Information on Organism Ustilago maydis

TaxTree of Organism Ustilago maydis
Condensed Tree View
Eukaryota can be found in Brenda BRENDA pathways(superkingdom)
Fungi can be found in Brenda BRENDA pathways(kingdom)
Dikarya can be found in Brenda BRENDA pathways(subkingdom)
Ustilago can be found in Brenda BRENDA pathways(genus)
Please wait a moment until all data is loaded. This message will disappear when all data is loaded.
PATHWAY
BRENDA Link
KEGG Link
MetaCyc Link
(1,4)-beta-D-xylan degradation
-
-
(R)- and (S)-3-hydroxybutanoate biosynthesis (engineered)
-
-
(S)-lactate fermentation to propanoate, acetate and hydrogen
-
-
(S)-propane-1,2-diol degradation
-
-
(S)-reticuline biosynthesis I
-
-
1,3-propanediol biosynthesis (engineered)
-
-
1,5-anhydrofructose degradation
-
-
1-butanol autotrophic biosynthesis (engineered)
-
-
1D-myo-inositol hexakisphosphate biosynthesis I (from Ins(1,4,5)P3)
-
-
1D-myo-inositol hexakisphosphate biosynthesis V (from Ins(1,3,4)P3)
-
-
2'-deoxymugineic acid phytosiderophore biosynthesis
-
-
2-amino-3-hydroxycyclopent-2-enone biosynthesis
-
-
2-arachidonoylglycerol biosynthesis
-
-
2-deoxy-D-ribose degradation II
-
-
2-methyl-branched fatty acid beta-oxidation
-
-
2-methylpropene degradation
-
-
2-nitrotoluene degradation
-
-
3-(4-hydroxyphenyl)pyruvate biosynthesis
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis I
-
-
3-hydroxy-4-methyl-anthranilate biosynthesis II
-
-
3-hydroxypropanoate cycle
-
-
3-hydroxypropanoate/4-hydroxybutanate cycle
-
-
3-methylbutanol biosynthesis (engineered)
-
-
4-aminobutanoate degradation I
-
-
4-aminobutanoate degradation II
-
-
4-aminobutanoate degradation III
-
-
4-aminobutanoate degradation V
-
-
4-hydroxy-2-nonenal detoxification
-
-
4-hydroxybenzoate biosynthesis I (eukaryotes)
-
-
4-hydroxybenzoate biosynthesis III (plants)
-
-
4-oxopentanoate degradation
-
-
acetaldehyde biosynthesis I
-
-
acetate and ATP formation from acetyl-CoA I
-
-
acetate fermentation
-
-
acetoacetate degradation (to acetyl CoA)
-
-
acetone degradation I (to methylglyoxal)
-
-
acetone degradation III (to propane-1,2-diol)
-
-
acetyl-CoA biosynthesis from citrate
-
-
acetyl-CoA fermentation to butanoate II
-
-
acetylene degradation (anaerobic)
-
-
acrylonitrile degradation I
-
-
adenosine ribonucleotides de novo biosynthesis
-
-
adipate degradation
-
-
aerobactin biosynthesis
aerobic respiration (NDH-1 to cytochrome c oxidase via plastocyanin)
-
-
aerobic respiration I (cytochrome c)
-
-
aerobic respiration II (cytochrome c) (yeast)
-
-
aerobic respiration III (alternative oxidase pathway)
-
-
aerobic respiration in cyanobacteria (NDH-2 to cytochrome c oxidase via plastocyanin)
-
-
Aflatoxin biosynthesis
-
-
alanine metabolism
-
-
Alanine, aspartate and glutamate metabolism
-
-
allopregnanolone biosynthesis
-
-
alpha-Linolenic acid metabolism
-
-
Amaryllidacea alkaloids biosynthesis
-
-
Amino sugar and nucleotide sugar metabolism
-
-
Aminoacyl-tRNA biosynthesis
-
-
Aminobenzoate degradation
-
-
ammonia assimilation cycle I
-
-
ammonia assimilation cycle II
-
-
ammonia oxidation II (anaerobic)
-
-
amygdalin and prunasin degradation
-
-
anaerobic energy metabolism (invertebrates, cytosol)
-
-
anaerobic energy metabolism (invertebrates, mitochondrial)
-
-
anandamide biosynthesis I
-
-
anandamide biosynthesis II
-
-
androgen biosynthesis
-
-
androsrtendione degradation II (anaerobic)
-
-
androstenedione degradation I (aerobic)
-
-
Arachidonic acid metabolism
-
-
arachidonic acid metabolism
-
-
Arginine and proline metabolism
-
-
Arginine biosynthesis
-
-
arginine dependent acid resistance
-
-
arginine metabolism
-
-
arsenite oxidation I (respiratory)
-
-
Ascorbate and aldarate metabolism
-
-
ascorbate recycling (cytosolic)
-
-
aspirin triggered resolvin D biosynthesis
-
-
aspirin triggered resolvin E biosynthesis
-
-
ATP biosynthesis
-
-
atromentin biosynthesis
-
-
avenanthramide biosynthesis
-
-
bacilysin biosynthesis
-
-
benzoate biosynthesis II (CoA-independent, non-beta-oxidative)
-
-
Benzoate degradation
-
-
benzoyl-CoA degradation I (aerobic)
-
-
beta-Alanine metabolism
-
-
beta-D-glucuronide and D-glucuronate degradation
-
-
Betalain biosynthesis
-
-
Bifidobacterium shunt
-
-
bile acid biosynthesis, neutral pathway
Biosynthesis of 12-, 14- and 16-membered macrolides
-
-
Biosynthesis of secondary metabolites
-
-
Biosynthesis of unsaturated fatty acids
-
-
Biosynthesis of various secondary metabolites - part 3
-
-
biotin biosynthesis
-
-
Biotin metabolism
-
-
biotin-carboxyl carrier protein assembly
-
-
Brassinosteroid biosynthesis
-
-
bryostatin biosynthesis
-
-
bupropion degradation
-
-
butanoate fermentation
-
-
Butanoate metabolism
-
-
butanol and isobutanol biosynthesis (engineered)
-
-
C4 and CAM-carbon fixation
-
-
C4 photosynthetic carbon assimilation cycle, NAD-ME type
-
-
C4 photosynthetic carbon assimilation cycle, NADP-ME type
-
-
C4 photosynthetic carbon assimilation cycle, PEPCK type
-
-
C5-Branched dibasic acid metabolism
-
-
Caffeine metabolism
-
-
Calvin-Benson-Bassham cycle
-
-
camalexin biosynthesis
-
-
Caprolactam degradation
-
-
Carbon fixation in photosynthetic organisms
-
-
Carbon fixation pathways in prokaryotes
-
-
carnitine metabolism
-
-
catechol degradation to 2-hydroxypentadienoate I
-
-
catechol degradation to 2-hydroxypentadienoate II
-
-
CDP-diacylglycerol biosynthesis
-
-
CDP-diacylglycerol biosynthesis I
-
-
CDP-diacylglycerol biosynthesis II
-
-
cellulose and hemicellulose degradation (cellulolosome)
-
-
cellulose biosynthesis
-
-
cellulose degradation
-
-
cellulose degradation II (fungi)
-
-
chitin biosynthesis
-
-
chitin deacetylation
-
-
chitin degradation I (archaea)
-
-
chitin degradation II (Vibrio)
-
-
chitin degradation III (Serratia)
-
-
Chloroalkane and chloroalkene degradation
-
-
Chlorocyclohexane and chlorobenzene degradation
-
-
chlorogenic acid degradation
-
-
chlorosalicylate degradation
-
-
cholesterol biosynthesis
-
-
cholesterol biosynthesis (plants)
-
-
cholesterol biosynthesis I
-
-
cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
-
-
cholesterol degradation to androstenedione I (cholesterol oxidase)
-
-
cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
-
-
chorismate biosynthesis from 3-dehydroquinate
-
-
chorismate metabolism
-
-
cinnamoyl-CoA biosynthesis
-
-
Citrate cycle (TCA cycle)
-
-
citric acid cycle
-
-
CO2 fixation in Crenarchaeota
-
-
CO2 fixation into oxaloacetate (anaplerotic)
-
-
coenzyme A biosynthesis I (prokaryotic)
-
-
coenzyme A biosynthesis II (eukaryotic)
-
-
coenzyme A metabolism
-
-
coenzyme B biosynthesis
-
-
complex N-linked glycan biosynthesis (plants)
-
-
creatine-phosphate biosynthesis
-
-
crotonate fermentation (to acetate and cyclohexane carboxylate)
-
-
cyanate degradation
Cyanoamino acid metabolism
-
-
Cysteine and methionine metabolism
-
-
cysteine metabolism
-
-
cytosolic NADPH production (yeast)
-
-
D-cycloserine biosynthesis
-
-
D-galactarate degradation I
-
-
D-galactose degradation I (Leloir pathway)
-
-
D-galactose detoxification
-
-
D-glucarate degradation I
-
-
D-myo-inositol (1,4,5)-trisphosphate biosynthesis
-
-
D-myo-inositol (1,4,5,6)-tetrakisphosphate biosynthesis
-
-
D-myo-inositol-5-phosphate metabolism
-
-
d-xylose degradation
-
-
D-xylose degradation to ethylene glycol (engineered)
-
-
degradation of aromatic, nitrogen containing compounds
-
-
degradation of hexoses
-
-
degradation of pentoses
-
-
degradation of sugar acids
-
-
degradation of sugar alcohols
-
-
denitrification
-
-
detoxification of reactive carbonyls in chloroplasts
-
-
diacylglycerol and triacylglycerol biosynthesis
-
-
digitoxigenin biosynthesis
-
-
Dioxin degradation
-
-
dolichyl-diphosphooligosaccharide biosynthesis
-
-
Drug metabolism - cytochrome P450
-
-
Drug metabolism - other enzymes
-
-
Entner Doudoroff pathway
-
-
Entner-Doudoroff pathway I
-
-
Entner-Doudoroff pathway II (non-phosphorylative)
-
-
Entner-Doudoroff pathway III (semi-phosphorylative)
-
-
ephedrine biosynthesis
-
-
ergosterol biosynthesis II
-
-
erythromycin D biosynthesis
-
-
ethanol degradation I
-
-
ethanol degradation II
-
-
ethanol degradation IV
-
-
ethanol fermentation
-
-
ethanolamine utilization
-
-
ethene biosynthesis I (plants)
-
-
ethene biosynthesis III (microbes)
-
-
ethene biosynthesis V (engineered)
-
-
Ether lipid metabolism
-
-
ethylmalonyl-CoA pathway
-
-
farnesene biosynthesis
-
-
fatty acid beta-oxidation I (generic)
-
-
fatty acid beta-oxidation II (plant peroxisome)
-
-
fatty acid beta-oxidation VI (mammalian peroxisome)
-
-
Fatty acid biosynthesis
-
-
fatty acid biosynthesis initiation (mitochondria)
-
-
fatty acid biosynthesis initiation (plant mitochondria)
-
-
fatty acid biosynthesis initiation (type I)
-
-
fatty acid biosynthesis initiation (type II)
-
-
Fatty acid degradation
-
-
Fatty acid elongation
-
-
fatty acid salvage
-
-
Fe(II) oxidation
-
-
FeMo cofactor biosynthesis
-
-
ferrichrome A biosynthesis
-
-
firefly bioluminescence
-
-
Flavone and flavonol biosynthesis
-
-
formaldehyde assimilation II (assimilatory RuMP Cycle)
-
-
formaldehyde assimilation III (dihydroxyacetone cycle)
-
-
formaldehyde oxidation I
-
-
formate to nitrite electron transfer
-
-
fructan degradation
-
-
Fructose and mannose metabolism
-
-
GABA shunt
-
-
Galactose metabolism
-
-
gallate degradation III (anaerobic)
-
-
gamma-glutamyl cycle
-
-
GDP-alpha-D-glucose biosynthesis
-
-
Geraniol degradation
-
-
gliotoxin biosynthesis
-
-
gluconeogenesis
-
-
gluconeogenesis I
-
-
gluconeogenesis II (Methanobacterium thermoautotrophicum)
-
-
gluconeogenesis III
-
-
glucose and glucose-1-phosphate degradation
-
-
glucose degradation (oxidative)
-
-
glutamate and glutamine metabolism
-
-
glutaryl-CoA degradation
-
-
Glutathione metabolism
-
-
glutathione metabolism
-
-
glutathione-mediated detoxification I
-
-
glutathione-mediated detoxification II
-
-
glycerol degradation to butanol
-
-
Glycerolipid metabolism
-
-
Glycerophospholipid metabolism
-
-
glycine degradation (reductive Stickland reaction)
-
-
glycine metabolism
-
-
Glycine, serine and threonine metabolism
-
-
glycogen biosynthesis III (from alpha-maltose 1-phosphate)
-
-
glycogen degradation I
-
-
glycogen degradation II
-
-
glycogen metabolism
-
-
glycolysis
-
-
Glycolysis / Gluconeogenesis
-
-
glycolysis I (from glucose 6-phosphate)
-
-
glycolysis II (from fructose 6-phosphate)
-
-
glycolysis III (from glucose)
-
-
glycolysis IV
-
-
glycolysis V (Pyrococcus)
-
-
Glycosaminoglycan degradation
-
-
Glycosphingolipid biosynthesis - ganglio series
-
-
Glyoxylate and dicarboxylate metabolism
-
-
glyoxylate assimilation
-
-
glyoxylate cycle
-
-
gossypol biosynthesis
-
-
heme metabolism
-
-
heterolactic fermentation
-
-
homocysteine and cysteine interconversion
-
-
hydrogen sulfide biosynthesis II (mammalian)
-
-
hypoglycin biosynthesis
-
-
IAA biosynthesis
-
-
indole glucosinolate activation (intact plant cell)
-
-
indole-3-acetate biosynthesis II
-
-
indole-3-acetate biosynthesis III (bacteria)
-
-
indole-3-acetate biosynthesis IV (bacteria)
-
-
indole-3-acetate biosynthesis VI (bacteria)
-
-
Inositol phosphate metabolism
-
-
isoleucine metabolism
-
-
isoprene biosynthesis II (engineered)
-
-
isopropanol biosynthesis (engineered)
-
-
Isoquinoline alkaloid biosynthesis
-
-
itaconate biosynthesis I
-
-
itaconate biosynthesis II
-
-
jadomycin biosynthesis
-
-
justicidin B biosynthesis
-
-
ketogenesis
-
-
ketolysis
-
-
L-alanine degradation II (to D-lactate)
-
-
L-alanine degradation VI (reductive Stickland reaction)
-
-
L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
-
-
L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway)
-
-
L-arginine degradation X (arginine monooxygenase pathway)
-
-
L-carnitine degradation III
-
-
L-cysteine biosynthesis I
-
-
L-cysteine biosynthesis III (from L-homocysteine)
-
-
L-cysteine biosynthesis VI (from L-methionine)
-
-
L-cysteine biosynthesis VII (from S-sulfo-L-cysteine)
-
-
L-dopa and L-dopachrome biosynthesis
-
-
L-glutamate degradation IV
-
-
L-glutamate degradation V (via hydroxyglutarate)
-
-
L-glutamine biosynthesis I
-
-
L-glutamine biosynthesis III
-
-
L-isoleucine biosynthesis I (from threonine)
-
-
L-isoleucine biosynthesis II
-
-
L-isoleucine biosynthesis III
-
-
L-isoleucine biosynthesis IV
-
-
L-isoleucine degradation II
-
-
L-leucine degradation III
-
-
L-lysine biosynthesis IV
-
-
L-lysine biosynthesis V
-
-
L-lysine degradation XI (mammalian)
-
-
L-lysine fermentation to acetate and butanoate
-
-
L-malate degradation II
-
-
L-methionine degradation I (to L-homocysteine)
-
-
L-methionine degradation III
-
-
L-phenylalanine biosynthesis I
-
-
L-phenylalanine biosynthesis II
-
-
L-phenylalanine biosynthesis III (cytosolic, plants)
-
-
L-phenylalanine degradation II (anaerobic)
-
-
L-phenylalanine degradation III
-
-
L-phenylalanine degradation IV (mammalian, via side chain)
-
-
L-phenylalanine degradation VI (reductive Stickland reaction)
-
-
L-selenocysteine biosynthesis I (bacteria)
-
-
L-selenocysteine biosynthesis II (archaea and eukaryotes)
-
-
L-threonine degradation I
-
-
L-tryptophan degradation I (via anthranilate)
-
-
L-tryptophan degradation IV (via indole-3-lactate)
-
-
L-tryptophan degradation to 2-amino-3-carboxymuconate semialdehyde
-
-
L-tryptophan degradation V (side chain pathway)
-
-
L-tryptophan degradation VIII (to tryptophol)
-
-
L-tryptophan degradation X (mammalian, via tryptamine)
-
-
L-tryptophan degradation XI (mammalian, via kynurenine)
-
-
L-tryptophan degradation XIII (reductive Stickland reaction)
-
-
L-tyrosine biosynthesis I
-
-
L-tyrosine biosynthesis II
-
-
L-tyrosine biosynthesis III
-
-
L-tyrosine degradation I
-
-
L-tyrosine degradation II
-
-
L-tyrosine degradation III
-
-
L-tyrosine degradation IV (to 4-methylphenol)
-
-
L-tyrosine degradation V (reductive Stickland reaction)
-
-
L-valine biosynthesis
-
-
L-valine degradation II
-
-
lactose degradation II
-
-
leucine metabolism
-
-
leukotriene biosynthesis
-
-
Linoleic acid metabolism
-
-
lipid A biosynthesis
-
-
lipid A-core biosynthesis (E. coli K-12)
-
-
lipid metabolism
-
-
luteolin triglucuronide degradation
-
-
Lysine biosynthesis
-
-
Lysine degradation
-
-
lysine metabolism
-
-
Mannose type O-glycan biosynthesis
-
-
matairesinol biosynthesis
-
-
melatonin degradation I
-
-
Metabolic pathways
-
-
metabolism of disaccharids
-
-
Metabolism of xenobiotics by cytochrome P450
-
-
Methane metabolism
-
-
methanogenesis from acetate
-
-
methanol oxidation to formaldehyde IV
-
-
methionine metabolism
-
-
methyl indole-3-acetate interconversion
-
-
methyl ketone biosynthesis (engineered)
-
-
methyl tert-butyl ether degradation
-
-
methylaspartate cycle
methylsalicylate degradation
-
-
mevalonate metabolism
-
-
mevalonate pathway I (eukaryotes and bacteria)
-
-
mevalonate pathway II (haloarchaea)
-
-
mevalonate pathway III (Thermoplasma)
-
-
mevalonate pathway IV (archaea)
-
-
Microbial metabolism in diverse environments
-
-
mixed acid fermentation
-
-
mupirocin biosynthesis
-
-
mycolate biosynthesis
-
-
N-3-oxalyl-L-2,3-diaminopropanoate biosynthesis
-
-
N-Glycan biosynthesis
-
-
NAD metabolism
-
-
NAD(P)/NADPH interconversion
-
-
NADH to cytochrome bd oxidase electron transfer I
-
-
NADH to cytochrome bo oxidase electron transfer I
-
-
Naphthalene degradation
-
-
Neomycin, kanamycin and gentamicin biosynthesis
-
-
nicotine degradation I (pyridine pathway)
-
-
nicotine degradation IV
-
-
nicotine degradation V
-
-
nitrate assimilation
-
-
nitrate reduction I (denitrification)
-
-
nitrate reduction II (assimilatory)
-
-
nitrate reduction V (assimilatory)
-
-
nitrate reduction VI (assimilatory)
-
-
nitrate reduction VII (denitrification)
-
-
nitrate reduction X (dissimilatory, periplasmic)
-
-
nitrifier denitrification
-
-
nitrite-dependent anaerobic methane oxidation
-
-
nitrogen fixation I (ferredoxin)
-
-
Nitrogen metabolism
-
-
non-pathway related
-
-
noradrenaline and adrenaline degradation
-
-
Novobiocin biosynthesis
-
-
oleandomycin activation/inactivation
-
-
oleate beta-oxidation
-
-
oleate biosynthesis III (cyanobacteria)
-
-
ornithine metabolism
-
-
Other glycan degradation
-
-
Other types of O-glycan biosynthesis
-
-
Oxidative phosphorylation
-
-
oxidative phosphorylation
-
-
palmitate biosynthesis (type I fatty acid synthase)
-
-
palmitoyl ethanolamide biosynthesis
-
-
Pantothenate and CoA biosynthesis
-
-
pantothenate biosynthesis
-
-
partial TCA cycle (obligate autotrophs)
-
-
pectin degradation II
-
-
pederin biosynthesis
-
-
pentachlorophenol degradation
-
-
Pentose and glucuronate interconversions
-
-
Pentose phosphate pathway
-
-
pentose phosphate pathway
-
-
pentose phosphate pathway (non-oxidative branch) II
-
-
pentose phosphate pathway (oxidative branch) I
-
-
phenol degradation
-
-
phenylacetate degradation (aerobic)
-
-
phenylacetate degradation I (aerobic)
-
-
Phenylalanine metabolism
-
-
phenylalanine metabolism
-
-
Phenylalanine, tyrosine and tryptophan biosynthesis
-
-
phenylethanol biosynthesis
-
-
Phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis
-
-
phenylpropanoid biosynthesis, initial reactions
-
-
pheomelanin biosynthesis
-
-
phosphate acquisition
-
-
phosphatidate biosynthesis (yeast)
-
-
phosphatidate metabolism, as a signaling molecule
-
-
phosphatidylcholine acyl editing
-
-
phospholipases
-
-
phospholipid remodeling (phosphatidate, yeast)
-
-
phospholipid remodeling (phosphatidylcholine, yeast)
-
-
phospholipid remodeling (phosphatidylethanolamine, yeast)
-
-
phosphopantothenate biosynthesis I
-
-
Photosynthesis
-
-
photosynthesis
-
-
photosynthesis light reactions
-
-
photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
-
-
phytol degradation
-
-
phytosterol biosynthesis (plants)
-
-
plasmalogen degradation
-
-
platensimycin biosynthesis
-
-
polyamine pathway
-
-
Polycyclic aromatic hydrocarbon degradation
-
-
polyhydroxybutanoate biosynthesis
-
-
Porphyrin and chlorophyll metabolism
-
-
Primary bile acid biosynthesis
-
-
Propanoate metabolism
-
-
propanol degradation
-
-
propionate fermentation
-
-
protein N-glycosylation (Haloferax volcanii)
-
-
protein N-glycosylation initial phase (eukaryotic)
-
-
protein N-glycosylation processing phase (plants and animals)
-
-
protein N-glycosylation processing phase (yeast)
-
-
protein O-mannosylation I (yeast)
-
-
protein O-mannosylation II (mammals, core M1 and core M2)
-
-
protein O-mannosylation III (mammals, core M3)
-
-
protein ubiquitination
-
-
Purine metabolism
-
-
purine metabolism
-
-
purine nucleobases degradation I (anaerobic)
-
-
purine nucleobases degradation II (anaerobic)
-
-
putrescine biosynthesis I
-
-
putrescine biosynthesis II
-
-
putrescine biosynthesis III
-
-
pyoverdine I biosynthesis
-
-
Pyrimidine metabolism
-
-
pyrimidine metabolism
-
-
pyruvate fermentation to acetate II
-
-
pyruvate fermentation to acetate IV
-
-
pyruvate fermentation to acetone
-
-
pyruvate fermentation to butanoate
-
-
pyruvate fermentation to butanol I
-
-
pyruvate fermentation to butanol II (engineered)
-
-
pyruvate fermentation to ethanol I
-
-
pyruvate fermentation to ethanol II
-
-
pyruvate fermentation to ethanol III
-
-
pyruvate fermentation to hexanol (engineered)
-
-
pyruvate fermentation to isobutanol (engineered)
-
-
Pyruvate metabolism
-
-
reactive oxygen species degradation
-
-
reductive TCA cycle I
-
-
resolvin D biosynthesis
-
-
retinol biosynthesis
-
-
Retinol metabolism
-
-
Riboflavin metabolism
-
-
rosmarinic acid biosynthesis I
-
-
Rubisco shunt
-
-
S-adenosyl-L-methionine biosynthesis
-
-
S-adenosyl-L-methionine salvage I
-
-
S-adenosyl-L-methionine salvage II
-
-
salicylate degradation I
-
-
salidroside biosynthesis
-
-
salinosporamide A biosynthesis
-
-
sedoheptulose bisphosphate bypass
-
-
seleno-amino acid biosynthesis (plants)
-
-
selenocysteine biosynthesis
-
-
serotonin degradation
-
-
sesamin biosynthesis
-
-
Sesquiterpenoid and triterpenoid biosynthesis
-
-
sitosterol degradation to androstenedione
-
-
spermidine biosynthesis I
-
-
spermidine biosynthesis III
-
-
spermine and spermidine degradation I
-
-
spermine and spermidine degradation II
-
-
spermine biosynthesis
-
-
Sphingolipid metabolism
-
-
stachyose degradation
-
-
Starch and sucrose metabolism
-
-
starch degradation
-
-
starch degradation I
-
-
Steroid biosynthesis
-
-
Steroid degradation
-
-
Steroid hormone biosynthesis
-
-
sterol biosynthesis (methylotrophs)
-
-
stigma estolide biosynthesis
-
-
streptomycin biosynthesis
-
-
Streptomycin biosynthesis
-
-
Styrene degradation
-
-
suberin monomers biosynthesis
succinate to cytochrome bd oxidase electron transfer
-
-
succinate to cytochrome bo oxidase electron transfer
-
-
sucrose biosynthesis I (from photosynthesis)
-
-
sucrose biosynthesis II
-
-
sucrose degradation III (sucrose invertase)
-
-
sucrose degradation V (sucrose alpha-glucosidase)
-
-
Sulfur metabolism
-
-
superoxide radicals degradation
-
-
superpathway of fermentation (Chlamydomonas reinhardtii)
-
-
superpathway of glucose and xylose degradation
-
-
superpathway of glycolysis and the Entner-Doudoroff pathway
-
-
superpathway of glyoxylate cycle and fatty acid degradation
-
-
superpathway of methylsalicylate metabolism
-
-
superpathway of ornithine degradation
-
-
Synthesis and degradation of ketone bodies
-
-
Taurine and hypotaurine metabolism
-
-
TCA cycle I (prokaryotic)
-
-
TCA cycle II (plants and fungi)
-
-
TCA cycle III (animals)
-
-
TCA cycle IV (2-oxoglutarate decarboxylase)
-
-
TCA cycle V (2-oxoglutarate synthase)
-
-
TCA cycle VI (Helicobacter)
-
-
TCA cycle VII (acetate-producers)
-
-
Terpenoid backbone biosynthesis
-
-
testosterone and androsterone degradation to androstendione (aerobic)
-
-
tetrapyrrole biosynthesis II (from glycine)
-
-
Thiamine metabolism
-
-
Toluene degradation
-
-
toluene degradation to 2-hydroxypentadienoate (via 4-methylcatechol)
-
-
toluene degradation to 2-hydroxypentadienoate (via toluene-cis-diol)
-
-
toluene degradation to 2-hydroxypentadienoate I (via o-cresol)
-
-
traumatin and (Z)-3-hexen-1-yl acetate biosynthesis
-
-
trehalose biosynthesis I
-
-
trehalose biosynthesis II
-
-
trehalose biosynthesis III
-
-
trehalose degradation I (low osmolarity)
-
-
trehalose degradation II (cytosolic)
-
-
trehalose degradation IV
-
-
trehalose degradation V
-
-
trehalose degradation VI (periplasmic)
-
-
triacylglycerol degradation
-
-
tRNA charging
-
-
tRNA splicing I
-
-
tRNA splicing II
-
-
Tropane, piperidine and pyridine alkaloid biosynthesis
-
-
Tryptophan metabolism
-
-
tryptophan metabolism
-
-
Tyrosine metabolism
-
-
tyrosine metabolism
-
-
UDP-N-acetyl-D-galactosamine biosynthesis II
-
-
UDP-N-acetyl-D-glucosamine biosynthesis II
-
-
UMP biosynthesis I
-
-
UMP biosynthesis II
-
-
UMP biosynthesis III
-
-
valencene and 7-epi-alpha-selinene biosynthesis
-
-
valine metabolism
-
-
Valine, leucine and isoleucine biosynthesis
-
-
Valine, leucine and isoleucine degradation
-
-
valproate beta-oxidation
-
-
vancomycin resistance I
-
-
vanillin biosynthesis I
-
-
Various types of N-glycan biosynthesis
-
-
vitamin B1 metabolism
-
-
Xylene degradation
-
-
xylitol degradation
-
-
xyloglucan degradation II (exoglucanase)
-
-
zymosterol biosynthesis
-
-
ORGANISM
COMMENTARY hide
LITERATURE
UNIPROT
SEQUENCE DB
SOURCE
SOURCE TISSUE
ORGANISM
UNIPROT
COMMENTARY hide
LITERATURE
SOURCE
CHS5 is localized at the growing bud and hyphal tips, indicating that they participate in tip growth
Manually annotated by BRENDA team
additional information
LOCALIZATION
ORGANISM
UNIPROT
COMMENTARY hide
GeneOntology No.
LITERATURE
SOURCE
apoplastic fluid
Manually annotated by BRENDA team
fusion protein of enzyme with green fluorescent protein
Manually annotated by BRENDA team
Spp1 displays the characteristic SPP domain structure with 9 predicted trans membrane (TM) domains
Manually annotated by BRENDA team
-
the enzyme is secreted
-
Manually annotated by BRENDA team
-
transmembrane protein
Manually annotated by BRENDA team
Scp2 localized to peroxisomes and peroxisomal targeting is necessary for its virulence function
Manually annotated by BRENDA team
LINKS TO OTHER DATABASES (specific for Ustilago maydis)