenol - 80057 3.4.15.1 2-methoxy-5-[1-methyl-3-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl]aniline - 80048 3.4.15.1 2-methoxy-5-[1-methyl-3-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl]phenol - 79344 3.4.15.1 2-[([2-[(1-[[(benzyloxy)carbonyl]amino]-2-phenylethyl)(hydroxy)phosphoryl]cyclopentyl]carbonyl)amino]-3-(2,3-dihydro-1H-indol-3-yl)propanoate - 138401 3.4.15.1 3-(benzyloxy)-N-[(2S)-3-methyl-2-sulfanylpentanoyl]-L-phenylalanine - 11790 3.4.15.1 3-p-acetyl-aminophenylpropionate - 99851 3.4.15.1 3-p-aminophenylpropionate - 99852 3.4.15.1 3-Phenylpropionate - 5488 3.4.15.1 4-coumaric acid - 2712 3.4.15.1 4-hydroxybenzoic acid - 1858 3.4.15.1 4-phenylbutyrate - 31311 3.4.15.1 5'-ATP - 3789 3.4.15.1 5-(3,4,5-trihydroxyphenyl) 4-hydroxyvaleric acid - 239453 3.4.15.1 5-(3,5-dihydroxyphenyl) 4-hydroxyvaleric acid - 239454 3.4.15.1 5-(3-fluoro-4-methoxyphenyl)-1-methyl-3-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole - 79637 3.4.15.1 5-(3-methoxyphenyl)-1-methyl-3-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole - 79977 3.4.15.1 5-(4-methoxy-3-nitrophenyl)-1-methyl-3-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole - 79425 3.4.15.1 5-(4-methoxyphenyl)-1-methyl-3-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole - 80015 3.4.15.1 5-[1-methyl-3-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazol-5-yl]-2-nitrophenol - 79494 3.4.15.1 8-hydroxyquinoline - 321 3.4.15.1 9-[1-carboxy-3-(4-hydroxyphenyl)propylamino]octahydro-10-oxo-6H-pyridazo[1,2-a][1,2]diazepine-1-carboxylic acid - 99924 3.4.15.1 A 58365A - 99927 3.4.15.1 A 58365B - 99928 3.4.15.1 acetate - 47 3.4.15.1 Ala-Ala - 1175 3.4.15.1 Ala-Gly-Ser - 80552 3.4.15.1 Ala-Gly-Ser-Pro - 80550 3.4.15.1 Ala-Gly-Ser-Ser - 80553 3.4.15.1 Ala-Ile - 20105 3.4.15.1 Ala-Leu-Pro-His-Ala - 100034 3.4.15.1 Ala-Phe - 5122 3.4.15.1 Ala-Pro-Gly-Ala-Gly-Val-Tyr - 40371 3.4.15.1 Ala-Trp - 10844 3.4.15.1 Ala-Trp-Pro-Phe - 80596 3.4.15.1 Ala-Tyr - 8040 3.4.15.1 Ala-Val-Val - 80555 3.4.15.1 ancovenin - 100087 3.4.15.1 angiotensin I - 690 3.4.15.1 angiotensin II - 661 3.4.15.1 angiotensin III - 2543 3.4.15.1 apigenin - 515 3.4.15.1 Asn-Phe - 80585 3.4.15.1 Asn-Trp-Gly-Pro-Leu-Val - 80565 3.4.15.1 Asn-Tyr - 80584 3.4.15.1 Asp-Gly - 21090 3.4.15.1 Asp-Ile-Gly-Tyr-Tyr - 80578 3.4.15.1 Asp-Leu-Pro - 80557 3.4.15.1 Asp-Phe-Gly - 80551 3.4.15.1 Asp-Tyr-Gly-Leu-Tyr-Pro - 100158 3.4.15.1 Asp-Tyr-Val-Gly-Asn - 80579 3.4.15.1 aspergillomarasmine A - 100160 3.4.15.1 aspergillomarasmine B - 100161 3.4.15.1 ASYDTKF - 66383 3.4.15.1 benazepril - 13053 3.4.15.1 benazeprilat - 17257 3.4.15.1 benzapril - 159766 3.4.15.1 benzenesulfonate - 30948 3.4.15.1 benzoate - 316 3.4.15.1 benzoic acid - 498 3.4.15.1 benzoyl-NHCOCH2CH(COOH)-Ala-Pro-OH - 100196 3.4.15.1 benzoyl-NHCOCH2CH(COOH)-Trp-Pro-OH - 100197 3.4.15.1 benzyloxycarbonyl-PhePSI[PO2-CH]Ala-Ala - 60681 3.4.15.1 benzyloxycarbonyl-PhePSI[PO2-CH]Ala-Trp - 60682 3.4.15.1 Bothrops bradykinin potentiating peptides - 100324 3.4.15.1 bradykinin - 466 3.4.15.1 bradykinin potentating factor nonapeptide - 100329 3.4.15.1 bradykinin potentiator B - 47135 3.4.15.1 bradykinin potentiator C - 47136 3.4.15.1 bradykinin-potentiating factor SQ 20881 - 92802 3.4.15.1 bradykinin-potentiating peptide 9a - 47137 3.4.15.1 bradykinin-potentiator B - 66391 3.4.15.1 bradykinin-potentiator C - 66392 3.4.15.1 CaCl2 - 218 3.4.15.1 caffeic acid - 426 3.4.15.1 caffeoyl acetate - 80609 3.4.15.1 captopril - 469 3.4.15.1 catechol - 156 3.4.15.1 CGS-35066 - 67583 3.4.15.1 chlorogenic acid - 592 3.4.15.1 cilazapril - 72250 3.4.15.1 citrate - 131 3.4.15.1 Co2+ - 23 3.4.15.1 concanavalin A - 2045 3.4.15.1 Cu2+ - 19 3.4.15.1 CuCl2 - 347 3.4.15.1 cyanide - 118 3.4.15.1 Cys - 553 3.4.15.1 D-3-thio-2-methylpropanoyl-Pro - 100405 3.4.15.1 DIIIPD - 151492 3.4.15.1 dimethyl phosphate - 12969 3.4.15.1 diphosphate - 17 3.4.15.1 dithiothreitol - 45 3.4.15.1 DKIHPF - 66401 3.4.15.1 DPVAPLQRSGPE - 151496 3.4.15.1 DPVAPLQRSGPEI - 151485 3.4.15.1 DPVAPLQRSGPEIP - 151494 3.4.15.1 DQVFPMNPPK - 80546 3.4.15.1 EDENNPFYLR - 66388 3.4.15.1 EDTA - 21 3.4.15.1 EKERERQ - 66402 3.4.15.1 ELEIVMASPP - 151487 3.4.15.1 ellagic acid - 1279 3.4.15.1 enalapril - 3286 3.4.15.1 enalaprilat - 8316 3.4.15.1 enalaprilate - 16353 3.4.15.1 enapril - 47216 3.4.15.1 enaprilat - 10999 3.4.15.1 epicatechin - 1161 3.4.15.1 FDKPVSPL - 159761 3.4.15.1 ferulic acid - 452 3.4.15.1 FLPYPYY - 138998 3.4.15.1 foroxymithine - 100549 3.4.15.1 fosinopril - 25036 3.4.15.1 fosinoprilat - 66377 3.4.15.1 gallic acid - 764 3.4.15.1 gastrin I - 100571 3.4.15.1 Glu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro - 100588 3.4.15.1 Gly-Asp-Ala-Pro - 80549 3.4.15.1 Gly-Glu-Pro - 80583 3.4.15.1 Gly-Gly-Val-Ile-Pro-Asn - 80581 3.4.15.1 Gly-His-Gly - 20285 3.4.15.1 Gly-L-Ala-Hyp-Gly-L-Pro-L-Ala-Gly-L-Pro-Gly-Gly-L-Ile-Hyp-Gly-L-Glu-L-Arg-Gly - 39017 3.4.15.1 Gly-L-Ile-Hyp-Gly-L-Glu-L-Arg-Gly-L-Pro-L-Val-Gly-L-Pro-L-Ser-Gly - 39019 3.4.15.1 Gly-L-Leu-Hyp-Gly-L-Ser-L-Arg-Gly-L-Glu-L-Arg-Gly-L-Leu-Hyp-Gly - 39018 3.4.15.1 Gly-L-Thr-Gly - 75325 3.4.15.1 Gly-Pro-Pro - 31481 3.4.15.1 Gly-Trp - 8112 3.4.15.1 Gly-Tyr - 6530 3.4.15.1 Gly-Val-His-His-Ala - 80554 3.4.15.1 glycinin hydrolysate - 132381 3.4.15.1 H2PO2- - 45577 3.4.15.1 HgCl2 - 110 3.4.15.1 His-His-Leu - 80562 3.4.15.1 His-Leu - 2272 3.4.15.1 Ile-Ala - 31507 3.4.15.1 Ile-Ala-Tyr-Lys-Pro-Ala-Gly - 80595 3.4.15.1 Ile-Ala-Val - 80556 3.4.15.1 Ile-Asn-Ser-Gln - 80591 3.4.15.1 Ile-Gln-Pro - 80602 3.4.15.1 Ile-Glu-Pro - 27481 3.4.15.1 Ile-Glu-Trp - 27477 3.4.15.1 Ile-Glu-Tyr - 27478 3.4.15.1 Ile-Lys-Pro - 16365 3.4.15.1 Ile-Lys-Pro-Leu-Asn-Tyr - 100740 3.4.15.1 Ile-Lys-Trp - 27480 3.4.15.1 Ile-Lys-Tyr - 27479 3.4.15.1 Ile-Phe-Leu - 80563 3.4.15.1 Ile-Pro-Pro - 16366 3.4.15.1 Ile-Pro-Pro-Gly-Val-Pro-Tyr - 80600 3.4.15.1 Ile-Pro-Pro-Gly-Val-Pro-Tyr-Trp-Thr - 80567 3.4.15.1 Ile-Thr-Phe - 80590 3.4.15.1 Ile-Trp - 21156 3.4.15.1 Ile-Trp-His-His-Thr - 100742 3.4.15.1 Ile-Tyr - 9435 3.4.15.1 Ile-Tyr-Leu-Leu - 80559 3.4.15.1 Ile-Val-Gly-Arg-Pro-Arg-His-Gln-Gly - 100743 3.4.15.1 Ile-Val-Tyr - 80573 3.4.15.1 imidapril - 8360 3.4.15.1 imidaprilat - 37010 3.4.15.1 iodoMK-351A - 100753 3.4.15.1 IPPGVPYWT - 66390 3.4.15.1 ITTNPY - 80547 3.4.15.1 K-13 - 100766 3.4.15.1 K-26 - 100767 3.4.15.1 K-4 - 100768 3.4.15.1 kaempferol - 408 3.4.15.1 kaempferol-3-O-alpha-L-arabinopyranoside - 66405 3.4.15.1 kaempferol-3-O-beta-D-galactopyranoside - 66406 3.4.15.1 KVLPVPQ - 66394 3.4.15.1 L-681,176 - 47301 3.4.15.1 L-Ala-L-Trp - 39021 3.4.15.1 L-Asp-L-Pro - 26666 3.4.15.1 L-Cys-L-Pro - 100797 3.4.15.1 L-Glu-L-Arg-L-Tyr-L-Pro-L-Ile - 75322 3.4.15.1 L-Ile-L-Pro-L-Phe - 75323 3.4.15.1 L-Leu-L-Pro-L-Phe - 75319 3.4.15.1 L-Met-L-Pro-L-Phe - 75320 3.4.15.1 L-Ser-L-Thr - 75326 3.4.15.1 L-Thr-L-Thr-L-Ile - 75324 3.4.15.1 L-Tyr-L-Thr-L-Ala-Gly-L-Val - 75321 3.4.15.1 L-Val-L-Asp-L-Phe - 75318 3.4.15.1 L-Val-L-Phe - 39022 3.4.15.1 L-Val-L-Tyr - 11977 3.4.15.1 laurate - 912 3.4.15.1 leptin - 3532 3.4.15.1 Leu-Ala-Ile-pro-Val-Asn-Lys-Pro - 80568 3.4.15.1 Leu-Arg-Ile-Pro-Val-Ala - 80594 3.4.15.1 Leu-Arg-Pro - 80603 3.4.15.1 Leu-Gln-Pro - 25039 3.4.15.1 Leu-Gly-Ile - 80589 3.4.15.1 Leu-Lys-Pro - 100844 3.4.15.1 Leu-Lys-Pro-Asn-Met - 100845 3.4.15.1 Leu-Phe - 3349 3.4.15.1 Leu-Tyr - 4027 3.4.15.1 Leu-Tyr-Pro - 100855 3.4.15.1 LFDKPVSPL - 159760 3.4.15.1 LGFPTTKTYFPHF - 37011 3.4.15.1 lisinopril - 1281 3.4.15.1 LKPNM - 66397 3.4.15.1 LPQNIPPL - 138995 3.4.15.1 LPYPYY - 138997 3.4.15.1 LRPARPTSPP - 18056 3.4.15.1 LRPARPTSPPA - 18059 3.4.15.1 luteolin - 436 3.4.15.1 luteolin-7-O-beta-D-glucopyranoside - 66408 3.4.15.1 LVVYPWTQRF - 22519 3.4.15.1 Lys-Asp-Tyr-Arg-Leu - 80569 3.4.15.1 Lys-Leu-Pro-Arg-Gly-Thr-Leu-Phe - 80571 3.4.15.1 malonate - 392 3.4.15.1 Met-Arg-Trp - 80592 3.4.15.1 Met-Arg-Trp-Arg-Asp - 80593 3.4.15.1 MgCl2 - 196 3.4.15.1 MK-421 - 100932 3.4.15.1 MLGQTPT - 80545 3.4.15.1 Mn2+ - 11 3.4.15.1 monomethyl phosphate - 100937 3.4.15.1 additional information - 2 3.4.15.1 muracein A - 47359 3.4.15.1 muracein B - 47360 3.4.15.1 muracein C - 47361 3.4.15.1 MYPGIA - 159756 3.4.15.1 N-(3-{[(1R)-1-{[(benzyloxy)carbonyl]amino}-2-phenylethyl](hydroxy)phosphoryl}-2-{[3-(biphenyl-4-yl)-4,5-dihydro-1,2-oxazol-5-yl]methyl}propanoyl)-L-tryptophan - 27367 3.4.15.1 N-alpha-[1-(S)-carboxy-3-phenylpropyl]-L-Lys-L-Pro - 101055 3.4.15.1 N-[(2S)-3-methyl-2-sulfanylpentanoyl]-2-phenoxy-L-phenylalanine - 10025 3.4.15.1 N-[(2S)-3-methyl-2-sulfanylpentanoyl]-3-phenoxy-L-phenylalanine - 10026 3.4.15.1 N-[(2S)-3-methyl-2-sulfanylpentanoyl]-O-phenyl-L-tyrosine - 10027 3.4.15.1 N-[(2S)-3-methyl-2-sulfanylpentanoyl]-O-[4-(trifluoromethyl)benzyl]-L-tyrosine - 10028 3.4.15.1 N-[(5S)-4-oxo-6-phenyl-5-[(phenylcarbonyl)amino]hexanoyl]-L-phenylalanine - 36832 3.4.15.1 N-[(5S)-4-oxo-6-phenyl-5-[(phenylcarbonyl)amino]hexanoyl]-L-tryptophan - 36833 3.4.15.1 N-[(5S)-5-[(tert-butoxycarbonyl)amino]-4-oxo-6-phenylhexanoyl]-L-phenylalanine - 36834 3.4.15.1 N-[(5S)-5-[(tert-butoxycarbonyl)amino]-4-oxo-6-phenylhexanoyl]-L-tryptophan - 36835 3.4.15.1 N-[(S)-1-Carboxy-3-phenylpropyl]-L-Ala-L-Pro - 30808 3.4.15.1 N-[3-{[(1R)-1-{[(benzyloxy)carbonyl]amino}-2-phenylethyl](hydroxy)phosphoryl}-2-(biphenyl-4-ylmethyl)propanoyl]-L-tryptophan - 27368 3.4.15.1 N-{(2R)-3-{[(1R)-1-{[(benzyloxy)carbonyl]amino}-2-phenylethyl](hydroxy)phosphoryl}-2-[(3-phenyl-1,2-oxazol-5-yl)methyl]propanoyl}-L-tyrosine - 79801 3.4.15.1 N-{(2S)-3-{[(1R)-1-{[(benzyloxy)carbonyl]amino}-2-phenylethyl](hydroxy)phosphoryl}-2-[(3-phenyl-1,2-oxazol-5-yl)methyl]propanoyl}-L-tryptophan - 27366 3.4.15.1 NEM - 89 3.4.15.1 nicotianamine - 6050 3.4.15.1 NIPPLTQTPV - 66400 3.4.15.1 nitrate - 308 3.4.15.1 NWGPLV - 66389 3.4.15.1 O-(2,4-difluorobenzyl)-N-[(2S)-3-methyl-2-sulfanylpentanoyl]-L-tyrosine - 10029 3.4.15.1 O-(3,4-difluorobenzyl)-N-[(2S)-3-methyl-2-sulfanylpentanoyl]-L-tyrosine - 10030 3.4.15.1 O-(4-fluorobenzyl)-N-[(2S)-3-methyl-2-sulfanylpentanoyl]-L-tyrosine - 10031 3.4.15.1 O-benzyl-N-[(2S)-3-methyl-2-sulfanylpentanoyl]-L-tyrosine - 10032 3.4.15.1 O-[3,5-bis(trifluoromethyl)benzyl]-N-[(2S)-3-methyl-2-sulfanylpentanoyl]-L-tyrosine - 24767 3.4.15.1 omapatrilat - 25945 3.4.15.1 omega-phenylalkylcarboxylates - 101221 3.4.15.1 oxalate - 185 3.4.15.1 p-aminocinnamate - 101234 3.4.15.1 papain - 3117 3.4.15.1 PARPTSPP - 18054 3.4.15.1 PCMB - 78 3.4.15.1 Pepsin - 5670 3.4.15.1 Peptide inhibitors - 99564 3.4.15.1 perindopril - 6939 3.4.15.1 perindoprilat - 13500 3.4.15.1 pGlu-Asn-Trp-Pro-His-Pro-Gln-Ile-Pro-Pro - 17255 3.4.15.1 pGlu-Gly-Leu-Pro-Pro-Arg-Pro-Lys-Ile-Pro-Pro - 17253 3.4.15.1 pGlu-Gly-Leu-Pro-Pro-Gly-Pro-Pro-Ile-Pro-Pro - 17254 3.4.15.1 pGlu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro - 17252 3.4.15.1 Phe-Gly-Gly - 4301 3.4.15.1 Phe-Gly-Pro - 101289 3.4.15.1 Phe-Phe-Leu - 80558 3.4.15.1 Phe-Tyr - 15912 3.4.15.1 Phe-Val-Asn-Pro-Gln-Ala-Gly-Ser - 35804 3.4.15.1 phenacein - 101295 3.4.15.1 phloretin - 1762 3.4.15.1 PHO3(2-) - 101321 3.4.15.1 phosphoramidon - 645 3.4.15.1 Phthalate - 2867 3.4.15.1 PNNKPFQ - 66387 3.4.15.1 PO43- - 867 3.4.15.1 Pro-Asn-Asn-Lys-Pro-Phe-Gln - 80566 3.4.15.1 Pro-Ser-Tyr - 80588 3.4.15.1 protocatechuic acid - 1934 3.4.15.1 PRSGNVGESGL - 151490 3.4.15.1 PRSGNVGESGLID - 151493 3.4.15.1 PRVF - 66382 3.4.15.1 PSGQYY - 66393 3.4.15.1 PVAPLPRKGS - 151495 3.4.15.1 PVAPLQRSGPE - 151489 3.4.15.1 PVAPQLSRGLL - 151486 3.4.15.1 pyrogallol - 658 3.4.15.1 pyrrolidone-Lys-Trp-Ala-Pro - 101414 3.4.15.1 QILLPRPGQAA - 151488 3.4.15.1 quercetin - 137 3.4.15.1 quercetin-3-O-alpha-L-arabinopyranoside - 66407 3.4.15.1 quinapril - 11801 3.4.15.1 quinaprilat - 33724 3.4.15.1 QVVF - 66384 3.4.15.1 ramipril - 4397 3.4.15.1 ramiprilat - 6093 3.4.15.1 rampiril - 159770 3.4.15.1 resveratrol - 799 3.4.15.1 RPARPTSPP - 18055 3.4.15.1 rutin - 1095 3.4.15.1 RVAPEEHPT - 159758 3.4.15.1 RXP407 - 13489 3.4.15.1 RXPA380 - 14197 3.4.15.1 S-acetylcaptopril - 101436 3.4.15.1 salicylate - 617 3.4.15.1 SCH 54470 - 38614 3.4.15.1 SDS - 124 3.4.15.1 secretin - 9264 3.4.15.1 Ser-Phe - 20842 3.4.15.1 Ser-Pro-Pro - 18053 3.4.15.1 Ser-Trp-Ser-Phe - 80597 3.4.15.1 Ser-Tyr - 9269 3.4.15.1 SFTAGARTFNFDENPCDYFQGGKIKAT - 151497 3.4.15.1 SKVLPVPQK - 138996 3.4.15.1 SLVYPFPGPI - 66399 3.4.15.1 snake venom peptide - 47490 3.4.15.1 spirapril - 159765 3.4.15.1 SQ 20881 - 47491 3.4.15.1 SSYVHLRPARPTSPP - 18058 3.4.15.1 Substance P - 1259 3.4.15.1 succinate - 58 3.4.15.1 syringic acid - 2585 3.4.15.1 talopeptin - 30429 3.4.15.1 Tannic acid - 1019 3.4.15.1 tannin - 5716 3.4.15.1 Teprotide - 20532 3.4.15.1 Thr-Ala-Pro-Tyr - 80575 3.4.15.1 Thr-Gln-Val-Tyr - 80572 3.4.15.1 Thr-Phe - 13003 3.4.15.1 Thr-Tyr-Leu-Gly-Ser - 80580 3.4.15.1 Thr-Val-Pro-Tyr - 80576 3.4.15.1 Thr-Val-Tyr - 201370 3.4.15.1 Thr-Val-Val-Pro-Gly - 80577 3.4.15.1 Tokuho A - 151500 3.4.15.1 Tokuho B - 151501 3.4.15.1 Tokuho C - 151502 3.4.15.1 TPRVF - 66385 3.4.15.1 trandolaprilat - 16434 3.4.15.1 trans-cinnamic acid - 3497 3.4.15.1 Trp-Leu - 9286 3.4.15.1 Trp-Tyr - 31660 3.4.15.1 Trp-Val-Pro-Ser-Val-Tyr - 80599 3.4.15.1 Trypsin - 393 3.4.15.1 Tyr-Ala-Leu-Pro-His-Ala - 201373 3.4.15.1 Tyr-Gln-Tyr - 80587 3.4.15.1 Tyr-Leu - 9289 3.4.15.1 Tyr-Leu-Ala-Gly-Asn-Gln - 80560 3.4.15.1 Tyr-Pro - 6029 3.4.15.1 Tyr-Pro-Lys - 31664 3.4.15.1 Tyr-Tyr-Ala-Pro-Phe - 80598 3.4.15.1 Tyr-Tyr-Ala-Pro-Phe-Asp-Gly-Ile-Leu - 80601 3.4.15.1 Tyr-Val-Val-Phe-Lys - 80564 3.4.15.1 Val-Gly - 30499 3.4.15.1 Val-Ile-Glu-Lys-Tyr-Pro - 80582 3.4.15.1 Val-Leu-Ile-Val-Pro - 18052 3.4.15.1 Val-Lys - 80586 3.4.15.1 Val-Met-Asp-Lys-Pro-Gln-Gly - 80561 3.4.15.1 Val-Phe - 9451 3.4.15.1 Val-Phe-Pro-Ser - 201371 3.4.15.1 Val-Phe-Pro-Tyr - 80574 3.4.15.1 Val-Pro - 5248 3.4.15.1 Val-Pro-Pro - 17102 3.4.15.1 Val-Thr-Pro-Ala-Leu-Arg - 80570 3.4.15.1 Val-Thr-Val-Asn-Pro-Tyr-Lys-Trp-Leu-Pro - 201372 3.4.15.1 Val-Trp - 13417 3.4.15.1 Val-Tyr - 6031 3.4.15.1 vanillic acid - 1882 3.4.15.1 VAPEEHPT - 159759 3.4.15.1 VAPSRPTPR - 151491 3.4.15.1 VIPEL - 159757 3.4.15.1 VVYPWT - 37012 3.4.15.1 VVYPWTQRF - 17256 3.4.15.1 warfarin - 719 3.4.15.1 WF-10,129 - 101721 3.4.15.1 YGGY - 66395 3.4.15.1 YGLF - 66396 3.4.15.1 YQKFPQY - 138994 3.4.15.1 YVHLRPARPTSPP - 18057 3.4.15.1 YVVFK - 66386 3.4.15.1 zofenpril - 159767 3.4.15.1 [CB-TE2A]1--lisinopril - 201365 3.4.15.1 [Co-DOTA]1--lisinopril - 201362 3.4.15.1 [Co-EDTA]1--lisinopril - 201357 3.4.15.1 [Co-GGH]0-lisinopril - 201352 3.4.15.1 [Co-NTA]0-lisinopril - 201348 3.4.15.1 [Cu-CB-TE2A]1+-lisinopril - 201368 3.4.15.1 [Cu-DOTA]1--lisinopril - 201364 3.4.15.1 [Cu-EDTA]1--lisinopril - 201359 3.4.15.1 [Cu-GGH]0-lisinopril - 201354 3.4.15.1 [Cu-NTA]0-lisinopril - 201350 3.4.15.1 [DOTA]1--lisinopril - 201360 3.4.15.1 [EDTA]3-lisinopril - 201355 3.4.15.1 [Fe-CB-TE2A]2+-lisinopril - 201366 3.4.15.1 [Fe-DOTA]0-lisinopril - 201361 3.4.15.1 [Fe-EDTA]0-lisinopril - 201356 3.4.15.1 [Fe-NTA]1+-lisinopril - 201347 3.4.15.1 [GGH]1+-lisinopril - 201351 3.4.15.1 [Ni-CB-TE2A]1+-lisinopril - 201367 3.4.15.1 [Ni-DOTA]1--lisinopril - 201363 3.4.15.1 [Ni-EDTA]1--lisinopril - 201358 3.4.15.1 [Ni-GGH]0-lisinopril - 201353 3.4.15.1 [Ni-NTA]0-lisinopril - 201349 3.4.15.1 [NTA]2-lisinopril - 201346 3.4.15.1 [[(2S)-2-mercapto-3-methylpentanoyl]amino]acetic acid - 10034 3.4.15.1 captopril 0.00002 mM 469 3.4.15.1 genistein 0.003-0.3 mM genistein decreases the angiotensin-converting enzyme activity in blood plasma in a concentration-dependent manner; the isoflavone inhibits ACE in plasma and alters the vascular responses to angiotensin I and bradykinin, overview 377 3.4.15.1 ethyl caffeate 0.01 mg/ml, 32.4% inhibition 37014 3.4.15.1 methyl rosmarinate 0.01 mg/ml, 39.5% inhibition 139001 3.4.15.1 rosmarinic acid 0.01 mg/ml, 55.2% inhibition 2035 3.4.15.1 Hyp-Gly-Leu-Hyp-Gly-Phe 0.01 mM 132377 3.4.15.1 Hyp-Gly-Thr-Hyp-Gly-Leu-Hyp-Gly-Phe 0.019 mM 132378 3.4.15.1 Ac-RKKPFW-NH2 0.02 mM, 24% loss of activity with hippuryl-His-Leu 138987 3.4.15.1 Ac-RKWLFW-NH2 0.02 mM, 26% loss of activity with hippuryl-His-Leu, 71% loss of activity with angiotensin I; 0.02 mM, 32% loss of activity with hippuryl-His-Leu 66379 3.4.15.1 Ac-RRWQWR-NH2 0.02 mM, 29% loss of activity with hippuryl-His-Leu, 34% loss of activity with angiotensin I 138988 3.4.15.1 Ac-RKWRFW-NH2 0.02 mM, 3% loss of activity with hippuryl-His-Leu 138986 3.4.15.1 Ac-FKCRRWQWRMKKLGA-NH2 0.02 mM, 38% loss of activity with hippuryl-His-Leu, 41% loss of activity with angiotensin I 138989 3.4.15.1 Ac-RKWHFW-NH2 0.02 mM, 42% loss of activity with hippuryl-His-Leu, 55% loss of activity with angiotensin I; 0.02 mM, 48% loss of activity with hippuryl-His-Leu 66378 3.4.15.1 leupeptin 0.1 mg/ml, 18% inhibition 217 3.4.15.1 antipain 0.1 mg/ml, 26% inhibition 520 3.4.15.1 captopril 0.1 mM, complete inhibition 469 3.4.15.1 Phe-Hyp-Gly-Thr-Hyp-Gly 0.406 mM 132379 3.4.15.1 1-Fluoro-2,4-dinitrobenzene 1 mM, 31% inhibition 3050 3.4.15.1 1-Fluoro-2,4-dinitrobenzene 1 mM, 96% inhibition of N-domain ACE 3050 3.4.15.1 PCMB 1.0 mM, 42% inhibition 78 3.4.15.1 ZnCl2 1.0 mM, 98% inhibition 271 3.4.15.1 EDTA 1.0 mM, complete inhibition 21 3.4.15.1 diethyl dicarbonate 10 mM, 92.8% inhibition 463 3.4.15.1 2,3-butendione 10 mM, 97.4% inhibition 117684 3.4.15.1 EDTA 10 mM, complete inhibition of hydrolysis of o-aminobenzoyl-SDK-(dinitrophenyl)-P-OH and o-aminobenzoyl-FRK-(dinitrophenyl)-P-OH of wild-type enzyme, N-domain and C-domain 21 3.4.15.1 PO43- 100 mM, 50% inhibition 867 3.4.15.1 quinapril 18 mg/kg quinapril per day feeding for 3 days significantly reduces blood plasma ACE activity by 80%, quinapril administration for 16 days greatly decreases blood plasma ACE activity by 88% with 18 mg/kg per day, ACE activities in the heart, lung, and skeletal muscles of the 16-day ACE-inhibition with 18 mg/kg per day are 9%, 16%, and 22% of the controls, respectively 11801 3.4.15.1 N-bromosuccinimide 2 mM, 99.8% inhibition 208 3.4.15.1 additional information 2.7fold peptide-enriched soy sauce-like seasoning, termed Fermented Soybean Seasoning, FSS, shows ACE inhibitory activity with an IC50 of 0.454 mg/ml, fermentation method, overview. FSS shows antihypertensive effects, overview 2 3.4.15.1 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluene sulfonate 20 mM, 99.6% inhibition 117685 3.4.15.1 alaternin 24.26% inhibition at 1.63 ng/ml 151498 3.4.15.1 Phe-Hyp-Gly-Thr-Hyp-Gly-Leu-Hyp-Gly 25 mM 132380 3.4.15.1 emodin 45.79% inhibition at 1.63 ng/ml 3072 3.4.15.1 2-hydroxyemodin 1-methylether 47.52% inhibition at 1.63 ng/ml 151499 3.4.15.1 Tetranitromethane 5 mM, 99.1% inhibition 1453 3.4.15.1 1,10-phenanthroline 5.0 mM, complete inhibition 62 3.4.15.1 chloramine-T 50 mM, 97.1% inhibition 33725 3.4.15.1 NaCl 500 mM, 50% inhibition 42 3.4.15.1 CuCl2 73% inhibition at 0.1 mM, 99% inhibition at 1.0 mM 347 3.4.15.1 captopril 87.87% inhibition at 1.63 ng/ml 469 3.4.15.1 captopril 98.5% inhibition at 0.2 mM 469 3.4.15.1 lisW-S a C-domain-selective derivative of the drug lisinopril. The compound shows a 258fold domain-selectivity for the C-domain compared to the N-domain, that is largely due to the co-operative effect of C-domain-specific residues in the S2' subsite. Interactions in the active site: comparison between N- and C-domain residues, overview 27338 3.4.15.1 Ala-His-Ser-Tyr a noncompetitive inhibitor, the peptide is resistant to further degenration by pepsin, trypsin, and chymotrypsin 80548 3.4.15.1 KAPVA a peptide derived from muscle titin 80543 3.4.15.1 PTPVP a peptide derived from muscle titin 80544 3.4.15.1 Trp-Tyr-Thr a peptide from hempseed, mixed-type inhibition 239459 3.4.15.1 Trp-Val-Tyr-Tyr a peptide from hempseed, mixed-type inhibition 239458 3.4.15.1 acteoside a phenylpropanoid glycoside isolated from ethanolic extracts of seeds of Plantago asiatica, collected from Jiang Xi Province in China. The compound shows ACE inhibitory activity in vitro, structure analysis by NMR, UV, IR and MS 37679 3.4.15.1 isoacteoside a phenylpropanoid glycoside isolated from ethanolic extracts of seeds of Plantago asiatica, collected from Jiang Xi Province in China. The compound shows ACE inhibitory activity in vitro, structure analysis by NMR, UV, IR and MS 79623 3.4.15.1 plantainoside D a phenylpropanoid glycoside isolated from ethanolic extracts of seeds of Plantago asiatica, collected from Jiang Xi Province in China. The compound shows ACE inhibitory activity in vitro, structure analysis by NMR, UV, IR and MS 80073 3.4.15.1 plantamajoside a phenylpropanoid glycoside isolated from ethanolic extracts of seeds of Plantago asiatica, collected from Jiang Xi Province in China. The compound shows ACE inhibitory activity in vitro, structure analysis by NMR, UV, IR and MS 79803 3.4.15.1 Pro-Arg-Tyr a potato patatin-derived peptide, competitive inhibition 239457 3.4.15.1 Trp-Gly a potato patatin-derived peptide, mixed-type inhibition 20556 3.4.15.1 Ile-Lys-Pro a potent competitive inhibitor, molecular docking analysis at the active site of testis ACE, overview 16365 3.4.15.1 sardine peptide a protein hydrolysate derived from muscles of sardines, inhibits in vivo and reduces the blood glucose level, but not the plasma insulin level 159752 3.4.15.1 Trypsin about 10% ACE inhibitory 393 3.4.15.1 alcalase about 20% ACE inhibitory 151484 3.4.15.1 flavourzyme about 20% ACE inhibitory 151483 3.4.15.1 Pepsin about 60% ACE inhibitory 5670 3.4.15.1 neutrase about 70% ACE inhibitory 151481 3.4.15.1 acidic protease about 80% ACE inhibitory 151482 3.4.15.1 N-[(1S)-1-(ethoxycarbonyl)-3-phenylpropyl]-L-alanyl-L-proline accelerated nitrotyrosine content in the renal cortex during high-glucose conditions is prevented by treatment with the angiotensin-converting enzyme inhibitor treatment. The suppressed degradation of nitrotyrosine in the renal cortex by the angiotensin-converting enzyme inhibitor enhances both superoxide anion degradation per se and antioxidative effects including activation of superoxide dismutase 66380 3.4.15.1 captopril ACE competitive inhibitor, inhibits somatic ACE activity. Captopril significantly lowers the percentage of cells in the S phase and significantly increases the percentage of cells in the G0/G1 phase compared with the negative control, whereas the percentage of cells in each cell cycle phase nearly recovers following captopril withdrawal 469 3.4.15.1 captopril ACE inhibition during pregnancy and lactation in adult offspring rats induces behavioural changes, e.g. in the open field test, overview 469 3.4.15.1 HERDPTHIKWGD ACE inhibitor peptide B derived from water extracts of bonito protein, glyceraldehyde-3-phosphate dehydrogenase, hydrolysates, tandem multimer expression in and purification from Escherichia coli strain XL1-Blue and BL21(DE3), detailed overview 35811 3.4.15.1 additional information ACE inhibitors can induce angioedema, overview; ACE-inhibitors in vivo act in a competitive manner and their activity is dependent on their plasma concentration 2 3.4.15.1 Lys-Ala-Phe-Arg ACE inhibitory peptide derived from Arachis hypogaea protein hydrolysate using digestion by Alcalase, mass spectrometric sequence determination, overview. IC50 value is 0.085 mg/ml 159769 3.4.15.1 additional information ACE inhibitory peptides derived from marine organisms show a strong suppressive effect on systolic blood pressure of spontaneously hypertensive rats, and this antihypertensive activity is similar with captopril, a commercial antihypertensive drug. Hydrophobicity of the N-terminus is one of the common features of ACE inhibitory peptides, and may contribute to the inhibitory activity. No side effect observed on rats after administration of antihypertensive peptides. The peptides exhibit antihypertensive activity in vivo rather than in vitro. An antihypertensive peptide isolated from bonito fish hydrolysate product, is hydrolyzed by ACE to produce a smaller peptide than the initial one, which has 8fold increased ACE inhibitory activity compared with the initial peptide. Polyphenolic compounds inhibit ACE activity through sequestration of the enzyme metal factor, Zn2+ ion 2 3.4.15.1 additional information ACE inhibitory peptides from the marine rotifer, Brachionus rotundiformis, overview. The hydrolysate is prepared by Alcalase, a-chymotrypsin, Neutrase, papain, and trypsin, inhibitory activities of the different preparateions, overview. Glutamic acid, aspartic acid, proline, glycine and alanine from ACE inhibitory activity peptide are all observed in many other ACE inhibitory peptides. Peptides derived from rotifers may be beneficial as anti-hypertension compounds in functional foods resource 2 3.4.15.1 additional information ACE is not inhibited by gluco-obtusifolin, obtusifolin, aurantioobtusin, cassitoroside, toralactone gentiobioside, chrysophanol triglucoside, questin, and cassiaside; both of the methanol extracts from the raw and roasted Cassia tora seeds exhibit significant inhibitory properties against ACE, demonstrating more than 50% inhibition at a concentration of 0.16393 mg/ml 2 3.4.15.1 angiotensin converting enzyme inhibitor ACE-I, inhibition is impacting both the renin-angiotensin cascade and the degradation metabolism of bradykinin, inhibition mechanism, overview. ACE-I is used as therapeutic agent in congestive heart failure, diabetic nephropathy, hypertension, and coronary artery disease. ACE-I medications can induce chronic cough, hypotension, hyperkalemia, bone marrow depression, angioedema, and rarely, hepatic failure. Angioedema involves a subcutaneous swelling reaction that evolves over several hours and is not associated with itching or pain, pathomechanism, detailed overview 159754 3.4.15.1 additional information ACE-inhibitory protein hydrolysates produced from canola meals, after hydrolysis by different enzymes, IC50 of molecular weight fractions, overview 2 3.4.15.1 ramipril ACE-specific inhibitor 4397 3.4.15.1 angiotensin-converting enzyme inhibitor ACEi, induces angioedema, a non-allergic bradykinin-induced drug side-effect and clinical life-threatening problem, overview. ACE insertion/deletion and bradykinin B2 receptor polymorphisms are not involved in the development of ACEi-induced angio-oedema 159753 3.4.15.1 Triton X-100 activates at 0.01%, inhibits at 1.0-10.0% 61 3.4.15.1 angiotensin-I converting enzyme inhibitory peptides activity of hydrolysates, using diverse proteases, from Avena sativa proteins by in silico and in vitro analyses, peptide sequencing, overview 159764 3.4.15.1 enalapril acute angiotensin-converting enzyme inhibition evokes bradykinin-induced sympathetic activation in diabetic rats 3286 3.4.15.1 fosinopril administered as a prodrug and then rapidly converted by the liver and the gastrointestinal mucosa to the active form fosinoprilat 25036 3.4.15.1 puqienine D an ACE inhibitory steroidal alkaloid from Fritillaria puqiensis, 16.5% inhibition at 0.2 mM 159159 3.4.15.1 puqienine C an ACE inhibitory steroidal alkaloid from Fritillaria puqiensis, 19.8% inhibition at 0.2 mM 159158 3.4.15.1 peimisine an ACE inhibitory steroidal alkaloid from Fritillaria puqiensis, 20.2% inhibition at 0.2 mM 33722 3.4.15.1 puqienine A an ACE inhibitory steroidal alkaloid from Fritillaria puqiensis, 20.4% inhibition at 0.2 mM 79665 3.4.15.1 puqienine B an ACE inhibitory steroidal alkaloid from Fritillaria puqiensis, 24.7% inhibition at 0.2 mM 79823 3.4.15.1 puqiedine an ACE inhibitory steroidal alkaloid from Fritillaria puqiensis, 6.1% inhibition at 0.2 mM 159154 3.4.15.1 puqienine E an ACE inhibitory steroidal alkaloid from Fritillaria puqiensis, 72% inhibition at 0.2 mM 80056 3.4.15.1 puqietinone an ACE inhibitory steroidal alkaloid from Fritillaria puqiensis, 9.3% inhibition at 0.2 mM 159060 3.4.15.1 cyanidin-3-O-sambubioside an anthocyanin isolated from Hibiscus sabdariffa calyces, competitive ACE inhibition reducing blood pressure in humans, IC50 is 0.0684 mg/ml 40373 3.4.15.1 delphinidin-3-O-sambubioside an anthocyanin isolated from Hibiscus sabdariffa calyces, competitive ACE inhibition reducing blood pressure in humans, IC50 is 0.0845 mg/ml 40372 3.4.15.1 15B2 an inhibitor isolated from the culture broth of Actinomadura sp. No. 937ZE-1 99785 3.4.15.1 Asp-Asp-Thr-Gly-His-Asp-Phe-Glu-Asp-Thr-Gly-Glu-Ala-Met an inhibitory peptide from the marine rotifer, Brachionus rotundiformis 80542 3.4.15.1 muracein A and SQ 28,370, the reduction product of muracein A 47359 3.4.15.1 enalapril angioedema is a rare but potentially life-threatening adverse effect of angiotensin-converting enzyme inhibitors. Angioedema due to angiotensin-converting enzyme inhibitors usually appears during the first weeks of treatment. Late-onset anioedema is often unrecognized 3286 3.4.15.1 additional information angiotensin converting enzyme inhibitors inhibit angiotensin II formation and affect the bradykinin B1 and B2 receptor, B2R and B2R, signaling, overview. They indirectly potentiate the actions of bradykinin and enzyme-resistant analogues of bradykinin on receptor BR2R, leading to increased release of arachidonic acid and NO, and they increase B2R action as allosteric enhancers, via their C-domain, inducing a conformational change in the enzyme. The inhibitors are useful in therapy of cardiovascular diseases, overview. The bradykinin B1 receptor is directly activated by ACE inhibitors, even in absence of ACE 2 3.4.15.1 additional information angiotensin I-converting enzyme inhibitory peptides from protein hydrolysates by a soybean protease D3 2 3.4.15.1 angiotensin II angiotensin II shows selective competitive inhibition of the carboxy-terminal domain of human somatic ACE 661 3.4.15.1 captopril angiotensin-converting enzyme inhibition confers renoprotection in adriamycin nephropathy by reducing intrarenal angiotensin II and augmenting expression of N-acetylseryl-aspartyl-lysyl-proline that together attenuate signaling of mitogen-activated protein kinase and its downstream proinflammatory and fibrinogenic properties 469 3.4.15.1 additional information angiotensin-converting enzyme inhibition does not significantly modify major biomarkers of inflammation, hemostasis, and endothelial function, e.g. C-reactive protein, interleukin 6, plasminogen activator inhibitor 1, vascular cell adhesion molecule 1, and endothelin 1, while angiotensin II levels are reduced, overview 2 3.4.15.1 lisinopril angiotensin-converting enzyme inhibitor enhances the liver regeneration in rats after partial hepatectomy. Angiotensin-converting enzyme enhanced the hepatic regenerative response to PH by two independent mechanisms: an activation of B2 receptors and inhibition of angiotensin II production, both of which may stimulate production of hepatocyte growth factor, resulting in enhancement of the hepatic regeneration 1281 3.4.15.1 additional information angiotensin-converting enzyme inhibitors are recommended in dogs and cats with chronic renal failure. They decrease the glomerular capillary pressure, have antiproteinuric effects, tend to delay the progression of chronic renal failure and to limit the extent of renal lesions 2 3.4.15.1 additional information angiotensin-converting enzyme inhibitors, ACE-I, protect against cardiac toxicity in patients receiving doxorubicin chemotherapy, overview 2 3.4.15.1 additional information angiotensin-converting enzyme inhibitors, ACEIs, treatment of myocardial infarction patients bears is asscoiated with increased mortality, the risk is also existent for renal failure patients, effects of ACEIs on heart failure patients with other diseases or risk factors, overview 2 3.4.15.1 EtOAc extract of Rabdosia coetsa angiotensin-converting enzyme inhibitory activity 139000 3.4.15.1 2''-hydroxynicotianamide angiotensin-I converting enzyme inhibitor from buckwheat (Fagopyrum esculentum Moench) flour, IC50: 0.00008 mM 60664 3.4.15.1 D-mannitol antihypertensive effect in spontaneously hypertensive rats by oral administration 495 3.4.15.1 additional information antiproteinuric and renoprotective effects of ACE inhibitors, ACEi, overview 2 3.4.15.1 NaCl at pH 7 increasing concentrations of NaCl result in a faster rate of conversion which reaches a plateau at 150-200 mM NaCl. The activation by NaCl at pH 7 is the result of a 330% increase in kcat/Km which is solely attributable to a lowering of the Km. At pH 8, maximal activity is achieved in absence of NaCl, weak inhibitory effect on hydrolysis of angiotensin I as salt concentrations increase from 0 to 200 mM 42 3.4.15.1 additional information autolysis of protein isolates from vascular bundle and inner tuber tissues of potato (Solanum tuberosum) enhances the inhibition of the angiotensin converting enzyme I, the highest inhibitory activities (50% reduction in ACE activity achieved following autolysis at a protein concentration of 0.36 mg/ml) are measured in tubers after 5-6 months of storage prior to sprouting, the rate of ACE inhibition is positively correlated with protease activity in tuber tissues 2 3.4.15.1 SPB1 Bacillus subtilis crude lipopeptide biosurfactant, the biosurfactant displays a potent inhibition of ACE activity in vitro, IC50 is 1.37 mg/ml 239456 3.4.15.1 captopril binding mode, molecular docking, detailed overview 469 3.4.15.1 additional information both angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, e.g. losartan, can slow the progression of diabetic nephropathy, overview 2 3.4.15.1 enalaprilate bradykinin receptor 2 (BDKRB2) BE1 polymorphism influences bradykinin type 2 receptor mediated vasodilation during angiotensin-converting enzyme inhibition 16353 3.4.15.1 Monascus-fermented soybean extract butanol, ethyl acetate, 50% ethanol-soluble extract and water-soluble extract 138999 3.4.15.1 RXPA380 C domain-specific inhibitor 14197 3.4.15.1 Ile-Pro-Pro casein hydrolysate containing VPP and IPP improves the vascular endothelial dysfunction in subjects with mild hypertension. The continuous intake of VPP and IPP could help to prevent cardiovascular diseases in hypertensive subjects 16366 3.4.15.1 Val-Pro-Pro casein hydrolysate containing VPP and IPP improves the vascular endothelial dysfunction in subjects with mild hypertension. The continuous intake of VPP and IPP could help to prevent cardiovascular diseases in hypertensive subjects 17102 3.4.15.1 fosinopril causes a significant decrease in plasminogen activator inhibitor 1, PAI-1, levels, probably by aldosterone escape 25036 3.4.15.1 additional information chicken collagen hydrolysates possess ACE-inhibitory activities, chicken collagen hydrolysates inhibit about 30% of the activity of ACE, whereas further enzymatic treatment doubles their activities 2 3.4.15.1 perindopril chronic administration of perindopril results in a decrease in body adiposity 6939 3.4.15.1 perindopril chronic in vivo administration of the angiotensin-converting enzyme inhibitor reduces apoptosis induced via endotoxic shock with Escherichia coli lipopolysaccharides 6939 3.4.15.1 temocapril chronic treatment with temocapril improves the carotid arterial stiffness in healthy, normotensive elderly, and hence may reduce their risk for cardiovascular disease 16536 3.4.15.1 Leu-Gln-Pro competitive 25039 3.4.15.1 Leu-Lys-Tyr competitive 66398 3.4.15.1 Leu-Val-Tyr competitive 25038 3.4.15.1 gluco-aurantioobtusin competitive inhibitor, 137.62% inhibition at 1.63 ng/ml 39020 3.4.15.1 KRQKYDI competitive inhibitor, the strongest inhibitor among reported troponin-originated peptides. The inhibhitor is slowly hydrolyzed by treatment with angiotensin I-converting enzyme. When KRQKYDI is administered orally to spontaneously hypertensive rats at a dose of 10 mg/kg, a temporary antihypertensive activity is observed at 3 and 6 h after administration 66403 3.4.15.1 D-Cys-L-Pro competitive to hippuryl-His-Leu 100416 3.4.15.1 captopril competitive, of great value for use in chronic therapy of human hypertensive disease 469 3.4.15.1 EDTA complete inhibition at 0.01 mM 21 3.4.15.1 o-phenanthroline complete inhibition at 0.35 mM 239 3.4.15.1 additional information compounds from Epilobium angustifolium inhibit. Taking into account the role of these peptidase in prostate diseases, the results may partly support and explain the use of Epilobium extracts in folk medicine 2 3.4.15.1 NaCl concentration dependent inhibition of hippuryl-His-Leu between 0 and 100 mM 42 3.4.15.1 MLN-4760 conversion of Ang II to Ang(1-7) is blocked by MLN-4760 but not by DX600 6262 3.4.15.1 perindopril decreases food intake and circulating insulin in both diet groups, and hepatic ACE activity in high fat fed animals only, while decreased plasma leptin concentration with ACE inhibition is only evident in chow fed animals 6939 3.4.15.1 aliphatic monocarboxylates degree of inhibition increases in proportion to their chain length up to C14 100050 3.4.15.1 dieckol deribed from Ecklonia stolonifera 27474 3.4.15.1 eckol derived from Ecklonia stolonifera 27475 3.4.15.1 phlorofucofuroeckol A derived from Ecklonia stolonifera 40374 3.4.15.1 additional information design and properties of N-carboxyalkyldipeptide inhibitors 2 3.4.15.1 ramipril diabetic nephropathy can be delayed by the use of angiotensin-converting enzyme inhibitors. Critical role of bradykinin B2 receptor activation in the mediation of angiotensin-converting enzyme inhibitors renal protection against diabetic nephropathy 4397 3.4.15.1 kaempferol dose-dependent inhibition, 46% inhibition at 0.1 mM 408 3.4.15.1 phlorotannins e.g. from Ahnfeltiopsis flabelliformis, Ecklonia cava, Ecklonia stolonifera, Pelvetia siliqousa, and Undaria pinnatifida, phenolic compounds formed by the polymerization of phloroglucinol or defined as 1,3,5-trihydroxybenzene monomer units and biosynthesized through the acetate-malonate pathway. They are highly hydrophilic components with a wide range of molecular sizes ranging between 126-650 kDa. A closed ring dibenzo-1,4-dioxin moiety may be crucial for ACE inhibitory effects 80606 3.4.15.1 N2-[(S)-1-carboxy-3-phenylpropyl]-L-lysyl-L-proline effect of the inhibitor on the components of the renin system in healthy subjects : the drug has a prolonged duration of action and effectively reduces plasma converting enzyme activity, angiotensin II and aldosterone levels and thereby increases sodium diuresis 132376 3.4.15.1 chitosan trimer effective in lowering blood pressure 80607 3.4.15.1 additional information effects of metabolites produced from (-)-epigallocatechin gallate by rat intestinal bacteria on angiotensin I-converting enzyme activity and blood pressure in spontaneously hypertensive rats. All of the metabolites show ACE inhibitory activities and the order of IC50 is hydroxyphenyl valeric acids > 5-(3,4,5-trihydroxyphenyl)-gamma-valerolactone > 5-(3,4,5-trihydroxyphenyl) 4-hydroxyvaleric acid >> 5-(3,5-dihydroxyphenyl) 4-hydroxyvaleric acid >> 5-(3,5-dihydroxyphenyl)-gamma-valerolactone. Among the catechins, galloylated catechins exhibit stronger ACE inhibitory activity than nongalloylated catechins. Measurement of systolic blood pressure (SBP) after oral administration 2 3.4.15.1 additional information endogenous inhibitor from rat heart may modulate the activity of the enzyme in the heart in response to alterations of the oxidation-reduction balance in the tissue, MW of the inhibitor is about 100000 Da 2 3.4.15.1 additional information enzyme inhibition kinetics and moelecular docking of patatin-derived peptides. The higher inhibitory potency of PRY might be attributed to formation of more hydrogen bonds with the enzyme's active site or non-active sites that distort the configuration necessary for catalysis 2 3.4.15.1 additional information enzyme is not affected by addition of 0.1-1.0 mM CaCl2, Mn2Cl2, MgCl2 or 0.1 mM ZnCl2 2 3.4.15.1 Thermolysin extract of dried bonito 5263 3.4.15.1 GQGGP extraction and characterization of an ACE inhibitor from the fruiting body of Pholiota adiposa ASI 24012, which can be used as an antihypertensive drug 66381 3.4.15.1 flavanol flavanols either isolated or present in foods can inhibit enzyme activity 132382 3.4.15.1 Teprotide from snake venom peptides 20532 3.4.15.1 angiotensin I converting enzyme inhibitory peptides from wheat milling byproducts by proteolysis through aspartic proteases, optimally produced at pH 3.2. Milled whole grain, bran, shorts, and red dog acquire ACE inhibitory activity though water soaking treatment, preparation of shorts exhibits the strongest inhibitory activity with an IC50 value of 0.08 mg/ml, overview 159763 3.4.15.1 soymilk protein proteolytic peptides generated by proteolytic action of Lactobacilli and Bifidobacterium, which is increased in presence of fructooligosaccharides. The peptides show inhibitory activity to ACE, with IC50 values of 0.02 to 0.17 mg/ml, and antihypertensive effect in vivo, overview 159755 3.4.15.1 additional information generation of ACE inhibitory peptides from flaxseed protein, molecular weights and inhibitory potencies of fractions, overview 2 3.4.15.1 additional information generation of angiotensin I-converting enzyme inhibitory, ACEI, peptides after gastrointestinal digestion of pork meat by the action of pepsin and pancreatin at simulated gut conditions, analysis by nanoLC-ESI-MS/MS and MALDI-TOF/TOF mass spectrometry, and peptide sequencing, overview 2 3.4.15.1 Gly-L-Ala-Hyp-Gly-L-Leu-Hyp-Gly-L-Pro highest ACE-inhibitory activity 39016 3.4.15.1 additional information hot water extract of Tamogi-take mushroom, antihypertensive effect in spontaneously hypertensive rats by oral administration 2 3.4.15.1 additional information hot water extract of Tamogi-take mushroom, IC50: 6 mg/ml 2 3.4.15.1 ramipril human physiologically based pharmacokinetic model for the inhibitor 4397 3.4.15.1 ramiprilat human physiologically based pharmacokinetic model for the inhibitor 6093 3.4.15.1 Acetyl-Ala-Ala-Ala hydrolysis of hippuryl-His-Leu 29669 3.4.15.1 Acetyl-Ala-Ala-Ala-Ala hydrolysis of hippuryl-His-Leu 20093 3.4.15.1 Ala-Ala hydrolysis of hippuryl-His-Leu 1175 3.4.15.1 Ala-Ala-Ala hydrolysis of hippuryl-His-Leu 1671 3.4.15.1 Ala-Ala-Ala-Ala hydrolysis of hippuryl-His-Leu 4782 3.4.15.1 angiotensin II hydrolysis of hippuryl-His-Leu 661 3.4.15.1 Arg-Ala hydrolysis of hippuryl-His-Leu 7382 3.4.15.1 Arg-Pro-Pro hydrolysis of hippuryl-His-Leu 3515 3.4.15.1 Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg hydrolysis of hippuryl-His-Leu 2946 3.4.15.1 Asp-Ala hydrolysis of hippuryl-His-Leu 12769 3.4.15.1 His-Leu hydrolysis of hippuryl-His-Leu 2272 3.4.15.1 Leu-Ala hydrolysis of hippuryl-His-Leu 3822 3.4.15.1 Lys-Ala hydrolysis of hippuryl-His-Leu 4264 3.4.15.1 Phe-Arg hydrolysis of hippuryl-His-Leu 4042 3.4.15.1 Pyr-Asn-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro hydrolysis of hippuryl-His-Leu 101378 3.4.15.1 Pyr-Asn-Trp-Pro-His-Pro-Gln-Ile-Pro-Pro hydrolysis of hippuryl-His-Leu 101379 3.4.15.1 Pyr-Gly-Gly-Trp-Pro-Arg-Pro-Gly-Pro-Glu-Ile-Pro-Pro hydrolysis of hippuryl-His-Leu 101380 3.4.15.1 Pyr-Gly-Leu-Pro-Pro-Arg-Pro-Lys-Ile-Pro-Pro hydrolysis of hippuryl-His-Leu 101381 3.4.15.1 Pyr-Gly-Leu-Pro-Pro-Gly-Pro-Pro-Ile-Pro-Pro hydrolysis of hippuryl-His-Leu 101382 3.4.15.1 Pyr-Ser-Trp-Pro-Asn-Ile-Pro-Pro hydrolysis of hippuryl-His-Leu 101383 3.4.15.1 Pyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro hydrolysis of hippuryl-His-Leu 47478 3.4.15.1 Pyr-Trp-Pro-Arg-Pro-Thr-Pro-Gln-Ile-Pro-Pro hydrolysis of hippuryl-His-Leu 101384 3.4.15.1 Ser-Pro hydrolysis of hippuryl-His-Leu 6094 3.4.15.1 Tyr-Ala hydrolysis of hippuryl-His-Leu 12719 3.4.15.1 captopril hyperalgesic effect 469 3.4.15.1 enalapril i.e. ((S)-1-ethoxycarbonyl-3-phenylpropyl)-L-alanyl-L-proline, 74.9% inhibition at 0.005 mg/mg in L6 larvae 3286 3.4.15.1 enalapril i.e. (2S)-1-[(2S)-2-[(2S)-1-ethoxy-1-oxo-4-phenylbutan-2-yl]aminopropanoyl]pyrrolidine-2-carboxylic acid 3286 3.4.15.1 RXPA380 i.e. (2S)-2-[([2-[(1R)-1-[((benzyloxy)carbonyl)amino]-2-(phenylethyl)(hydroxyl)-phosphinyl]cyclopentyl]carbonyl)amino]-3-(1H-indo-3-yl)-propionic acid (Cbz-PhePSI[P(O)(OH)CH]Pro-Trp-OH), a human sACE domain-specific phosphinic peptidyl inhibitor and antihypertensive drug 14197 3.4.15.1 RXP407 i.e. Ac-Asp-L-Phe(PO2CH2)-L-Ala-Ala-NH2, a human sACE domain-specific phosphinic peptidyl inhibitor and antihypertensive drug 13489 3.4.15.1 angiotensin I-converting enzyme inhibitory peptides i.e. ACE-Is, from enzymatic hydrolysates of cuttlefish, Sepia officinalis, muscle proteins, generated by the crude enzyme from Bacillus mojavensis A21, show 87.11% inhibition at 2 mg/ml, mass spectrometric analysis, overview 159762 3.4.15.1 Leu-Ile-Tyr i.e. acein-2, isolated from tryptic hydrolysate of human plasma, non-competitive inhibitor, IC50: 0.00082 mM. 53979 3.4.15.1 bradykinin potentiating peptide i.e. BPP1 or pGlu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro 80608 3.4.15.1 chitooligosaccharide derivatives i.e. COS, chitosan derivatives, polycationic polymers comprised principally of glucosamine units, generated via either chemical or enzymatic hydrolysis of chitosan. ACE inhibitory activity of hetero-COS, derived from crab chitin, is dependent on the degree of deacetylation of chitosan 80605 3.4.15.1 captopril i.e. D-(3-mercapto-2-methylpropanoyl)-L-Pro 469 3.4.15.1 captopril i.e. D-3-mercapto-2-methyl-propionyl-L-proline, 80.5% inhibition at 0.005 mg/mg in L6 larvae 469 3.4.15.1 N-[(S)-1-(ethoxycarbonyl)-3-phenylpropyl]-L-alanyl-L-proline i.e. MK 421. Effect of the inhibitor on the components of the renin system in healthy subjects : the drug has a prolonged duration of action and effectively reduces plasma converting enzyme activity, angiotensin II and aldosterone levels and thereby increases sodium diuresis 132375 3.4.15.1 enaprilat i.e. N-[(S)-1-carboxy-3-phenylpropyl]-Ala-Pro 10999 3.4.15.1 lisinopril i.e. N-[(S)-1-carboxy-3-phenylpropyl]-L-Lys-L-Pro 1281 3.4.15.1 lisinopril i.e. N2-[(1S)-1-carboxy-3-phenylpropyl]-L-lysyl-L-proline 1281 3.4.15.1 lisinopril i.e. N2-[(1S)-1-carboxy-3-phenylpropyl]-L-lysyl-L-proline, molecular docking analysis at the active site of testis ACE, PDB ID 1086, overview 1281 3.4.15.1 3,6-Dihydroxy-1-phenazinecarboxylic acid i.e. phenacein, competitive, reversed by Zn2+, isolated from a member of Streptomyces tanashiensis-zaomyceticus 91331 3.4.15.1 captopril i.e. SQ 14225 469 3.4.15.1 Teprotide i.e. SQ 20881 20532 3.4.15.1 3-mercapto-2-D-methylpropanoyl-L-Pro i.e. SQ-14,225 99849 3.4.15.1 Pyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro i.e. SQ20858, competitive with angiotensin I and hippuryl-L-His-L-Leu 47478 3.4.15.1 Pyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro i.e. SQ20881, competitive with angiotensin I and hippuryl-L-His-L-Leu 47477 3.4.15.1 Pyr-Lys-Trp-Ala-Pro i.e. venom bradykinin-potentiating peptide V-3A, hydrolysis of hippuryl-His-Leu 47476 3.4.15.1 lisinopril i.e. [(S)-1-carboxy-3-phenylpropyl]-L-lysyl-L-proline 1281 3.4.15.1 gallic acid IC50 : about 1.7 mM 764 3.4.15.1 nicotianamine IC50: 0.000085 mM 6050 3.4.15.1 mugineic acid IC50: 0.00028 mM 13779 3.4.15.1 Val-Leu-Ile-Val-Pro IC50: 0.00169 mM. The peptide is resistant to digestion by proteases of the gastrointestinal tract. The antihypertensive property of this peptide derived from glycinin might find importance in the development of therapeutic functional foods 18052 3.4.15.1 Val-Trp IC50: 0.0025 mM, uncompetitive 13417 3.4.15.1 (2S)-1-((3S)-3-amino-3-carboxypropyl)azetidine-2-carboxylic acid IC50: 0.0033 mM 60665 3.4.15.1 Ile-Trp IC50: 0.0047 mM, non-competitive 21156 3.4.15.1 Ala-Trp IC50: 0.0064 mM, non-competitive 10844 3.4.15.1 Met-Trp IC50: 0.0098 mM, non-competitive 60678 3.4.15.1 epicatechin hexamer IC50: 0.01 mM, competitive 33721 3.4.15.1 epicatechin tetramer IC50: 0.012 mM, competitive 33719 3.4.15.1 Phe-Leu IC50: 0.0136 mM, non-competitive 4554 3.4.15.1 Phe-Gly-Ala-Ser-Thr-Arg-Gly-Ala IC50: 0.0147 mM, noncompetitive 60666 3.4.15.1 Leu-Trp IC50: 0.0174 mM, non-competitive 5570 3.4.15.1 epicatechin pentamer IC50: 0.025 mM, competitive 33720 3.4.15.1 Gly-Phe-Hyp-Gly-Thr-Hyp-Gly-Leu-Hyp-Gly-Phe IC50: 0.026 mM. Inhibitory peptide derived from chicken breast muscle 24070 3.4.15.1 RMLGQTPTK IC50: 0.034 mM, noncompetitive inhibition 35805 3.4.15.1 Trp-Leu IC50: 0.0341 mM, non-competitive 9286 3.4.15.1 angiotensin IV IC50: 0.07 mM 2170 3.4.15.1 Trp-Met IC50: 0.0986 mM, competitive 24071 3.4.15.1 epicatechin trimer IC50: 0.126 mM, competitive 33718 3.4.15.1 quercetin-3-O-alpha-(6''-caffeoylglucosyl-beta-1,2-rhamnoside) IC50: 0.1589 mM 60673 3.4.15.1 quercetin 3-O-(6''-galloyl)-galactoside IC50: 0.16 mM 60671 3.4.15.1 verticinone IC50: 0.165 mM 53974 3.4.15.1 Phe-Hyp-Gly IC50: 0.171 mM 60668 3.4.15.1 hyperosid IC50: 0.2 mM 60669 3.4.15.1 quercitrin glucuronide IC50: 0.2 mM 60670 3.4.15.1 oenothein B IC50: 0.25 mM 60672 3.4.15.1 quercitrin IC50: 0.25 mM 1936 3.4.15.1 Val-Tyr IC50: 0.263 mM 6031 3.4.15.1 epicatechin dimer IC50: 0.267 mM, competitive 33717 3.4.15.1 Trp-Ala IC50: 0.2773 mM, competitive 31659 3.4.15.1 isoquercitrin IC50: 0.3 mM 4984 3.4.15.1 verticine IC50: 0.3128 mM 53975 3.4.15.1 quercetin 3-O-alpha-(6''-p-coumaroylglucosyl-beta -1,2-rhamnoside) IC50: 0.351 mM 60674 3.4.15.1 RMLGQ IC50: 0.358 mM, competitive inhibition 35807 3.4.15.1 Leu-Phe IC50: 0.3832 mM, competitive 3349 3.4.15.1 kaempferol-3-alpha-arabinopyranoside IC50: 0.3928 mM 60677 3.4.15.1 ellagic acid IC50: 0.4 mM 1279 3.4.15.1 isorhamnetin-3-beta-glucopyranoside IC50: 0.4089 mM 60675 3.4.15.1 Hyp-Gly-Phe IC50: 0.433 mM 60667 3.4.15.1 Trp-Val IC50: 0.5005 mM, competitive 60679 3.4.15.1 RMLGQTP IC50: 0.503 mM, mixed-type inhibition 35806 3.4.15.1 peimisine IC50: 0.5265 mM 33722 3.4.15.1 quercetin-3-beta-glucopyranoside IC50: 0.7088 mM 60676 3.4.15.1 Leu-Gly-Pro IC50: 0.72 mM 20354 3.4.15.1 lisinopril IC50: 1 nM 1281 3.4.15.1 Arg-Met-Leu IC50: 1.019 mM, competitive inhibition 35808 3.4.15.1 catechin IC50: 1.593 mM, competitive 1437 3.4.15.1 Gly-Leu-Pro IC50: 1.62 mM 53977 3.4.15.1 Thr-Lys IC50: 1.634 mM, mixed-type inhibition 35810 3.4.15.1 epicatechin IC50: 1.781 mM, competitive 1161 3.4.15.1 Gly-Phe IC50: 10.471 mM 2486 3.4.15.1 Pro-Gly-Leu IC50: 13.93 mM 53976 3.4.15.1 Phe-Gly IC50: 134.9 mM 5600 3.4.15.1 Thr-Pro IC50: 2.071 mM, competitive inhibition 13004 3.4.15.1 Gly-Pro-Leu IC50: 2.65 mM 12976 3.4.15.1 Gly-Trp IC50: 20.417 mM 8112 3.4.15.1 Gly-Pro IC50: 252.63 mM 1236 3.4.15.1 D-mannitol IC50: 3 mg/ml 495 3.4.15.1 Val-Trp IC50: 3.311 mM 13417 3.4.15.1 Pro-Leu IC50: 337.32 mM 9248 3.4.15.1 Arg-Phe IC50: 4.365 mM 9424 3.4.15.1 Pro-Leu-Gly IC50: 4.74 mM 33723 3.4.15.1 Gly-Tyr IC50: 5.495 mM 6530 3.4.15.1 Gly-Gln IC50: 5.63 mM, competitive inhibition 35809 3.4.15.1 Leu-Pro-Gly IC50: 5.73 mM 53978 3.4.15.1 HERDPTHIKWGD IC50: about 0.008 mM. Production kinetics of angiotensin-I converting enzyme inhibitory peptides from bonito meat in artificial gastric juice 35811 3.4.15.1 PTHIKWGD IC50: about 0.008 mM. Production kinetics of angiotensin-I converting enzyme inhibitory peptides from bonito meat in artificial gastric juice 60680 3.4.15.1 epigallocatechin IC50: about 0.3 mM 2229 3.4.15.1 kaempferol IC50: about 1.2 mM 408 3.4.15.1 (+)-catechin IC50: about 1.6 mM 2453 3.4.15.1 resveratrol IC50: about 1.6 mM 799 3.4.15.1 (-)-epicatechin IC50: about 1.7 mM 1846 3.4.15.1 caffeic acid IC50: about 1.7 mM 426 3.4.15.1 chlorogenic acid IC50: about 1.8 mM 592 3.4.15.1 quercetin IC50: about 2.0 mM 137 3.4.15.1 perindopril in a murine hepatocellular carcinoma xenograft model perindopril suppresses hepatocellular carcinoma development and inhibits neovascularization 6939 3.4.15.1 perindopril in growing spontaneously hypertensive rats, chronic treatment with perindopril enhances untrained exercise capacity, while it does no affect acquired exercise capacity as a result of exercise training. Perindopril promotes adaptive changes of skeletal muscle in response to exercise such as increases in capillary density and percentage of type I fibre 6939 3.4.15.1 ramipril in the early phase of diabetes, the angiotensin-converting enzyme inhibitor reverses glomerular overexpression and activation of some critical growth factor pathways and increases protection against oxidative stress. These effects involve B2-kinin receptor activation 4397 3.4.15.1 N-[(1S)-1-(ethoxycarbonyl)-3-phenylpropyl]-L-alanyl-L-proline independent of diet enalapril treatment decreases food intake, energetic gain and body weight in normotensive young rats, followed by reduced body fat mass and serum leptin 66380 3.4.15.1 benazepril induces isolated visceral angioedema: a rare and under diagnosed adverse effect of angiotensin converting enzyme inhibitors 13053 3.4.15.1 additional information inhibition by food extract solution from garlic, buckwheat, mushroom, soy sauce, Tokuho A, Tokuho B 2 3.4.15.1 additional information inhibition of ACE activity with anti-catalytic anti-ACE monoclonal antibodies, development and inhibition analysis with enzyme from different tissues, overview 2 3.4.15.1 additional information inhibition of angiotensin converting enzyme seems to augment catabolism of calcitonin gene related peptide 2 3.4.15.1 additional information inhibition of angiotensin-converting enzyme, or angiotensin II receptor blockage, slows down the progression of renal disease and provide a renal-protective effect. Therefore, they are used in therapy of type 2 diabetes, the main cause of end-stage renal disease in Europe and the United States, antagonizing the diabetic nephropathy progresses, overview 2 3.4.15.1 Arg-Pro-Pro inhibition of enzyme form I and II, enzyme form III is not inhibited 3515 3.4.15.1 bradykinin potentiator C inhibition of enzyme form I and II, enzyme form III is not inhibited 47136 3.4.15.1 captopril inhibition study by capillary electrophoresis 469 3.4.15.1 Pro-Thr-His-Ile-Lys-Trp-Gly-Asp inhibitor is isolated from tuna muscle 47468 3.4.15.1 additional information inhibitor structure-activity relationship, overview 2 3.4.15.1 additional information inhibitors that occur naturally in body fluids 2 3.4.15.1 Ca2+ inhibitory at concentrations above 1 mM 15 3.4.15.1 Co2+ inhibitory at concentrations above 1 mM 23 3.4.15.1 Mg2+ inhibitory at concentrations above 1 mM 6 3.4.15.1 Zn2+ inhibitory at concentrations above 1 mM 14 3.4.15.1 Gly-Phe-Hyp-Gly-Thr-Hyp-Gly-Leu-Hyp-Gly-Phe inhibitory peptide derived from chicken breast muscle possesses hypotensive activity for spontaneously hypertensive rats 24070 3.4.15.1 additional information inhibitory peptide from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate 2 3.4.15.1 additional information inhibitory peptide is isolated from tuna dark muscle hydrolysate prepared by alcalase, neutrase, pepsin, papain, alpha-chymotrypsin, and trypsin, respectively. Among hydrolysates, the pepsin-derived hydrolysate exhibited the highest ACE I inhibitory activity versus those of other enzyme hydrolysates. The structure of the peptide is identified to be Trp-Pro-Glu-Ala-Ala-Glu-Leu-Met-Met-Glu-Val-Asp-Pro 2 3.4.15.1 additional information inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein 2 3.4.15.1 additional information inhibitory potencies of tripeptides derived from arachin, the major storage globulin of peanut, Arachis hypogaea variety TMV-2, sequence analysis, overview. Active site biniding and the degree of inhibition by the peptides correlates with the coordination distance between the catalytic Zn2+ and the carbonyl oxygen of the peptide bond between the amino-terminal and middle residue 2 3.4.15.1 additional information inhibitory potencies of tripeptides derived from arachin, the major storage globulin of peanut, Arachis hypogaea variety TMV-2, sequence analysis, overview. Active site biniding and the degree of inhibition by the peptides correlates with the coordination distance between the catalytic Zn2+ and the carbonyl oxygen of the peptide bond between the amino-terminal and middle residue. In vitro stability of the peptides to gastrointestinal proteases, overview 2 3.4.15.1 enalaprilat inhibits ACE and the bradykinin degradation in vivo, which is reversed by insulin 8316 3.4.15.1 enalapril inhibits corneal angiogenesis in vivo, enalapril treatment causes a notable decrease in corneal neovascularization, and enalapril-treated rabbit corneas showing a lesser degree of blood vessel staining for collagen type IV and lectin, overview 3286 3.4.15.1 angiotensin II inhibits hydrolysis of angiotensin I and Gly-Ala-Ala 661 3.4.15.1 Ala-Ala inhibits hydrolysis of Gly-Ala-Ala 1175 3.4.15.1 Gly-Pro-Ala inhibits hydrolysis of Gly-Ala-Ala 4015 3.4.15.1 His-Leu inhibits hydrolysis of Gly-Ala-Ala 2272 3.4.15.1 Phe-Gly-Gly-Phe inhibits hydrolysis of Gly-Ala-Ala 47452 3.4.15.1 Phe-His-Leu inhibits hydrolysis of Gly-Ala-Ala 12654 3.4.15.1 captopril inhibits in vivo and reduces the blood glucose level, but not the plasma insulin level 469 3.4.15.1 bradykinin potentiating peptide b interaction with sACE in a Zn-dependent manner 201369 3.4.15.1 additional information isoflavones from soymilk may have inhibitory potency to affect ACE 2 3.4.15.1 cyanidin-3-O-beta-D-glucoside isolated from flower buds of Rosa damascena. Metal ions might be involved in the inhibition 8591 3.4.15.1 additional information isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin. IC50-vlue for pepsin is 1.19 mg/ml, IC50-value for trypsin is 8.79 mg/ml, IC50-value for papain is 2.21 mg/ml 2 3.4.15.1 additional information isolation of angiotensin converting enzyme (ACE) inhibitory flavonoids from Sedum sarmentosum 2 3.4.15.1 captopril it is likely that prevention of angiotensin II receptor stimulation is a major mechanism underlying the inhibition of myosin-induced myocarditis by captopril 469 3.4.15.1 perindopril itssue angiotensin converting enzyme inhibitors 6939 3.4.15.1 Cl- kcat increases with increasing KCl concentrations, reaches a maximum at about 300 mM KCl, and the begins to decrease. At relatively low concentrations chloride anions activate the C-domain of the enzyme, but at high concentrations chloride inhibits the enzyme activity. Presence of at least two chloride-binding sites in the C-domain of bovine enzyme: binding of chloride to one of the sites causes activation of the enzyme, whereas chloride binding to the second site results in inhibition of the enzymatic activity 141 3.4.15.1 muracein B less potent inhibitor 47360 3.4.15.1 muracein C less potent inhibitor 47361 3.4.15.1 captopril lipophilic ACE inhibitors quinapril, enalapril, and captopril increase the survival and lifetime of rats with experimental chronic heart failure 469 3.4.15.1 enalapril lipophilic ACE inhibitors quinapril, enalapril, and captopril increase the survival and lifetime of rats with experimental chronic heart failure 3286 3.4.15.1 quinapril lipophilic ACE inhibitors quinapril, enalapril, and captopril increase the survival and lifetime of rats with experimental chronic heart failure 11801 3.4.15.1 lisW-S lisinopril-tryptophan S-enantiomer, a C-domain human sACE specific inhibitor and antihypertensive drug 27338 3.4.15.1 dexamethasone markedly inhibits the plasma extravasion in the tracheal mucosa produced by substance P. The simultanous inhibition of neutral endopeptidase and angiotensin converting enzyme completely reverses the effect of dexamethasone on substance P-induced extravasion 1159 3.4.15.1 additional information mass spectrometric and structural analysis, and production and purification of plant food-derived ACE inhibitory peptides, bioactivities, overview 2 3.4.15.1 melanoidin melanoidins obtained from coffee (three roasting degrees), beer, and sweet-wine show in-vitro angiotensin-converting enzyme-inhibitory activity. The activity in coffee melanoidinsis significantly higher at more severe heating conditions 138991 3.4.15.1 additional information metabolic effects of low dose angiotensin converting enzyme inhibitor in dietary obesity in the rat 2 3.4.15.1 captopril microarray gene expression profiling of the aorta during atherosclerosis prevention with the ACE inhibitor, overview. Captopril treatment for 7 months strongly decreases the recruitment of proatherogenic immune cells into the aorta. Captopril-mediated inhibition of plaque infiltrating immune cells involves downregulation of the C-C chemokine receptor 9, CCR9, phenotype and physiological mechanism, overview 469 3.4.15.1 nicotianamine mixed inhibition. The preferential inhibition of circulating and tissue angiotensin I-converting enzyme by nicotianamine can contribute to the suppression of hypertension 6050 3.4.15.1 Pyr-Lys-Trp-Ala-Pro mixed type inhibition 47476 3.4.15.1 Mn2+ MnCl2 11 3.4.15.1 Ile-Glu-Pro molecular docking analysis at the active site of testis ACE, overview 27481 3.4.15.1 Ile-Glu-Tyr molecular docking analysis at the active site of testis ACE, overview 27478 3.4.15.1 Ile-Lys-Trp molecular docking analysis at the active site of testis ACE, overview 27480 3.4.15.1 Ile-Lys-Tyr molecular docking analysis at the active site of testis ACE, overview 27479 3.4.15.1 additional information monoclonal antibosies mAbs 9B9 and 3G8 prevent ACE dimerization in vitro in reverse micelles, and only mAb 3G8 inhibits ACE shedding from the cell surface 2 3.4.15.1 peptide more angiotensin I converting enzyme-inhibitory peptides are present in hydrolyzed wet-milled corn germ compared to hydrolyzed dry-milled germ 1329 3.4.15.1 Arg-Pro-Pro more inhibitory at pH 8 than at pH 6 3515 3.4.15.1 enalaprilate no inhibition 16353 3.4.15.1 lisinopril no inhibition 1281 3.4.15.1 additional information no inhibition by flavonoid glycosides, isolated from flower buds of Rosa damascena, kaempferol-3-O-beta-D-glucopyranosyl-(1,4)-beta-D-xylopyranoside, i.e. roxyloside A, isoquercitrin, quercetin gentiobioside, and afzelin 2 3.4.15.1 Trp-Pro-Glu-Ala-Ala-Glu-Leu-Met-Met-Glu-Val-Asp-Pro noncompetitive inhibitor 37013 3.4.15.1 Trp-Pro-Glu-Ala-Ala-Glu-Leu-Met-Met-Glu-Val-Asp-Pro noncompetitive inhibitor.The peptide has an antihypertensive effect according to the time-course measurement after oral administration to spontaneously hypertensive rats. Maximal reduction is detected 3 h after oral administration at a dose of 10 mg/kg of body weight 37013 3.4.15.1 additional information not inhibited by MLN4760, SCH39370, amastatin bestatin, chymostatin, and p-chloromercuribenzoate 2 3.4.15.1 additional information not inhibited by resveratrol 2 3.4.15.1 additional information nutrient sources of ACE inhibitory peptides derived from marine organisms, enzymes used for hydrolysis, and IC50 values, overview. Tryptophan, tyrosine, proline or phenylalanine at the C-terminal and branched-chain aliphatic amino acids at the N-terminal is suitable for peptides to act as competitive inhibitors by binding with ACE, some peptides also show a non-competitive mechanism. Hydrophobicity of the N-terminus, which is one of the common features of ACE inhibitory peptides, may contribute to the inhibitory activity. The peptides exhibit antihypertensive activity in vivo rather than in vitro. Polyphenolic compounds inhibit ACE activity through sequestration of the enzyme metal factor, Zn2+ ion 2 3.4.15.1 snake venom peptide of Bothrops jararaca 47490 3.4.15.1 plant extract of Brazilian plants: Calophyllum brasiliense, Combretum fruticosum, Leea rubra, Phoenix roebelinii and Terminalia catappa 66203 3.4.15.1 additional information pacific hake (Merluccius productus) fillet hydrolysate demonstrates in vitro ACE-inhibitory activity (IC50 0.165 mg/ml), which is enhanced by ultrafiltration through a 10 kDa molecular weight cutoff membrane (IC50 0.044 mg/ml), PeptACE peptides and the unfractionated pacific hake (Merluccius productus) fillet hydrolysate show significantly greater ACE inhibitory activity (i.e., significantly lower IC50 values) after simulated gastrointestinal digestion and may therefore be considered as prodrug type inhibitors 2 3.4.15.1 (5S)-5-[(N-benzoyl)-amino]-4-oxo-6-phenyl-hexanoyl-L-phenylalanine phosphinic peptide inhibitor kAF 159771 3.4.15.1 (5S)-5-[(N-benzoyl)amino]-4-oxo-6-phenylhexanoyl-L-tryptophan phosphinic peptide inhibitor kAW 5044 3.4.15.1 additional information plant methanol extracts from Amaranthus dubius, Amaranthus hybridus, Asystasia gangetica, Galinsoga parviflora, Justicia flava, Oxygonum sinuatum, Physalis viscosa, and Tulbaghia violacea show ACE inhibitory activities 2 3.4.15.1 captopril plasma angiotensin converting enzyme inhibitors 469 3.4.15.1 enalapril plasma angiotensin converting enzyme inhibitors 3286 3.4.15.1 ramipril plasma-ACE activity is almost completely abolished 0.5-2.0 h after treatment with ramipril (0.125, 0.25, 0.5, and 1.0 mg/kg), irrespective of the dose rate, significant inhibition of ACE activity of 54.7 to 82.6% (depending on the dosage) is still present 24 h after treatment, ramipril at a dose rate of 0.125 mg/kg once daily produces significant and long-lasting inhibition of ACE activity in healthy cats 4397 3.4.15.1 additional information PMSF has no effect on the ACE activity 2 3.4.15.1 additional information preparation ACE inhibitor peptides from the enzymatic hydrolysis of arachin, the major storage protein of Arachis hypogaea, overview 2 3.4.15.1 L-681,176 purification of the inhibitor found in the culture filtrate of Streptomyces sp. MA 5143 47301 3.4.15.1 peptides purified from sunflower hydrolysate 1599 3.4.15.1 peptides purified from sunflower hydrolysate or rapeseed hydrolysate 1599 3.4.15.1 additional information quantitative retention-activity relationship models of ACE inhibitors using biopartitioning micellar chromatography, method evaluation, overview 2 3.4.15.1 EDTA recombinant enzyme, restored by ZnSO4 21 3.4.15.1 enalapril reduces the liver tissue transforming growth factor beta-1 and has an ameliorating effect on the fibrosis markers transforming growth factor beta-1 and matrix metalloproteinase-2. Enalapril does not affect the process of liver fibrosis at all (induced in rats by bile-duct ligation) 3286 3.4.15.1 captopril reduces the percentage of sperm with progressive motility and acrosome reactions after capacitation in vitro 469 3.4.15.1 additional information screening of ACE inhibitors using the spectrocolorimetric assay method with synthetic substrate 3-hydroxybutyrylglycyl-glycyl-glycine, assay method development and optimization, detailed overview 2 3.4.15.1 ramipril short-term ramipril treatment adequately reduces angiotensin-converting enzyme activity and blood pressure, but has no significant effects on insulin sensitivity, forearm blood flow, substrate fluxes across the forearm, whole-body substrate oxidation and intramuscular triacylglycerol content in obese insulinresistant subjects 4397 3.4.15.1 perindopril shows beneficial effects, independent of the presence of cardiovascular risk factors at baseline in all study groups, in patients after myocardial infarction and revascularization, detailed overview 6939 3.4.15.1 inhibitory peptides from rice dreg hydrolysate significant antihypertensive action and no other side effects by oral administration in spontaneous hypertension rats 138990 3.4.15.1 additional information simultaneous determination of angiotensin I-converting enzyme inhibitory peptides in tryptic casein hydrolysate by high-performance liquid chromatography combined with a replicate heart-cut column-switching technique 2 3.4.15.1 EDTA somewhat more effective at pH 6 than at pH 8 21 3.4.15.1 additional information soybean flour hydrolysate and soybean ACE inhibitory peptides have an inhibitory effect towards ACE, adding isoflavones into both soybean flour hydrolysate and soybean ACE inhibitory peptide samples to a concentration of as high as 31.5% (w/w) does not affect ACE inhibitory activity 2 3.4.15.1 enalapril standing and supine blood pressure decreases significantly in both autosomal-dominant polycystic kidney disease patients and controls after the administration of enalapril on low and high-sodium intakes, with no differences between the two groups 3286 3.4.15.1 perindoprilat strong inhibitor 13500 3.4.15.1 alcacepril synthetic ACE inhibitor and antihypertensive drug 159768 3.4.15.1 captopril synthetic ACE inhibitor and antihypertensive drug 469 3.4.15.1 enalapril synthetic ACE inhibitor and antihypertensive drug 3286 3.4.15.1 lisinopril synthetic ACE inhibitor and antihypertensive drug 1281 3.4.15.1 additional information synthetic peptides derived from human collagen XVIII hinge domain with sequences similar to bradykinin potentiating peptides from snake venom 2 3.4.15.1 Co2+ testicular enzyme is inhibited, lung enzyme not 23 3.4.15.1 trifluoroethanol TFE, stabilizes ACE at low concentrations, while acts as a denaturant at higher concentration (20%). Secondary and tertiary structure and activity of ACE in the absence and presence of TFE are investigated using circular dichroism, fluorescence quenching, and UV-visible spectroscopy, respectively 11162 3.4.15.1 ramipril the ACE inhibitor is associated with a major reduction of proteinuria, slower GFR decline and risk of doubling serum creatinine or progression to end-stage renal disease in patients with nondiabetic kidney disease 4397 3.4.15.1 captopril the ACE inhibitor shows best renoprotective effect in patients with renal disease 469 3.4.15.1 ramiprilat the ACE inhibitor-induced dimerization of angiotensin-converting enzyme, via the C domain of the enzyme, represents the initial step in the angiotensin-converting enzyme signaling pathway that involves the activation of the JNK/c-Jun pathway and leads to changes in endothelial cell gene expression 6093 3.4.15.1 enalapril the angiotensin-converting enzyme inhibitor has no effect on the rate of endothelial apoptosis in vitro in HUVEC cells 3286 3.4.15.1 perindopril the angiotensin-converting enzyme inhibitor has no effect on the rate of endothelial apoptosis in vitro in HUVEC cells 6939 3.4.15.1 quinapril the angiotensin-converting enzyme inhibitor has no effect on the rate of endothelial apoptosis in vitro in HUVEC cells 11801 3.4.15.1 ramipril the angiotensin-converting enzyme inhibitor has no effect on the rate of endothelial apoptosis in vitro in HUVEC cells 4397 3.4.15.1 trandolapril the angiotensin-converting enzyme inhibitor has no effect on the rate of endothelial apoptosis in vitro in HUVEC cells 25040 3.4.15.1 enalapril the angiotensin-converting enzyme inhibitor has no significant effect on apoptosis induced via endotoxic shock with Escherichia coli lipopolysaccharides 3286 3.4.15.1 quinapril the angiotensin-converting enzyme inhibitor has no significant effect on apoptosis induced via endotoxic shock with Escherichia coli lipopolysaccharides 11801 3.4.15.1 ramipril the angiotensin-converting enzyme inhibitor has no significant effect on apoptosis induced via endotoxic shock with Escherichia coli lipopolysaccharides 4397 3.4.15.1 trandolapril the angiotensin-converting enzyme inhibitor has no significant effect on apoptosis induced via endotoxic shock with Escherichia coli lipopolysaccharides 25040 3.4.15.1 captopril the angiotensin-converting enzyme inhibitor, promotes growth of immunogenic tumors in mice 469 3.4.15.1 Val-Lys-Lys-Val-Leu-Gly-Asn-Pro the angiotensin-I converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin is a noncompetitive inhibitor that is slowly hydrolyzed by angiotensin-I converting enzyme. At the dose of 10 mg/kg, this peptide shows antihypertensive activity after a maximum of 3 h of administration 66404 3.4.15.1 captopril the anngiotensin converting enzyme inhibitor captopril modifies conditioned place preference induced by morphine and morphine withdrawal signs in rats 469 3.4.15.1 lisinopril the compound shows a 4fold domain-selectivity for the C-domain compared to the N-domain. Active site binding structure, overview 1281 3.4.15.1 additional information the enzyme inhibition by angiotensin-converting enzyme inhibitors is inhibited by aspirin, which can cause therapeutic problems during application of both in treatment of heart failure patients. Angiotensin receptor blockers do not interfere with the bradykinin pathway, detailed overview 2 3.4.15.1 additional information the immobilized enzyme is used to purify inhibitory peptides from sunflower 2 3.4.15.1 additional information the immobilized lung extract is used to purify inhibitory peptides from sunflower and rapeseed protein hydrolysates that has been obtained by treatment of protein isolates with alcalase 2 3.4.15.1 lisinopril the inhibitor binds in a highly ordered, extended conformation, with the phenyl group extended in an N-terminal direction and a lysine side chain parallel to the alpha13 helix containing the HEXXH zinc binding motif 1281 3.4.15.1 (5S)-5-[(N-benzoyl)amino]-4-oxo-6-phenylhexanoyl-L-phenylalanine the inhibitor has a 30fold higher affinity for the C domain than for the N domain of ACE 11978 3.4.15.1 ESIINF the inhibitor produces an acute blood-pressure-lowering effect in spontaneously hypertensive rats upon a single oral administration 138993 3.4.15.1 YRGGLEPINF the inhibitor produces an acute blood-pressure-lowering effect in spontaneously hypertensive rats upon a single oral administration 138992 3.4.15.1 (5S)-5-[(N-benzoyl)amino]-4-oxo-6-phenylhexanoyl-L-tryptophan the inhibitor shows strong C domain selectivity, having almost 1300-fold greater affinity for the C domain than for the N domain of ACE 5044 3.4.15.1 5-(3,4,5-trihydroxyphenyl)-gamma-valerolactone the metabolite has a hypotensive effect in vivo 239452 3.4.15.1 5-(3,5-dihydroxyphenyl)-gamma-valerolactone the metabolite has a hypotensive effect in vivo 239455 3.4.15.1 Phe-Val-Asn-Pro-Gln-Ala-Gly-Ser the peptide corresponds to a fragment of helianthinin, the 11S globulin from sunflower seeds, which is the main storage protein in sunflower. Sunflower seed proteins are a potential source of angiotensin-converting enzyme inhibitory peptides when hydrolyzed with pepsin and pancreatin 35804 3.4.15.1 additional information the presence of verticione, verticine, peimisine may be responsible, at least in part, for the antihypertensive action of the bulbs of Fritillaria ussuriensis 2 3.4.15.1 additional information the purified mucilage of storage roots (Ipomoea batatas (L.) Lam. Tainong 57) exhibits dose-dependent ACE inhibitory activity in vitro. The mucilage acted as a mixed type inhibitor toward ACE with an IC50 of 0.3645 mg/ml 2 3.4.15.1 captopril the relative potency of the inhibitors in the order of decreasing efficieny is: enalaprilat, lisinopril, captopril. The thermodynamic behaviour of the binding process is analyzed 469 3.4.15.1 enalaprilat the relative potency of the inhibitors in the order of decreasing efficieny is: enalaprilat, lisinopril, captopril. The thermodynamic behaviour of the binding process is analyzed 8316 3.4.15.1 lisinopril the relative potency of the inhibitors in the order of decreasing efficieny is: enalaprilat, lisinopril, captopril. The thermodynamic behaviour of the binding process is analyzed 1281 3.4.15.1 additional information the two homologous domains of human angiotensin I-converting enzyme interact differently with competitive inhibitors 2 3.4.15.1 lisinopril therapeutic resistance to angiotensin converting enzyme inhibition is related to a difference in the combination of renal pharmacodynamic and pharmacokinetic characteristics in non-responders, primarily consisting of increased renal expression of angiotensin converting enzyme and higher angiotensin converting enzyme inhibitor clearance 1281 3.4.15.1 Pyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro therapeutical useful 47477 3.4.15.1 quinapril tissue angiotensin converting enzyme inhibitors 11801 3.4.15.1 additional information tissue angiotensin converting enzyme inhibitors exert more pronounced antithrombotic effect than plasma ACE-Is in experimental thrombosis 2 3.4.15.1 enalapril treatment of mdx mice (murine model of duchenne muscular dystrophy) with the ACE inhibitor enalapril significantly increases the net force and tetanic isometric force of the gastrocnemius muscle in sedentary and exercised dystrophic mice. Enalapril decreases the necrotic areas in the gastrocnemius muscles in both conditions of mdx mice. ACE inhibition treatment also leads to a decrease in fibrosis, as manifested by a reduction in ECM protein levels and collagen amount 3286 3.4.15.1 lisinopril treatment with 75 mg/l lisinopril significantly reduces renal ACE activity without affecting renal ACE2 activity 1281 3.4.15.1 additional information treatment with ACE inhibitors can induce chronic cough in many patients 2 3.4.15.1 benazepril treatment with angiotensin-converting enzyme inhibitors is of benefit in reducing the progression of renal damage in young patients with moderately proteinuric IgA nephropathy 13053 3.4.15.1 additional information trichloroacetic acid filtrates of lactic acid bacteria (Lactobacillus casei 2607, Lactobacillus casei 15286, Lactobacillus acidophilus 4461, Lactobacillus acidophilus 33200, Streptococcus thermophilus 1275, Streptococcus thermophilus 285, Lactobacillus delbrueckii ssp. bulgaricus 1092, Lactobacillus delbrueckii ssp. bulgaricus 1368, Bifidobacterium longum 5022) show inhibitory activity 2 3.4.15.1 lisinopril tumor growth is significantly inhibited as measured by tumor weight 1281 3.4.15.1 additional information use of ACE inhibitor is associated with a significant decrease in long-term mortality and cardiovascular events in the patients with diastolic heart failure 2 3.4.15.1 delaprilat weak 138985 3.4.15.1 guanethidine weak 31491 3.4.15.1 lisinopril weak 1281 3.4.15.1 perindoprilat weak 13500 3.4.15.1 SDS weak 124 3.4.15.1 Urea weak 116 3.4.15.1 N-[1(S)-carboxy-5-aminopentyl]glycylglycine weak competitive 100966 3.4.15.1 thiorphan weak, IC50: 0.0001 mM 1128 3.4.15.1 phosphoramidon weak, IC50: 0.001 mM 645 3.4.15.1 additional information whole horse gram flour (HGH), from seeds of Macrotyloma uniflorum, has ACE inhibitory potency, 77% inhibition, the highest ACE inhibitory activity is demonstrated by DH40 hydrolysate, increase in inhibition capacity as degree of hydrolysis progresses 2 3.4.15.1 aminoethyl-chitin with 10%, 50%, and 90% deacetylation 27476 3.4.15.1 additional information yak milk casein could be a resource to generate antihypertensive peptides 2 3.4.15.1 H2S Zn2+ but not Cd2+, Ca2+ or Mg2+ could counteract the inhibitory effect 708